
120

ДОКЛАДЫ АКАДЕМИИ НАУК. НАУКИ О ЗЕМЛЕ, 2024, том 519, № 2, с. 120–127

ВВЕДЕНИЕ

Моделирование напряженно-деформирован-
ного состояния (НДС) ряда сильных континен-
тальных землетрясений (intraplate earthquakes) 
с магнитудой 6М >  позволило установить общие 
повторяющиеся закономерности между резуль-
татами моделирования и параметрами землетря-
сений, имея в виду определение координат эпи-
центров и интенсивности сейсмических событий 
в рамках ретроспективного прогноза [1–3]. При 
этом в качестве исходных геологических данных 
принимаются структурно-тектонические схемы 
(разломная тектоника), дающая представление 
о пространственной ориентации тектонических 
разломов, включая физико-механические пара-
метры геологической среды и действующие реги-
ональные поля тектонических напряжений. Затем 
приходится использовать априорные (предпола-
гаемые) представления о параметрах тектониче-
ских разломов и величине тектонических напря-
жений, используемых при задании граничных 

условий конечно-элементной модели. При этом 
уровень соответствия результатов моделирования 
оценивается по результатам сейсмологических 
определений эпицентра, магнитуды землетрясе-
ния М, выделившейся сейсмической энергии sЕ ,  
протяженности образовавшегося разрыва L,  
сейсмического момента oМ , сброшенных на-
пряжений (stress drop), локализации афтершоков, 
включая механизм разрыва, определяемый по 
инверсии объемных волн и данных спутниковых 
геодезических наблюдений (ГНСС и спутниковая 
радарная интерферометрия), а также использует-
ся накопленный опыт в установленных эмпири-
ческих связях между этими параметрами [4, 5].

25  октября 2016  года в  провинции Акетао 
(Китай) произошло сильное землетрясение с Mw 
6.6. Эпицентр землетрясения с координатами 
39.273° с. ш., 73.978° в.  д. находится в  районе 
разлома Мудзи в северо-западной части сейсмо-
генной зоны Конгур-Шань (рис. 1) [6]. Глубина 
гипоцентра составляет 10 км. 26 октября после-
довал сильный афтершок с  5M  к юго-востоку 
от эпицентра главного толчка, в последующие  
5 дней зарегистрированного около 386 афтершо-
ков с магнитудами 5M < .
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Изложены результаты моделирования напряженно-деформированного состояния эпицентраль-
ной зоны сильного корового землетрясения Акетао, произошедшего в районе г. Мудзи (Китай) 
25 ноября 2016 года с магнитудой  Mw 6.6. Использован метод конечных элементов для модели-
рования напряженно-деформированного состояния эпицентральной зоны с последующим по-
строением карт интенсивности напряжений до и после землетрясения. Показана возможность 
определения места зарождения разрыва, его протяженности, включая оценку величины скаляр-
ного сейсмического момента и магнитуды землетрясения. Впервые представлена возможность 
вычисления временной функции сейсмического момента Mo (t) (seismic moment rate), основанная 
на модели напряженно-деформированного состояния разрыва (очага землетрясения), позво-
ляющая в перспективе получить синтетические сейсмограммы и акселелограммы возможного 
землетрясения.
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Для моделирования НДС землетрясения Аке-
тао нами использована геолого-геофизическая 
информация, приведенная в  работах [6–10], 
включая пространственную ориентацию нодаль-
ных плоскостей в очагах сильных землетрясений 
этого района (рис. 1).

МЕТОД МОДЕЛИРОВАНИЯ НДС

Используемый метод моделирования НДС 
блочного гетерогенного упруго-изотропно-
го массива, нарушенного системой тектониче-
ских разломов, подробно изложен в ранее опу-
бликованной работе [1]. Верхняя часть земной 
коры в интервале глубин до 20–25 км, соответ-
ствующая сейсмогенерирующему слою сильных 
землетрясений с М>6, моделируется упруго-и-
зотропным слоем, нарушенным произвольно 
ориентированными тектоническими разломами 
с  эффективным упругим модулем существен-
но более низким по сравнению с окружающей 
геологической средой. Внешнее поле тектони-
ческих напряжений задается, исходя из геоло-
го-геофизических данных, механизмов очагов 
сильных землетрясений, результатов геодезиче-
ских исследований, включая ГНСС-измерения.

При моделировании НДС эпицентральных 
зон сильных коровых землетрясений исполь-
зуются фрагменты верхней части земной коры 
площадью в пределах ~100×100 км. При этих 
размерах можно пренебречь сферичной формой 
Земли и  считать выбранный фрагмент гори-
зонтальным слоем. Слой моделируется идеаль-
ной упругой средой, находящейся под действи-
ем тектонических напряжений, заданных на его 
границе. Соотношения между напряжениями 
и деформациями принимаются осредненными 
по толщине слоя (обобщенное плоско-напря-
женное состояние) в форме закона Гука. Вычис-
ления производились при следующих принятых 
параметрах: модуль Юнга геологической среды 

4E= 5 10´  МПа, эффективный упругий модуль 
тектонических разломов 2

рE = 5 10´  МПа, ко-
эффициент Пуассона ν  = 0.25.

Граничные условия моделирования заданы, 
основываясь на данных о механизме очага зем-
летрясения [6] и смещений земной поверхности 
по данным геодезических измерений [8]. Ори-
ентация компрессионной оси в эпицентральной 
области принята субмеридиональной (с откло-
нением в 10°) при величине  Ц30Hmaxσ =  –30 МПа. 
При этом соотношение между главными напря-
жениями Hmaxσ  и напряжениями отпора Hminσ  
принято по А. Н. Диннику:
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Рис. 1. Структурно-тектоническая схема района землетрясения Акетао, составленная по материалам [6, 8]. 1 – эпи-
центр главного толчка с M 6.6; 2 – тектонические разломы.
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-

Предметом анализа являются карты ин-
тенсивности напряжений и  их производные 
характеристики:

( )
1

2 2 2 2
i xx yy xx yy xy3 .σ σ σ σσ σ= + - ´ + ´

Для расчета НДС эпицентральной зоны зем-
летрясения Акетао была использована структур-
но-тектоническая схема, приведенная на рис. 1.

РЕЗУЛЬТАТЫ МОДЕЛИРОВАНИЯ НДС 
И СЕЙСМИЧЕСКОГО МОМЕНТА

На рис. 2 а представлена карта интенсивности 
напряжений до землетрясения. На карте выделя-
ются две значительные зоны высокой интенсив-
ности напряжений, достигающих 65 МПа в цен-
тральной зоне I и 50–60 МПа в зоне II, располо-
женной восточнее зоны I на расстоянии ~15 км. 
Эти зоны имеют эллиптическую форму с боль-
шей осью, ориентированной в субмеридиональ-
ном направлении. Протяженность I зоны в севе-
ро-южном направлении с изобарой 35 МПа со-
ставляет 20 км. Западнее зоны I сформировалась 
меньшая по площади зона III с максимальной 
интенсивностью напряжений 50 МПа. Можно 
было бы априори предположить, что в централь-
ной зоне I, в области ограниченной изобарой  
35 МПа, наиболее вероятна возможность об-
разования разрыва. Ранее в работах [1–3] была 
обнаружена устойчивая тенденция локализа-
ции фокуса землетрясения в пределах изобары 
30÷35 МПа и отношения между главными на-
пряжениями 3 4÷>æ . На рис.  2  б приведена 
карта отношения между главными напряжени-
ями æ . Можно предположить, что в предыду-
щей истории сейсмотектонического процесса 
площадь аномальной зоны I была существенно 
меньше. Ее площадь на момент землетрясения 
Акетао увеличилась в результате непрерывной 
деформации района в связи с “подкачкой” энер-
гии внешнего поля тектонических напряжений.

В рамках моделирования мы предполагаем, 
что смоделированное НДС является конечной 
фазой перед разрывом, и фокус (место зарожде-
ния разрыва) находится внутри зоны 6>æ ,  
то есть место разрыва находится в пределах пло-
щади максимальной аномальной зоны si и мак-
симального отношения главных напряжений. Как 
это следует из энергетического анализа [2], раз-
рыв из фокуса распространяется в направлениях 

вектора | |i maxgrad σ , то есть направлениях II и III 
зон аномальной интенсивности напряжений 
и отношения 3>æ . Расстояние между зонами 
I и II составляет ~15 км. Зарождение и распро-
странение разрыва в зоне I, достигает зоны II и I, 
поддерживающих его дальнейшее распростране-
ние, как и в Измитском и Рудбарском землетря-
сениях [2, 3]. Можно было бы предположить, что 
протяженность возможного разрыва составит не 
менее 40 км (пересекая зоны высокой интенсив-
ности напряжений). В этом случае прогнозная 
оценка магнитуды землетрясения совпадает с ве-
личиной wМ , полученной по сейсмологическим 
данным, если использовать формулу связи между 
протяженностью разрыва и магнитудой [4]:
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Рис. 2. Напряженно-деформированное состояние 
эпицентральной зоны до землетрясения Акетао. a – 
интенсивность напряжений iσ , МПа; б – отношение 
главных действующих напряжений /H hσ σ=æ .
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( )  10 0.44 1.29log L M= ´ - ,
где M  – магнитуда землетрясения, L  – протя-
жённость разрыва.

Полагая, что разрыв радиально распростра-
няется на восток и  запад от прогнозируемого 
эпицентра, пересекая аномальные зоны высо-
кой интенсивности напряжений, представляет-
ся возможность определения сейсмического мо-
мента оМ . Для большинства континентальных 
землетрясений гипоцентры находятся в интер-
вале глубин от ~10÷15 км, а гипоцентры афтер-
шоков в интервале 0÷20 км. Причем наиболь-
шая плотность гипоцентров зафиксирована 
в интервале глубин от 5 до 15 км. Эти особенно-
сти проявляются при землетрясении Акетао [10] 
(рис. 3). Распределение плотности гипоцентров 
афтершоков в интервале глубин 0÷20 км соответ-
ствует (в первом приближении) нормальному за-
кону распределения (закону Гаусса), как это по-
казано на рис. 3. Более 80% гипоцентров афтер-
шоков локализовано в интервале от 5 до 15 км,  
то есть сейсмогенерирующий слой находится 
в этом интервале глубин. Вместе с тем, распре-
деление частоты афтершоков по глубине сей-
смогенерирующего слоя имеет максимум на глу-
бине ~10 км и может быть описано функцией 
нормального распределения (законом Гаусса):

( )
( )

( ) 

2
0
22 # 1

h h

bh A eΦ
-

-
= ´ ,                    (1)

где h – глубина гипоцентров афтершоков, км;   
h0 = 10 км; b = 3 км; A = 1.

Используя сейсмологические данные о про-
странственной ориентации разрыва землетря-
сения Акетао [6, 8] на рис. 4 а приведена карта 
сброшенной интенсивности напряжений:

( ) ( )0
.i i i p

∆σ σ σ= - ,
где 0( )iσ  – интенсивность напряжений в произ-
вольной точке до момента землетрясения, МПа;
( )i рσ  – интенсивность напряжений в произволь-
ной точке после момента землетрясения, МПа;

Сброшенную интенсивность напряжений 
можно представить в виде сброшенных напря-
жений сдвига (в первом приближении):

Δsi ôi
3

2
р∆ ∆= ´ Δτр,

где Δτр – сброшенные напряжения сдвига, МПа.
Полагая, что плотность гипоцентров афтер-

шоков в сейсмогенерирующем слое пропорцио-
нальна плотности упругой потенциальной энер-
гии тектонических напряжений, накопленных 

до момента землетрясения, представим сбро-
шенные напряжений по глубине как функ-
цию нормального распределения гипоцен-
тров афтершоков соответствующую формуле 1. 
В этом случае, принимая значение, h0 = 10 км;  
b = 3 км и А 0 ph 10 км, b 3 км и A ∆τ= = = получаем функцию в виде:

Δτр (h) = Δτр( )
( )

( )ô  ô

2

2

10

2 3 ,# 2

h

р рh e∆ ∆
-

-
´= ´ .                    (2)

В “плоскости” разрыва, применив функцию (2),  
можно получить сброшенные напряжения Δτр 
(рис. 4 в).

Вдоль разрыва выделяются три зоны сбро-
шенных напряжений сдвига, достигающих  
6 МПа в интервале глубины 5–15 км, соответству-
ющей максимальной частоте гипоцентров афтер-
шоков. Этот результат (первого приближения) даёт 
возможность априорной оценки сейсмического мо-
мента оМ . Величину сейсмического момента мож-
но представить в следующем виде [5, 11, 12]:	

M0 ≈ 0.41 × Δτ̅р  ô
3

20.41 ,o рM S∆» ´ ´

где Δτ̅р – среднее сброшенное напряжение сдви-
га, МПа; S – площадь разрыва, 2м .
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Рис. 3. Афтершоки землетрясения Акетао по дан-
ным [8]. а – график распределения афтершоков  
по глубине (красная пунктирная линия – функция 
Гаусса (1), при заданных параметрах h0 = 10  км;  
b = 3  км; A = 1);  б – распределение афтершоков  
по глубине вдоль разрыва.
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Сейсмический момент можно представить 
и в виде совокупности сейсмических моментов 
ячеек всей площади образовавшегося разрыва:

                                    𝑛
M0  ≈ 0.41 Σ(Δτ̅р)𝑖 × S0

3/2,
                                   𝑖=1

где (Δτ̅р)𝑖  – среднее сброшенное напряжение 
сдвига в ячейке i, МПа; S0 – площадь ячейки, со-
вокупность которых равна площади разрыва, м2.

Результаты интерпретации сейсмологических 
и геодезических данных дают основание считать, 
что сброшенные напряжений сдвига в плоскости 
разрыва имеют экстремумы, определяющие посе-
кундную энергию сейсмических волн во время рас-
пространения разрыва. Принимая глубину фокуса 

гипоцентра землетрясения h = 10 км (как наиболее 
вероятную) и скорость распространения разры-
ва равной 2.8 км/с, можно построить временную 
функцию сейсмического момента (seismic moment 
rate). С этой целью разобьём плоскость разрыва 
на ячейки 2×2 км, приписывая окну 4 2км  сред-
нее значение сброшенных напряжений сдвига Δτ̅р, 
используя результаты, приведённые на рис. 4 в.  
Будем считать, что в каждой ячейке сейсмический 
момент Мо связан с площадью и сброшенными на-
пряжениями по формуле 2.

Далее полагая, что известно положение ги-
поцентра и  при наиболее вероятной глубине 
в ~10 км, и радиальном распространении разры-
ва из его “фокуса” со скоростью 2.8 км/с, мож-
но получить временную функцию сейсмическо-
го момента ( )oM t . Посекундное суммирование 
сейсмических моментов окон в интервале пло-
щадей между радиусами определяет временную 
функцию сейсмического момента (рис. 5).
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Рис.  4. Напряженно-деформированное состоя-
ние разрыва. а – карта разности напряжений i∆σ  
до и после землетрясения (сброс напряжений); б – 
сброшенные напряжения р∆τ  вдоль поверхности 
разлома после применения функции (2); в – модель 
косейсмических смещений, полученной в результате 
инверсии данных InSAR [8].
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модель ячеек 2×2  км и  распространение разры-
ва со скоростью 2.8 км/с; б – временного функция 
сейсмического момента ( )oM t , полученная на ос-
нове результатов моделирования НДС (красная ли-
ния – осредненные значения); в – временная функ-
ция сейсмического момента ( )oM t , полученная на 
основе сейсмологических данных [6].
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Временная функция сейсмического момента 
имеет три экстремума в начале графика, соот-
ветствующие интервалам максимальной энер-
гии сейсмических волн. При этом следует отме-
тить то, что в работе [8] зафиксировано двойное 
ударное воздействие при землетрясении Акетао 
(рис. 4 в), соответствующее экстремумам I–II 
(рис. 5 б). Временная функция сейсмического 
момента, представленная на рис. 5 б имеет три 
экстремума, соответствующих во времени пере-
сечению разрывом зон высокой интенсивности 
напряжений (рис. 5 а). На рис. 5 в представле-
на функция временного сейсмического момента 

( )oM t , полученная на основе сейсмологических 
данных [6]. Осредненное значение oM (красная 
линия на рис. 5 б) соответствует oM  по сейсмо-
логическим данным (рис. 5 в). Из рисунка видна 
близость этих моделей по абсолютным значени-
ям, и так же обе модели выходят на пик значе-
ний в интервале 4–5 секунды. При этом общая 
морфология графика моделей рис. 5 б и 5 в не 
совпадает, главное различие заключается в от-
сутствии на рис. 5 в аномальных зон в интер-
вале 1–2 и 8–9 секунд. При средней величине  
Δτ̅р = 1.07 МПа и параметрах сейсмогенерирую-
щего слоя 45×22 км, расчетная величина сейс-
мического момента (в  интервале ~12 секунд) 
составляет 191.36 10 Ќ м´ ´Н×м. Вычислить сейсми-
ческий момент на основе модели (рис. 5 б) мож-
но путем интегрирования, в этом случае сейсми-
ческий момент составляет 190.96 10 Ќ мoM ×= Н́×м.  
Эти две оценки вполне сопоставимы с  вели-
чиной сейсмического момента в  интервале 

190.87 1.58 10 Ќ м÷ × ´Н×м, приведенных в  работах  
[6, 8, 9]. Сейсмический момент определяет маг-
нитуду землетрясения [13]:

( )10
2

10.7
3w oM log M= -

При 19 191.36 10 и 0.96 10o oM M× ×= =  магниту-
да землетрясения составит 6.72M =  и  6.62M =  
соответственно.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

“Точное” соответствие сейсмического момен-
та, полученного на основе моделирования НДС 
любой из моделей, приведенных в [6, 8, 9] может 
быть получено варьированием входных параме-
тров временной функции сейсмического момента. 
Однако “подгонка” значений не является самоце-
лью настоящей работы, важно подчеркнуть прин-
ципиально новые возможности в оценке сейсми-
ческого момента сильных коровых землетрясений. 
Моделирование НДС дает возможность получить 

временную функцию сейсмического момента, ос-
новываясь на решении прямой задачи – опреде-
лении выделившейся энергии землетрясения на 
основе исходного поля напряжений эпицентраль-
ной зоны. В этом отношении функция ( )oM t  име-
ет под собой ясную и интерпретируемую физиче-
скую основу, и может быть использована в прак-
тических приложениях детерминистской оценки 
сейсмической опасности.

В работе [8] приведены модели косейсмиче-
ской деформации эпицентральной зоны зем-
летрясения Акетао по результатам обработки 
данных интерферометрического радара с син-
тезированной апертурой спутников Sentinel‑1 
и ALOS‑2. Авторами сделано предположение, 
что сейсмогенный разрыв состоял из двух со-
бытий, вспарывающих две дискретные области, 
расположенные на расстоянии ~20 км.

Сравнивая поля косейсмических смещений 
в плоскости разрыва с результатами моделирова-
ния НДС до землетрясения и после главного толч-
ка, можно видеть некоторое соответствие незави-
симых моделей, отражающих деформирование 
эпицентральной зоны в плоскости образовавшего-
ся разрыва. Приведенные модели косейсмической 
деформации поверхности эпицентральной зоны 
и очага коррелируют с приведенными выше ре-
зультатами, имея ввиду карты сброшенной интен-
сивности напряжений после образования разры-
ва на поверхности и в плоскости образовавшегося 
разрыва (рис. 4). Таким образом, приведенные ре-
зультаты моделирования имеют определенное со-
ответствие с сейсмологическими данными и ре-
зультатами моделирования разрыва на основе дан-
ных космической геодезии. В довершение следует 
отметить, что упомянутые в работе [8] два сильных 
толчка имеют ясное физическое обоснование. Во 
время пересечения разрывом последовательно 
двух зон высокой интенсивности напряжений 
(представленных на рис. 2 а) сброс напряжений 
существенно выше, что дает основание считать, 
что энергия сейсмических волн, генерируемая 
этими зонами, вызывает более сильные колеба-
ния грунта, регистрируемые сейсмоприемниками.

ЗАКЛЮЧЕНИЕ

Моделирование НДС эпицентральной зоны 
землетрясения Акетао в Китае позволило полу-
чить в рамках ретроспективного прогноза апри-
орное представление о механизме разрыва (оча-
га землетрясения) имея в виду:

– координаты зарождения разрыва и  его 
гипоцентра;
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– протяженность разрыва, его простран-
ственную ориентацию и его площадь;

– распределение сброшенных напряжений 
(stress drop) в плоскости разрыва;

– сейсмический момент oM  и  магнитуду 
возможного землетрясения;

– временную функцию сейсмического мо-
мента ( )oM t  (seismic moment rate).

На примере моделирования НДС эпицен-
тральной зоны землетрясения Акетао показана 
возможность ретроспективного прогноза ме-
ста и магнитуды землетрясения, включая расчет 
скалярного сейсмического момента oM , и вре-
менной функции сейсмического момента ( )oM t .  
Это дает в перспективе возможность получать 
синтетические сейсмограммы и акселелограммы 
на стадии предварительной оценки возможного 
землетрясения. При этом очаг землетрясения 
приобретает физико-механические параметры 
генератора высвобождающейся потенциальной 
упругой энергии тектонических напряжений ме-
тастабильных зон в сейсмоактивных районах.
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The paper presents the results of modeling of the stress-strain state of the epicentral zone of the strong 
crustal earthquake Aketao, which occurred near Muji (China) on November 25, 2016 with magnitude 
Mw 6.6. The finite element method was used to model the stress-strain state of the epicentral zone with 
subsequent construction of stress intensity maps before and after the earthquake. The possibility to determine 
the location of rupture origin, its extent, including estimation of scalar seismic moment and earthquake 
magnitude is shown. For the first time the possibility to calculate the time function of seismic moment Mo(t) 
(seismic moment rate) based on the model of stress-strain state of rupture (earthquake origin) is presented, 
which allows to obtain synthetic seismograms and accelerograms of possible earthquake in the future.
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