Assessment of Pollution of the Waters in the South Kuril Fishing Zone of Russia by Radioactive Waters from the Fukushima-1 NPP Based on Lagrangian Modeling

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The study investigates the potential hazard arising from the actions taken by the Japanese government regarding the discharge of technical radioactive water from the Fukushima-1 nuclear power plant storage facilities. The contamination of the South Kuril Fishing Zone (SKFZ), which is one of the most promising fishing areas for the Russian Federation, with radioactive particles, is considered. Based on the modeling of passive markers simulating radioactive contamination, the study analyzes the pathways and mechanisms of pollution transfer into the SKFZ. The research is conducted using altimetric data on geostrophic currents for the period from August 24, 2022, to August 24, 2023. The pollution transfer into the SKFZ is determined by a set of conditions related to the current development regime of the First Kuril Meander and the local vortex system with varying characteristics, both near the discharge site and at the SKFZ border. A seasonal dependence of the speed and quantity of polluted water infiltration toward the Russian Federation’s shores is established. The possibility of rapid pollution advection into the SKFZ within 13 days has been discovered. This speed is due to the entrainment of contamination by the Kuril Meander and its further transport by the mesoscale vortex system to the SKFZ border. The study reveals periodicity in the influx of pollution into the SKFZ. Graphs depicting the distribution of the quantity of “dirty” markers over their release times and the arrival of polluted water at the SKFZ border have been created.

Толық мәтін

Рұқсат жабық

Авторлар туралы

M. Budyansky

Pacific Oceanological Institute of the Russian Academy of Sciences

Email: btvlisab@yandex.ru
Ресей, Vladivostok

A. Udalov

Pacific Oceanological Institute of the Russian Academy of Sciences

Email: btvlisab@yandex.ru
Ресей, Vladivostok

M. Lebedeva

Pacific Oceanological Institute of the Russian Academy of Sciences; St. Petersburg State University

Email: btvlisab@yandex.ru
Ресей, Vladivostok; St. Petersburg

T. Belonenko

St. Petersburg State University

Хат алмасуға жауапты Автор.
Email: btvlisab@yandex.ru
Ресей, St. Petersburg

Әдебиет тізімі

  1. Пранц С. В., Улейский М. Ю., Будянский М. В. Численное моделирование распространения в океане радиоактивного загрязнения от АЭС “Фукусима Дайичи” // ДАН. 2011. Т. 439. № 6. С. 811–814.
  2. Prants S. V., Budyansky M. V., Ponomarev V. I., Uleysky M. Yu. Lagrangian study of transport and mixing in a mesoscale eddy street // Ocean Modelling. 2011. V. 38. No. 1–2. P. 114–125.
  3. Prants S. V., Uleysky M. Yu., Budyansky M. V. Numerical simulation of propagation of radioactive pollution in the ocean from the Fukushima Dai-ichi nuclear power plant // Doklady Earth Sciences. 2011. V. 439. No. 2. P. 1179–1182.
  4. Prants S. V., Ponomarev V. I., Budyansky M. V., et al. Lagrangian analysis of mixing and transport of water masses in the marine bays // Izvestiya, Atmospheric and Oceanic Physics. 2013. V. 49. No. 1. P. 82–96.
  5. Budyansky M. V., Goryachev V. A., Kaplunenko D. D., Lobanov V. B., Prants S. V., Sergeev A. F., Shlyk N. V., Uleysky M. Yu. Role of mesoscale eddies in transport of Fukushima-derived cesium isotopes in the ocean // Deep-Sea Research I. 2015. V. 96. P. 15–27. doi: 10.1016/j.dsr.2014.09.007.
  6. Промысел биоресурсов в водах Курильской гряды: современная структура, динамика и основные элементы. Под ред. А. В. Буслова. Южно-Сахалинск. 2013. 265 с.
  7. Пранц С. В., Улейский М. Ю., Будянский М. В. Лагранжевы когеретные структуры в океане, благоприятные для рыбного промысла // ДАН. 2012. Т. 447. № 1. C. 93–97.
  8. Prants S. V., Budyansky M. V., Uleysky M. Yu. Lagrangian study of surface transport in the Kuroshio Extension area based on simulation of propagation of Fukushima-derived radionuclides // Nonlinear Processes in Geophysics. 2014. V. 21(1). P. 279–289. doi: 10.5194/npg-21-279-2014.
  9. Prants S. V., Budyansky M. V., Uleysky M. Yu. Lagrangian simulation and tracking of the mesoscale eddies contaminated by Fukushima-derived radionuclides // Ocean Sci. 2017. V. 13. P. 453–463. doi: 10.5194/os-13-453-2017.
  10. Белоненко Т. В., Колдунов В. В., Старицын Д. К., Фукс В. Р., Шилов И. О. Изменчивость уровня Северо-западной части Тихого океана. 2009. СПб.: СМИО ПРЕСС, 2009. 309 с.
  11. Истоки Ойясио. Ред. В. Р. Фукс, А. Н. Мичурин. 1997. 248 с.
  12. Udalov A., Budyansky M., Prants S. A census and properties of mesoscale Kuril eddies in the altimetry era // Deep Sea Research Part I: Oceanographic Research Papers. 2023. V. 200. 104129. doi: 10.1016/j.dsr.2023.104129.
  13. Травкин В. С., Белоненко Т. В., Кочнев А. В. Топографические волны в Курильском районе // Современные проблемы дистанционного зондирования Земли из космоса. 2022. Т. 19. № 5. С. 222–234. doi: 10.21046/2070-7401-2022-19-5-222-234.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. The research area. The location of the Fukushima-1 NPP (coordinates 37° 25ʹ 12.0ʺ s. w., 141° 2ʹ 58.0ʺ v. d.) is indicated by a radiation hazard sign. The yellow line marks the borders of the Southern Federal District. The pink segment is the southwestern border of the Southern Federal District. The red segment is the area of launching (with Lagrangian analysis in forward time) and catching (with Lagrangian analysis in reverse time) passive markers simulating pollution. The color shows the topography. The boundaries of the fishing zone 61.04 (Yuzhno-Kurilskaya) are built in accordance with Appendix No. 1 of Order No. 385 dated October 21, 2013 “On Approval of Fishing Rules for the Far Eastern Fisheries Basin".

Жүктеу (317KB)
3. Fig. 2. Geostrophic flows calculated from AVISO altimetric data and averaged for September 2022 and April 2023. Currents: 1 – Oyasio, 2 – Kuroshio. The arrows show the flow vectors, the color scale corresponds to the velocity modulus. The red segment (35.6° s. w., 141° v. d. – 38.3° s. w., 141.6° v. d.) is located near the Fukushima-1 nuclear power plant, the trajectories of markers are calculated from it. The red triangles correspond to the centers of anticyclones, the blue ones correspond to cyclones. The black crosses show hyperbolic points.

Жүктеу (873KB)
4. Fig. 3. Spatial distribution of “dirty” markers for November 20, 2022, May 25, 2023. Triangles and crosses mean the same thing as in Fig. 2.

Жүктеу (939KB)
5. Fig. 4. Temporal variability of the number of “dirty” markers inside the SCR. The account was conducted daily from August 24, 2022 to August 24, 2023. The trajectory of each marker was counted in the countdown for 1 year.

Жүктеу (171KB)
6. Fig. 5. Distribution of the number of “dirty” markers by the time of reaching the border of the SCR according to the AVISO field data. Only those markers that crossed the southern border of the South Caucasus Federal District are considered (the pink segment in Fig. 1).

Жүктеу (98KB)
7. Fig. 6. Velocity field according to AVISO data with fragments of the evolution of the pollution spot from the Japanese shore at the Fukushima-1 NPP (the segment, like the spot, are shown in red, see also Fig. 1). Launch date May 25, 2023. The markers reached the border of the southwestern border of the YUKRZ (shown in pink) 13 days after launch.

Жүктеу (680KB)
8. Fig. 7. Distribution of the number of “dirty” markers that reached the borders of the YUKRZ by the dates of their launch from the coast of Japan.

Жүктеу (193KB)
9. Figure 8. Dasymetric maps of daily traces of markers launched from the Fukushima-1 nuclear power plant in September, November 2022 and April 2023, which reached a segment of the southwestern border of the Southern Nuclear Power Plant. The color encodes the value of v = log φ, where φ is the density of daily marker traces.

Жүктеу (543KB)
10. Fig. 9. Distribution of the number of “dirty” markers by the dates of their arrival at the border of the Southern Federal District from August 24, 2022.

Жүктеу (129KB)

© Russian Academy of Sciences, 2024

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>