Forms of occurrence metals and metalloids in products of the Mutnovsky volcano gas-hydrothermal activity

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

On the basis of concentrate analysis of the Mutnovsky volcano thermal sites substance, new data of the ore elements forms of occurrence were obtained. In the course of large-scale hydrothermal alteration of volcanic rocks, with the participation of magmatic fluids and meteoric waters, metals and metalloids are transported to the surface, which are concentrated in the form of the main or impurity components of new-forming minerals. Sulfides of copper, zinc, mercury, silver and barium sulfate are confidently diagnosed, in which, in addition to mineral-forming Zn, Cu, Hg, Ag and Ba, admixtures of Mn, Cd, Sr, I, Cl, Te, Pb are present. Micron-sized phases were found containing Ru, Os and Ir (laurite), Pb (galena) as the main components, as well as intermetallic compounds (Fe–Ni), (Fe–Ir–Os), (Pb–Bi), (Bi–Te) and native Au. Most of the new-forming mineral individuals are associated with a mineral of the pyrite-marcasite group, which contains admixtures of As, Cu, Ni, and Co. Platinoids Os, Ir, Ru among the new-forming minerals within the East Kamchatka volcanic belt were discovered for the first time.

Full Text

Restricted Access

About the authors

A. Ya. Shevko

V.S. Sobolev Institute of Geology and Mineralogy Siberian Branch Russian Academy of Sciences

Author for correspondence.
Email: sp@igm.nsc.ru
Russian Federation, Novosibirsk

M. P. Gora

V.S. Sobolev Institute of Geology and Mineralogy Siberian Branch Russian Academy of Sciences

Email: sp@igm.nsc.ru
Russian Federation, Novosibirsk

E. P. Shevko

V.S. Sobolev Institute of Geology and Mineralogy Siberian Branch Russian Academy of Sciences

Email: sp@igm.nsc.ru
Russian Federation, Novosibirsk

S. B. Bortnikova

A.A. Trofimuk Institute of Petroleum-Gas Geology and Geophysics Siberian Branch Russian Academy of Sciences

Email: sp@igm.nsc.ru
Russian Federation, Novosibirsk

References

  1. Селянгин О. Б. Строение, вещество и близповерхностные магматические очаги вулканов Мутновский и Горелый (Мутновский геотермальный район, Камчатка). II. Вулкан Мутновский // Горный информационно-аналитический бюллетень (научно-технический журнал). 2016. № S31. С. 365–400.
  2. Гавриленко Г. М., Мельников Д. В., Зеленский М. Е., Тавиньо Л. Многолетний гидрогеохимический мониторинг вулкана Мутновский (Камчатка) и фреатическое извержение вулкана в апреле 2007 г. // Вестник Камчатской региональной ассоциации Учебно-научный центр. Серия: Науки о Земле. 2007. № 1 (9). С. 127–132.
  3. Зеленский М. Е., Овсянников А. А., Гавриленко Г. М., Сенюков С. Л. Извержение вулкана Мутновский (Камчатка) 17 марта 2000 г. // Вулканология и сейсмология. 2002. № 6. С. 25–28.
  4. Бортникова С. Б., Шарапов В. Н., Бессонова Е. П. Гидрогеохимический состав источников фумарольного поля донного Мутновского вулкана (Южная Камчатка) и проблемы их связи с надкритическими магматическими флюидами // ДАН. 2007. Т. 413. № 4. С. 530–534.
  5. Zelenski M., Bortnikova S. Sublimate speciation at Mutnovsky volcano, Kamchatka // Eur. J. Mineral. 2005. V. 17. P. 107–118.
  6. Bessonova E. P., Bortnikova S.B, Gora M. P., Manstein Yu.A., Shevko A. Ya., Panin G. L., Manstein A. K. Geochemical and Geoelectrical Study of Mud Pools at Mutnovsky Volcano (South Kamchatka, Russia): Behavior of Elements, Structure of Feeding Channels and the Model of Origin// Applied Geochemistry. 2012. V. 27. № 9. Р. 1829–1843.
  7. Озерова Н. А. Новый тип гидротермальных растворов – кислые растворы, формирующие ртутную минерализацию (Мутновский вулкан, Камчатка) // Электронное научное издание Альманах Пространство и Время. 2012. Т. 1. Вып. 1.
  8. Zelenski M., Simakin A., Kamenetsky V. S., et al. Partitioning of elements between high-temperature, low-density aqueous fluid and silicate melt as derived from volcanic gas geochemistry // Geochimica et Cosmochimica Acta. 2021. V. 295. P. 112–134.
  9. Ilgen A. G., Rychagov S. N., Trainor T. P. Arsenic speciation and transport associated with the release of spent geothermal fluids in Mutnovsky field (Kamchatka, Russia) // Chemical Geology. 2011. V. 288. № 3–4. P. 115–132.
  10. Takahashi R., Matsueda H., Okrugin V. M., Ono S. Polymetallic and Au-Ag Mineralizations at the Mutnovskoe Deposit in South Kamchatka, Russia // Resource Geology. 2006. V. 56. № 2. Р. 141–156.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. View of the upper part of the VLK. Mutnovsky is moving away from the ridge. In the inset: 1 – horizontal lines; 2 – crater boundaries and rocky ledges; 3 – elevation marks; 4 – places where the mud boiler substance is tested.

Download (587KB)
3. Fig. 2. Inclusions in pyrite crystals and their accretions. In parentheses next to the name of the minerals are the numbers of their analyses from Table 1. Py – pyrite, Ccp – chalcopyrite, Cbn – cubanite, Pyh – pyrrhotite, Sp – sphalerite, Cv – covellin, Brt – barite, Qz – quartz. Images in backscattered electrons.

Download (170KB)
4. Fig. 3. Grains in the voids of spherulite and cryptocrystalline pyrite aggregates. In parentheses, next to the designation of silver minerals, the numbers of their analyses from the table are given. 2. The calculated compositions of minerals, here and further, are given in formula units. Aca – acanthite; Cag – chlorargyrite; Lrt – laurite. Images in backscattered electrons.

Download (144KB)
5. Fig. 4. Grains on the surface of pyrite crystals. Gn is galena. Images in backscattered electrons.

Download (92KB)
6. Fig. 5. Independent grains of black concentrate. Cin is cinnabar, Auo is native gold. Images in backscattered electrons.

Download (125KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies