Rare earth elements in fucus algae Barents Sea

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Patterns of distribution of rare earth elements (REE) in natural objects are important geochemical indicators of the state of the environment. For the first time, data on REE contents in fucus algae from various horizons of the littoral of the Barents Sea are presented. The behavior of REE in natural processes is controlled by the solubility of their compounds, the ability to complex, and the tetrad effect of fractionation. Natural factors determining REE migration in the sediment–water–macrophytes system are discussed.

Full Text

Restricted Access

About the authors

E. G. Panova

Institute of Earth Sciences of Saint Petersburg State University

Author for correspondence.
Email: dannaukiozemle@yandex.ru
Russian Federation, Saint Petersburg

G. M. Voskoboinikov

Murmansk Marine Biological Institute of the Russian Academy of Sciences

Email: dannaukiozemle@yandex.ru
Russian Federation, Murmansk

G. G. Matishov

Murmansk Marine Biological Institute of the Russian Academy of Sciences

Email: dannaukiozemle@yandex.ru

Academician of the RAS

Russian Federation, Murmansk

References

  1. McLennan S. M. Chapter 7. Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes // Geochemistry and mineralogy of rare earth elements / Eds. B. R. Lipin, G. A. McKay. Berlin, Boston, 1989. P. 169–200. doi: 10.1515/9781501509032-010.
  2. Дубинин А. В. Геохимия редкоземельных элементов в океане. М.: Наука, 2006. 339 с.
  3. Арбузов С. И., Рихванов Л. П. Геохимия радиоактивных элементов. 3-е изд. испр. и доп. Томск: Изд-во ТПУ, 2011. 300 с.
  4. Барановская Н. В., Агеева Е. В., Соктоев Б. Р., Наркович Д. В., Денисова О. А., Матковская Т. В. Редкоземельные и радиоактивные (Th, U) элементы в компонентах природной среды на территории Томской области // Известия Томского политехнического университета. Инжиниринг георесурсов. 2020. Т. 331. № 2. С. 17–28.
  5. Sneller F. E.C., Kalf D. F., Weltje L., Van Wezel A. P. Maximum permissible concentrations and negligible concentrations for rare earth elements (REEs) // RIVM National Institue of Public Health and the Environment. The Netherlands, 2000. 60 p.
  6. Sholkovitz E. R., Landing W. M., Lewis B. L. Ocean particle chemistry – the fractionation of rare-earth elements between suspended particles and seawater // Geochim. Cosmochim. Acta. 1994. V. 58. P. 1567–1579. doi: 10.1016/0016-7037(94)90559-2.
  7. Hathorne E. C., Stichel T., Brück B., Frank M. Rare earth element distribution in the Atlantic sector of the Southern Ocean: the balance between particle scavenging and vertical supply // Mar. Chem. 2015. V. 177. P. 157–171. doi: 10.1016/j.marchem.2015.03.011.
  8. Migaszewski Z. M., Gałuszka A. The characteristics, occurrence, and geochemical behavior of rare earth elements in the environment: a review // Critical Reviews in Environmental Science and Technology. 2015. V. 45. Iss. 5. P. 429–471.
  9. Камнев А. Н. Структура и функции бурых водорослей. М.: Изд-во МГУ, 1989. 200 с.
  10. Воскобойников Г. М., Облучинская Е. Д. Биологически активные вещества бурых водорослей: содержание, сезонная динамика, фармакологическая активность // Арктическая гидробиология как основа современных технологий для промышленности, медицины, сельского хозяйства: сборник избранных ММБИ КНЦ РАН. 2016. С. 458–467.
  11. Jayasekera R., Rossbach M. Use of seaweeds for monitoring trace elements in coastal waters // Environmental Geochemistry and Health. 1996. 18: 63–68.
  12. Truus K., Vaher M., Taure I. Algal biomass from Fucus vesiculosus (Phaeophyta): investigation of the mineral and alginate components // Proceeding of the Estonian Academy of Science. Chemistry. 2001. 50: 95–103.
  13. Fu F. F., Akagi T., Yabuki S., Iwaki M., Ogura N. Distribution of rare earth elements in seaweed: implication of two different sources of rare earth elements and silicon in seaweed // Journal of Phycology. 2000. 36: 62–70.
  14. Prazukin A. V. Ecological Phytosystemology. Pero Press, Moscow. 2015. (in Russian). https://repository.marineresearch.org/bitstream/299011/1358/1/Prazukin.pdf
  15. Sakamoto N., Kano N., Imaizumi H. Biosorption of uranium and rare earth elements using biomass of algae // Bioinorganic Chemistry and Application. 2008: 706240.
  16. Goecke F., Aránguiz-Acuña A., Palacios M., MuñozMuga P., Rucki M., Vítová M. Latitudinal distribution of lanthanides contained in macroalgae in Chile: an inductively coupled plasma-mass spectrometric (ICP-MS) determination // Journal of Applied Phycology. 2017. 29: 2117–2128.
  17. Ryabushko V. I., Prazukin A. V., Popova E. V. Nekhoroshev M. V. (2014). Fucoxanthin of the brown alga Cystoseira barbata (Stackh.) C. Agardh from the Black Sea // Journal of the Black Sea/Mediterranean Environment. 2014. 20: 108–113.
  18. Zheng X.-Y., Plancherel Y., Saito M. A., Scott P., Henderson G. M. Rare earth elements (REEs) in the tropical South Atlantic and quantitative deconvolution of their non-conservative behaviour // Geochim. Cosmochim. Acta. 2016. V. 177. P. 217–237. doi: 10.1016/j.gca.2016.01.018.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. REE spectra of macrophytes from different levels of the littoral. Along the vertical axis: the content in the samples /normalized to PAAS. Fucus vesiculosus – upper horizon; Fucus distichus – middle horizon; Fucus serratus – lower horizon; Ascophyllum nodosum – middle horizon.

Download (196KB)
3. Fig. 2. REE spectra of water, bottom sediment and macrophytes of the Barents Sea (normalized to PAAS).

Download (164KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies