On modeling seismicity in seismic hazard assessment problems

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Seismicity modeling is an important part of creating General Seismic Zoning maps within the framework of a probabilistic approach. We consider the main disadvantages of individual elements of the recent seismicity models. A variant of the methodology is proposed, which, due to the improvements of those elements, should provide more accurate estimates of the future seismicity. For the first time, a stochastic seismicity model has been proposed in the form of a synthetic earthquake catalog, generated for an arbitrary conditional period and reproducing the properties of the catalog of actual earthquakes, including spatiotemporal grouping. A methodology for verifying seismicity models is proposed to check the compliance of the models with the initial data, to assess the predictive efficiency of the models, and to compare efficiency of different models.

Full Text

Restricted Access

About the authors

P. N. Shebalin

Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences; Geophysical Center, Russian Academy of Sciences

Author for correspondence.
Email: shebalin@mitp.ru

Corresponding Member of the RAS

Russian Federation, Moscow; Moscow

S. B. Baranov

Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences; Kola Branch, Geophysical Survey, Russian Academy of Sciences

Email: shebalin@mitp.ru
Russian Federation, Moscow; Apatity

I. A. Vorobieva

Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences; Geophysical Center, Russian Academy of Sciences

Email: shebalin@mitp.ru
Russian Federation, Moscow; Moscow

Е. M. Grekov

Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences

Email: shebalin@mitp.ru
Russian Federation, Moscow

К. V. Krushelnitskii

Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences

Email: shebalin@mitp.ru
Russian Federation, Moscow

A. A. Skorkina

Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences

Email: shebalin@mitp.ru
Russian Federation, Moscow

О. V. Selyutskaya

Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences

Email: shebalin@mitp.ru
Russian Federation, Moscow

References

  1. Wyss M., Nekrasova A., Kossobokov V. Errors in expected human losses due to incorrect seismic hazard estimates // Natural Hazards. 2012. V. 62. I. 3. P. 927–935.
  2. Баранов С. В., Шебалин П. Н., Воробьева И. А., Селюцкая О. В. Автоматизированная оценка опасности афтершоков землетрясения в Турции 06.02.2023 г., M 7.8 // Физика Земли. 2023. № 6. С. 1–9.
  3. Шебалин П. Н., Гвишиани А. Д., Дзебоев Б. А., Скоркина А. А. Почему необходимы новые подходы к оценке сейсмической опасности? // Доклады Российской академии наук. Науки о Земле. 2022. Т. 507. № 1. С. 91–97.
  4. Cornell C. A. Engineering seismic risk analysis // Bulletin of the Seismological Society of America. 1968. V. 58. Iss. 5. P. 1583–1606.
  5. Ulomov V. I. Seismic hazard of Northern Eurasia // Annali di Geofisica. 1999. V. 42. I. 6. P. 1023–1038.
  6. Helmstetter A., Werner M. J. Adaptive spatiotemporal smoothing of seismicity for long‐term earthquake forecasts in California // Bulletin of the Seismological Society of America. 2012. V. 102(6). 2518–2529. doi: 10.1785/0120120062.
  7. Frankel А. Mapping seismic hazard in the central and eastern United States // Seismological Research Letters. 1995. V. 66(4). P. 8–21. doi: 10.1785/gssrl.66.4.8.
  8. Keilis-Borok V.I., Kossobokov V. G., Mazhkenov S. A. On the similarity in the spatial distribution of seismicity. In: Vychisl. Seismologiya, Vyp. 22, Teoriya i algoritmy interpretatsii geofizicheskikh dannykh (Theory and Algorithms of Geo-physical Data Interpretation, vol. 22 of Computational Seismology), Moscow: Nauka, 1989. P. 40.
  9. Zelenin E., Bachmanov D., Garipova S., Trifonov V., Kozhurin A. The Active Faults of Eurasia Database (AFEAD): the ontology and design behind the continental-scale dataset // Earth Syst. Sci. Data. 2022. V. 14, P. 4489–4503. doi: 10.5194/essd-14-4489-2022.
  10. Howarth J. D., Cochran U. A., Langridge R. M., Clark K., Fitzsimons S. J., Berryman K., et al. Past large earthquakes on the Alpine Fault: Paleoseismological progress and future directions // New Zealand Journal of Geology and Geophysics. 2018. V. 61(3), P. 309–328. doi: 10.1080/00288306.2018.1464658.
  11. Wesnousky S. G. Crustal deformation processes and the stability of the Gutenberg‐Richter relationship // Bulletin of the Seismological Society of America. 1999. V. 89(4). P. 1131–1137.
  12. Gardner J. K., Knopoff L. Is the sequence of earthquakes in southern California, with aftershocks removed, Poissonian? // Bulletin of the Seismological Society of America. 1974. V. 64. P. 1363–1367.
  13. Gerstenberger M. C., Marzocchi W., Allen T., Pagani M., Adams J., Danciu L., et al. Probabilistic seismic hazard analysis at regional and national scales: State of the art and future challenges // Reviews of Geophysics. 2020. V. 58. e2019RG000653. doi: 10.1029/2019RG000653.
  14. Vorobieva I., Gvishiani A., Dzeboev B., Dzeranov B., Barykina Y., Antipova A. Nearest neighbor method for discriminating aftershocks and duplicates when merging earthquake catalogs // Front. Earth Sci. 2022. V. 10, P. 820277. doi: 10.3389/feart.2022.820277.
  15. Shebalin P. N., Narteau C., Baranov S. V. Earthquake productivity law // Geophysical Journal International. 2020. V. 222. Is. 2. P. 1264–126913. doi: 10.1093/gji/ggaa252.
  16. Wessel P., Luis J. F., Uieda L., Scharroo R., Wobbe F., Smith W. H., Tian D. Generic mapping tools version 6 // Geochem. Geophys. Geosyst. 2019. V. 20, P. 5556– 5564. doi: 10.1029/2019GC008515.
  17. Соловьев А. А., Гвишиани А. Д., Горшков А. И., Добровольский М. Н., Новикова О. В. Распознавание мест возможного возникновения землетрясений: методология и анализ результатов // Физика Земли. 2014. № 2. С. 3–20. doi: 10.7868/S0002333714020112.
  18. Hamling I. J., Hreinsdóttir S., Clark K., Elliott J., Liang C., Fielding E., et al. Complex multifault rupture during the 2016 Mw 7.8 Kaikōura earthquake, New Zealand // Science. 2017. V. 356(6334), eaam7194. doi: 10.1126/science.aam7194.
  19. Писаренко В. Ф., Ружич В. В., Скоркина А. А., Левина Е. А. Структура сейсмического поля Байкальской рифтовой зоны // Физика Земли. 2022. № 3. С. 37–55.
  20. Ogata Y. Statistical model for standard seismicity and detection of anomalies by residual analysis // Tectonophysics. 1989. V. 169. Issues 1–3. P. 159–174. ISSN0040–1951, https://doi.org/10.1016/0040–1951(89)90191–1.
  21. Zaliapin I., Ben-Zion Y. Earthquake clusters in southern California I: Identification and stability // J. Geophys. Res. Solid Earth. 2013. V. 118. P. 2847–2864. doi: 10.1002/jgrb.50179.
  22. Zechar J. D., Gerstenberger M. C., Rhoades D. A. Likelihood-based tests for evaluating space-rate-magnitude forecasts // Bull. Seismol. Soc. Am. 2010. V. 100(3). P. 1184–1195. doi: 10.1785/0120090192.
  23. Carafa M. M.C., Kastelic V. Earthquake rates inferred from active faults and geodynamics: The case of the External Dinarides // Bollettino di Geofisica Teorica ed Applicata. 2014. 55(1). P. 69–83. doi: 10.4430/bgta0112.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Variations in seismic activity, – an estimate of the number of earthquakes with magnitude M ≥ 3.5, calculated using the formula (1). Earthquakes are shown in black circles. The values are linked to the centers of the scan circles.

Download (589KB)
3. Fig. 2. Map of earthquake epicenters in a circle with the coordinates of the center (106° vd, 53° s. w.). The blue cross shows the center of the circle, the red cross shows the average position of earthquakes (106.8° vd, 52.6° s. w.), which is shifted relative to the center of the circle by 70 km.

Download (74KB)
4. Fig. 3. Variations in seismic activity, – an estimate of the number of earthquakes with magnitude M ≥ 3.5, calculated using the formula (1). The values are linked to the average position of the sample earthquakes. Earthquakes are shown in black circles.

Download (596KB)
5. Fig. 4. Results of verification of the synthetic earthquake catalog of the Altai-Sayan-Baikal region according to the actual catalog from 1982 to 2021, M – L-test. The empirical distribution function (blue curve on the left) and the histogram (on the right) are logarithmic likelihood values. The vertical line shows the value of L.

Download (142KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies