— ГЕОЛОГИЯ РУДНЫХ МЕСТОРОЖДЕНИЙ —

УДК 553.41'43'46/552.32/550.93

ПОСТ-КОЛЛИЗИОННАЯ W-Mo-Cu-Au-МИНЕРАЛИЗАЦИЯ В СРЕДИННОМ ТЯНЬ-ШАНЕ: ПЕРВЫЕ ДАННЫЕ ИЗОТОПНОГО U-Рb-ДАТИРОВАНИЯ ЦИРКОНА (МЕТОЛ LA-ICP-MS) ИЗ ИНТРУЗИВНЫХ ПОРОД КЕНСУЙСКОГО ПЛУТОНА (ВОСТОЧНЫЙ КЫРГЫЗСТАН)

© 2024 г. С. Г. Соловьев^{1,*}, С. Г. Кряжев², Д. В. Семенова³, Ю. А. Калинин³, академик РАН Н. С. Бортников¹

> Поступило 05.04.2024 После доработки 05.05.2024 г. Принято к публикации 29.05.2024 г.

Приведены данные впервые выполненного изотопного U-Pb-исследования (метод LA-ICP-MS) циркона из интрузивных пород Кенсуйского плутона, расположенного в восточной части системы глубинных разломов "линии В.А. Николаева". С этим плутоном высококалиевых (шошонитовой серии) пород связаны месторождение Кенсу и иные проявления скарновой и порфировой W-Mo-Cu-Au-минерализации. Наряду с другими Au-, W- и Cu-месторождениями, они входят в состав протяжённого металлогенического пояса Тянь-Шаня. Полученные конкордантные значения изотопного U-Pb-возраста автокристов циркона для пород последовательных интрузивных фаз охватывают интервал от примерно 325 до 302 млн лет. Этот интервал включал кристаллизацию монцогаббро (321 ± 4 млн лет), монцонитов (319 ± 4 млн лет), камптонитов (306 ± 4 млн лет), сиенитов (307 ± 6 млн лет), кварцевых сиенитов (305.5 ± 2 млн лет) и кварцевых монцонитов (305 ± 3 млн лет). Установлены также антекристы циркона с возрастом от 316-325 млн лет до 335-345 млн лет. Эти датировки совпадают с возрастом субдукционных процессов в западной части Срединного Тянь-Шаня. Однако как геохимические характеристики пород Кенсуйского плутона, так и связанная с ним молибден-вольфрамовая минерализация не свойственны субдукционной природе плутона и, напротив, указывают на пост-коллизионную обстановку внедрения интрузий. Такое противоречие может быть объяснено "ножницевидным" (с востока на запад) закрытием Туркестанского палеоокеана, в результате чего на востоке "линии В.А. Николаева" уже наступил пост-коллизионный режим, тогда как в её западной части сохранялась обстановка субдукции. В породах обнаружены также ксенокристы циркона с более древним возрастом (порядка 1.9 млрд лет), вероятно, представляющим возраст пород фундамента Таримского кратона, что указывает на вовлечение древнего материала в генерацию магм.

Ключевые слова: изотопная U-Pb-геохронология, метод LA-ICP-MS, циркон, гранитоилы, W-Mo-Cu-Au-месторождения, Кыргызстан, Тянь-Шань

DOI: 10.31857/S2686739724100072

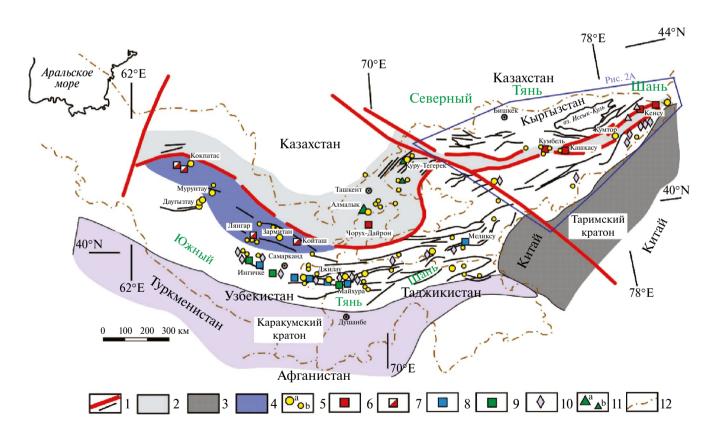
ВВЕДЕНИЕ

Определение возраста рудных месторождений и длительности их образования является

 1 Институт геологии рудных месторождений, петрографии, минералогии и геохимии Российской Академии наук,

*E-mail: serguei07@mail.ru

Москва, Россия


Сибирского отделения Российской Академии наук, Новосибирск, Россия,

важнейшей проблемой металлогении. Её решение имеет не только фундаментальное значение, но и важно для практики геолого-поисковых работ, т. к. для успешного прогноза перспективных территорий необходимо выявить геологические события, которые привели к скоплению аномальных количеств металлов в геологических структурах. Число минералов-геохронометров, позволяющих датировать процессы рудообразования, невелико. Одним из наиболее благоприятных для этих целей является циркон. Он распространён в магматических породах

 $^{^2}$ Центральный научно-исследовательский геологоразведочный институт цветных и благородных металлов, Москва, Россия ³Институт геологии и минералогии им. В.С. Соболева

в многофазных плутонах, с которыми связаны магматогенно-флюидные минералообразующие системы, формирующие рудные месторождения. Интересными объектами исследования являются месторождения Восточного Кыргызстана, приуроченные к системе глубинных разломов "важнейшей структурной линии Тянь-Шаня" (или "линии В.А. Николаева"). Они входят в состав крупнейшего медно-молибден-вольфрам-золоторудного металлогенического пояса Тянь-Шаня, который протягивается более чем на 3000 км. включая его продолжение в Китае (рис. 1) [1, 2]. В нём сконцентрированы рудные месторождения, связанные с интрузиями монцонитоидов и/или гранитоидов позднепалеозойского (позднекаменноугольного-раннепермского) возраста. Среди них — гигантские и крупные месторождения золота (Мурунтау, Зармитан (Чармитан), Кумтор и др.), порфировые и скарновые Си-Мо-Аи-месторождения (в первую очередь гигантские порфировые месторождения Алмалыка), а также многочисленные месторождения вольфрама разных типов (рис. 1) ([1, 2] и др.). Становление рудоносных интрузий происходило в субдукционных условиях при конвергенции Казахстан-Северо-Тяньшаньского и Таримского (а также Каракумского) палеоконтинентов или в пост-коллизионной обстановке после закрытия разделявшего эти континентальные структуры Туркестанского палеоокеана [2, 3].

Система глубинных разломов "линии В.А. Николаева" протягивается в субширотном направлении на более чем 500 км и разделяет орогенные сооружения Срединного и Северного Тянь-Шаня (рис. 1, 2 A). К этой системе приурочены около 15 позднепалеозойских интрузивных массивов и связанных с ними месторождений

Рис. 1. Схема позднепалеозойского металлогенического пояса Тянь-Шаня. 1 — разломы разных порядков, 2 — позднепалеозойская активная континентальная окраина (Срединный Тянь-Шань), 3 — континентальные блоки основания Таримского и Каракумского кратонов, 4 — террейны аккреционного клина, надвинутые на пассивную континентальную окраину с возможным кратонным фундаментом, 5 — главные (а) и второстепенные (b) месторождения золота, 6 — золото-медно-молибден-вольфрамовые месторождения, 7 — молибден-вольфрамовые месторождения, 8 — полиметально-вольфрамовые месторождения, 9 — олово-вольфрамовые месторождения, 10 — месторождения олова, 11 — главные (а) и второстепенные (b) медно-молибденовые и золото-медные порфировые месторождения, 12 — государственные границы.

и рудопроявлений W, Au и ассоциирующей Cuи Мо-минерализации, которые выделяются как протяжённая (более 500 км) Сонкуль-Кенсуйская металлогеническая зона [1]. Несмотря на важное металлогеническое значение этой системы глубинных разломов и приуроченных к ней интрузивных массивов, изотопный U-Pb-возраст циркона был установлен лишь для единичных плутонов, находящихся преимущественно в западной части "линии В.А. Николаева" ([4] и др.). Ограниченные сведения недостаточны для понимания особенностей магматизма и металлогении столь крупной системы глубинных разломов, так и для более широкой тектонической и металлогенической корреляции. В настоящей работе приведены первые данные изотопного датирования пород Кенсуйского плутона в восточной части "линии В.А. Николаева" (рис. 2 А).

ХАРАКТЕРИСТИКА ИНТРУЗИВНЫХ МАССИВОВ И СВЯЗАННОЙ С НИМИ РУДНОЙ МИНЕРАЛИЗАЦИИ

Кенсуйский и Джолколотский плутоны прорывают нижнекаменноугольные осадочные породы (углистые и кремнистые сланцы, песчаники, доломиты и известняки) Турукского шовного (сутурного) прогиба, приуроченного к системе разломов "линии В.А. Николаева" (рис. 2 Б). Эти осадочные породы несогласно залегают на неопротерозойский-кембрийской толще доломитов, глинистых сланцев и чёрных углистых сланцев. В свою очередь, данная толща подстилается палеопротерозойскими (до архейских?) гранитно-метаморфическими породами древнего континентального основания Срединного Тянь-Шаня, тектонические блоки которых, возможно, были отколоты от Таримского кратона по системе рифтов [5].

Совместно, эти плутоны образуют очаговую структуру, по-видимому, приуроченную к пересечению разломов "линии В.А. Николаева" поперечным разломом субмеридионального простирания (рис. 2 Б). Кенсуйский плутон находится в южной части этой структуры и имеет удлинённую линейную или слабо-дуговидную форму, и в целом протягивается на 10 км при ширине 0.5—2 км. Он включает несколько интрузивных тел, соответствующих последовательным фазам внедрения магмы, а также обширные участки развития гибридных пород. Характерной особенность плутона является наличие обособленных "центров повышенной магматической

активности", представляющих собой группы небольших "спаянных" и/или прорывающих друг друга интрузивных штоков, иногда — дуговидных и неполнокольцевых даек, в совокупности напоминающих корневые части вулканических аппаратов, или "порфировые центры", известные на многих порфировых месторождениях. В составе плутона выявлено несколько интрузивных фаз, в том числе (от ранних к поздним): монцогаббро ("шонкиниты" и "эссекситы"), монцодиориты, монцониты, камптониты (штоки и дайки – промежуточная дайковая серия), сиениты, кварцевые сиениты, кварцевые монцониты, монцограниты, лейкограниты-аляскиты (сиенограниты), а также монцогаббровые и монцодиоритовые порфириты (поздние дайки) [6].

Монцогаббро, монцодиориты и монцониты — это мелано- до мезократовых средне-мелкозернистые равномернозернистые до слабопорфировидных (с редкими и мелкими фенокристами, преимущественно плагиоклаза, реже клинопироксена) породы. В них обычно присутствуют три темноцветных минерала (клинопироксен, амфибол, биотит), с растущим содержанием амфибола (5-35 об. %) и биотита (10-25 об. %) и убывающим содержанием клинопироксена (от 60 об. % до 5 об. %) в данной последовательности пород. Породы содержат призматический до удлинённо-призматического плагиоклаз (лабрадор-андезин в монцогаббро до андезин-олигоклаза в монцонитах), слабодо отчётливо-зональный, и обычно интерстициальный калиевый полевой шпат (ортоклаз до санидина). С монцодиоритами тесно пространственно связаны гибридные разновидности, которые содержат амфибол и биотит (20–30 об. % каждого), а также кварц (5-15 об. %), и характеризуются гнейсовидной до пятнистой текстурой, обусловленной сегрегациями темноцветных минералов, с постепенными переходами к вмещающим биотитовым (кварц-полевошпат-биотитовым) роговикам. Камптониты характеризуются присутствием удлинённо-призматических до игольчатых кристаллов красно-коричневого амфибола (30-60 об. %), развитых в мелкозернистой основной массе плагиоклаза (лабрадора), калиевого полевого шпата, биотита (часто с рутилом) и магнетита.

Сиениты и кварцевые сиениты — это мезолейкократовые породы, средне-крупнозернистые и резко-порфировидные, с характерными крупными (до 2—3 см) порфировидными выделениями калиевого полевого шпата (микроклин и микроклин-пертит, реже ортоклаз-пертит). Они содержат амфибол, биотит, причём амфибол преобладает в сиенитах, а биотит — в кварцевых сиенитах, а также короткопризматический плагиоклаз (андезин-олигоклаз), причём последний развит и в виде пойкилитовых включений в калиевом полевом шпате. Интрузивные тела этих пород часто окружены ореолами инъекционно-прожилковой и порфиробластической калишпатизации (в алюмосиликатных породах), иногда — зонами магнезиальных скарнов (в карбонатных породах). Иногда с телами сиенитов связаны тела магматических брекчий с сиенитовым пементом.

Кварцевые монцониты, монцограниты и лейкограниты-аляскиты - это лейкократовые породы (содержание темноцветных минералов не более 15-20 об. %, а в лейкогранитах -5 об. %), обычно — мелко-среднезернистые и порфировидные (с фенокристаллами плагиоклаза), с преобладанием биотита над амфиболом, преобладанием таблитчатых и короткопризматических кристаллов олигоклаза (15–35 мол. % анортита) среди полевых шпатов и присутствием как ортоклаза, так и микроклина. Местами в породах развиты графические и пегматоидные кварц-полевошпатовые агрегаты, иногда - мирмекитовые кварц-полевошпатовые срастания. В кварцевых монцонитах иногда присутствуют обособления-энклавы, сложенные темноцветными минералами (амфиболом и биотитом) и подчинённым плагиоклазом, с небольшой примесью калиевого полевого шпата. Кроме мезо-лейкократовых кварцевых монцонитов, обычно слагающих сравнительно более крупные интрузивные тела, распространены также меланократовые афировые до резкопорфировидных, мелкозернистые кварцевые монцониты, которые слагают небольшие дайки, а также иногда внешние "закалочные" зоны "быстрой кристаллизации" в более крупных интрузивах кварцевых монцонитов. Кварцевые монцониты отчётливо пересекают тела известковых скарнов.

Заключительные дайки основных пород (монцогаббровые и монцодиоритовые порфириты) характеризуются мелкозернистой основной массой, сложенной тонкими лейстами плагиоклаза, амфиболом и подчинённым калиевым полевым шпатом. Фенокристаллы представлены амфиболом, плагиоклазом и изредка кадлиевым полевым шпатом. В некоторых разновидностях развиты клинопироксен и, возможно, оливин. В некоторых основных породах присутствуют крупные (до 5 мм) бипирамидальные (но часто округлые или с "заливами") фенокристаллы

кварца, а также округлые (каплевидные до гороховидных) агрегаты кварца, местами содержащие включения магнетита и, возможно, сульфидных минералов.

Акцессорные минералы интрузивных пород включают магнетит, апатит, титанит, циркон, в монцонитах, сиенитах и кварцевых сиенитах присутствуют также алланит и эпидот, а в кварцевых монцонитах, монцогранитах и лейкогранитах-аляскитах — также монацит, алланит, изредка пирохлор, флюорит и шеелит. Все породы относятся к магнетитовой серии, шошонитовой и высоко-калиевой известково-щелочной сериям, умеренно-глинозёмистому І-типу. Они обогащены лёгкими РЗЭ, при обычном лишь слабом дефиците Еи в более дифференцированных породах [6]. Калий-аргоновые датировки пород Кенсуйского плутона указывают, что возраст его становления составляет порядка 330—324 млн лет [7].

С Кенсуйским плутоном пространственно ассоциируют скарновое молибден-вольфрамовое месторождение Кенсу и связанная с ним штокверковая Мо-W-Сu-Au-минерализация (рис. 2В) [6]. Ресурсы руд этого месторождения, приуроченных к телам гидротермально-изменённых скарнов, оценены в ~35-50 тыс. т WO₃ (среднее содержание 0.41% WO₃ при бортовом содержании 0.10% WO₃) [6]. Среди скарнов различаются существенно гранатовые, скаполит-гранатовые и пироксен-гранатовые разновидности. В заместивших их послескарновых метасоматитах широко развиты андрадитовый гранат, калиевый полевой шпат, магнетит, гематит и кварц, а также молибдошеелит, халькопирит и молибденит. Эти рудные минералы развиты и в пропилитах, также наложенных на скарны и прилегающие к ним вмещающие породы. В целом, состав скарнов и послескарновых метасоматитов подчёркивает весьма окислительные условия минералообразования, как и обстановку повышенной щёлочности, что согласуется со спецификой рудоносных интрузий высококалиевой известково-щелочной и шошонитовой серий. Изменённые скарны пересекаются зонами карбонат-серицит-кварцевых (карбонат-филлизитовых) жил и прожилков, которые в контурах скарнов и за их пределами содержат шеелит, самородное золото, минералы Cu, Bi, Ag, As, Zn-Pb и др. [6]. Соответственно, изменённые скарны содержат в среднем также 0.25% Си и 0.03% Мо и находятся внутри обширного ореола прожилково-вкрапленной (порфировой) Mo–W–Cu–Au-минерализации, связанной с зонами калиевых, пропилитовых

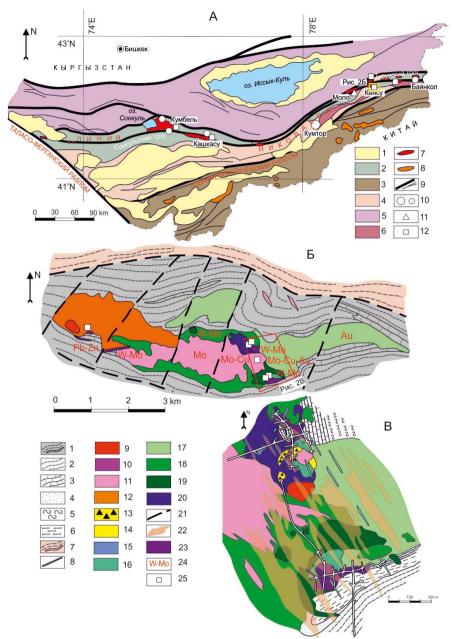


Рис. 2. Геологические схемы (А) Восточного Кыргызстана, показывающая позицию "линии В.А. Николаева" и строение прилегающих территорий, (Б) строение Кенсуйского плутона, и (В) строение части Кенсуйского плутона. А: 1 — кайнозойские отложения, 2 — позднедевонские-раннекаменноугольные сутурные троги (Сонкульский, Турукский), 3 — террейны Южного Тянь-Шаня, 4 — террейны Срединного Тянь-Шаня, 5 — террейны Северного Тянь-Шаня, 6 — палеопротерозойские (до архейских?) гнейсы, амфиболиты, мигматиты (блоки основания Таримского кратона, отчленённые по системам рифтов), 7 — позднекаменноугольные-раннепермские интрузивы шошонитовой и высококалиевой известково-щелочной серий, 8 — отдельные позднекаменноугольные-пермские гранитоидные интрузивы Южного Тянь-Шаня, 9 — разломы, 10—12 — месторождения и рудопроявления (10 — золота, 11 — вольфрама, 12 — молибдена). Б—12 — нижнекаменноугольные отложения Турукского прогиба (1 — 12 — молибдена). нерасчлененные, 2 — чередование сланцев и песчаников, 3 — доломитовые и кальцитовые мраморы, 4 — кварциты, 5 - кварц-полевошпат-биотитовые роговики, 6 - тонкое чередование скарнов, мраморов, роговиков и кварцитов), 7 — верхненеопротерозойские-кембрийские сланцы, песчаники, основные вулканиты, доломиты, песчаники, 8-20 — позднепалеозойские породы Кенсуйского плутона (8 — поздние дайки основных пород, 9 — лейкограниты-аляскиты, 10 — монцограниты, 11 — кварцевые монцониты, 12 — кварцевые сиениты, 13 — магматические брекчии с сиенитовым цементом, 14 — сиениты, 15 — камптониты, 16 — монцониты, 17 — гибридные монцодиориты, 18 — монцодиориты, 19 — "эссекситы", 20 — "шонкиниты"), 21 — разломы, 22 — зоны карбонат-филлизитовых гидротермальных изменений, 23 — скарны, 24 — рудопроявления и зоны минерализации, 25 — места отбора проб пород на изотопные U-Pb-исследования цирконов.

и карбонат-филлизитовых метасоматитов. В последних отмечаются содержания порядка 0.05-0.15% WO₃, 0.01-0.06% Mo, 0.1-5.0% Cu и до 0.5-1 г/т Au, местами до 3-5 г/т Au [6]. Такие же жильно-штокверковые зоны распространены и далеко за пределами контуров скарнов, причём на значительном (километры) протяжении, где с ними связана преимущественно медно-молибденовая минерализация (рис. 2 В).

ИЗУЧЕННЫЕ ОБРАЗЦЫ И МЕТОЛИКА ИССЛЕДОВАНИЯ

Зёрна циркона была выделены и отобраны из монцодиоритов, монцонитов, камптонитов, сиенитов, кварцевых сиенитов и кварцевых монцонитов Кенсуйского плутона (рис. 2 Б). Состав породообразующих компонентов и элементов-примесей этих пород приведён в табл. 1. Были изучены соответственно 10 (монцодиориты), 11 (монцониты), 9 (камптониты), 23 (сиениты), 16 (кварцевые сиениты) и 17 (кварцевые монцониты) зёрен циркона (табл. 2). Морфология и внутреннее строение зёрен циркона изучены по катодолюминесцентным изображениям. Зёрна циркона прозрачные до полупрозрачных, с редкими включениями непрозрачных минералов, бледно-розовые до розовых и бледно-жёлтых, характеризуются таблитчатой до призматической и удлинённо-призматической формой длиной 80-700 мкм и коэффициентом удлинения от 1:1 до 1:3 (изредка до 1:9) (рис. 3). В СL-изображении в некоторых кристаллах наблюдается небольшое тёмное (реже светлое) незональное до неясно-зонального ядро призматической формы, наиболее часто с непрозрачными включениями, и грубо- или тонкозональная светлая оболочка. Призматический габитус и осцилляторная зональность кристаллов циркона указывают на их кристаллизацию из магмы.

Изотопные U-Pb-исследования кристаллов циркона выполнены в Центре многоэлементных и изотопных исследований ИГМ СО РАН (г. Новосибирск) с помощью масс-спектрометра высокого разрешения Element XR ("Thermo Fisher Scientific") с эксимерной системой лазерной абляции Analyte Excite ("Teledyne Cetac"), оснащённой двухкамерной ячейкой HelEx II. Параметры измерения масс-спектрометра оптимизировали для получения максимальной интенсивности сигнала 208 Pb при минимальном значении 248 ThO $^+/^{232}$ Th $^+$ (менее 2%), используя стандарт NIST SRM612. Все измерения выполняли по массам 202 Hg, 204 (Pb+Hg), 206 Pb, 207 Pb, 208 Pb, 232 Th, 238 U. Съёмка проводилась в режиме

E-scan. Детектирование сигналов проводилось в режиме счета (counting) для всех изотопов, кроме 238 U и 232 Th (режим triple). Диаметр лазерного луча составлял 30 мкм, частота повторения импульсов 5 Гц и плотность энергии лазерного излучения 3 Дж/см². Данные масс-спектрометрических измерений, в том числе расчёт изотопных отношений, обрабатывали с помощью программы "Glitter" [8]. 235 U рассчитывался из 238 U на основе отношения 238 U/ 235 U=137.818 [9]. Для учёта элементного и изотопного фракционирования U-Рb-изотопные отношения нормализовали на соответствующие значения изотопных отношений стандартных цирконов Plesovice [10]. Диаграммы с конкордией построены с помощью программы Isoplot [11]. Для контроля качества использован стандартный циркон Temora-2 [12], для которого получен возраст 418±3.7 млн лет $(2\sigma, n = 11).$

РЕЗУЛЬТАТЫ

Результаты анализов циркона (табл. 2) на диаграмме Везерилла располагаются вблизи конкордии (рис. 3). При этом для монцодиоритов, монцонитов и кварцевых сиенитов Кенсуйского плутона характерна малая дисперсия значений изотопного возраста, и изученные кристаллы циркона могут быть отнесены к "автокристам", т.е. кристаллам, которые кристаллизуются из финальных (заключительных) и наиболее дифференцированных порций магмы соответствующих интрузивных фаз [13]. Как следствие, указанные конкордантные значения изотопного U-Рь-возраста могут рассматриваться как возраст кристаллизации пород этих интрузивных фаз. соответственно, 321 ± 3 млн лет (СКВО = 0.48) (монцодиориты), 319 ± 4 млн лет (CKBO = 0.18) (монцониты) и 305.5 ± 2 млн лет (СКВО = 8.4). Напротив, для камптонитов, сиенитов и кварцевых монцонитов Кенсуйского плутона характерны широкие вариации изотопного возраста циркона, с обособлением двух и более максимумов значений: от 302-307 млн лет до 316-334 млн лет (рис. 3). В этом случае, наиболее молодые конкордантные значения изотопного возраста циркона могут рассматриваться как отвечающие времени кристаллизации "автокристов", а, следовательно, и пород, в которых они обнаружены, а более древние - времени кристаллизации "антекристов", которые образовались в промежуточных магматических очагах и камерах при последовательном развитии крупного, долгоживущего очага частично раскристаллизованной магмы ("crystal mush magma" [13]. Соответственно,

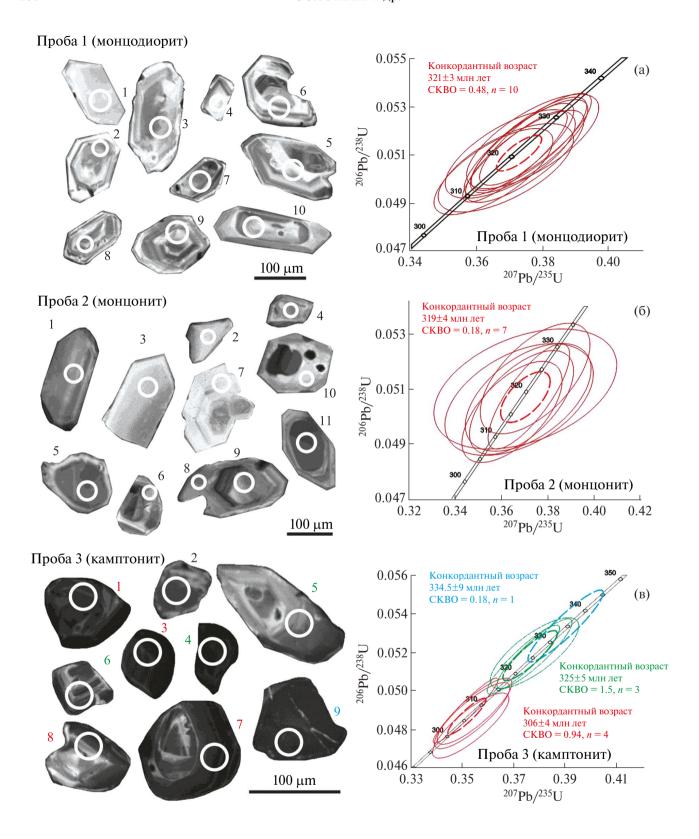
Таблица 1. Содержания главных компонентов и элементов-примесей в изученных пробах пород Кенсуйского плутона (вес. %, г/т)

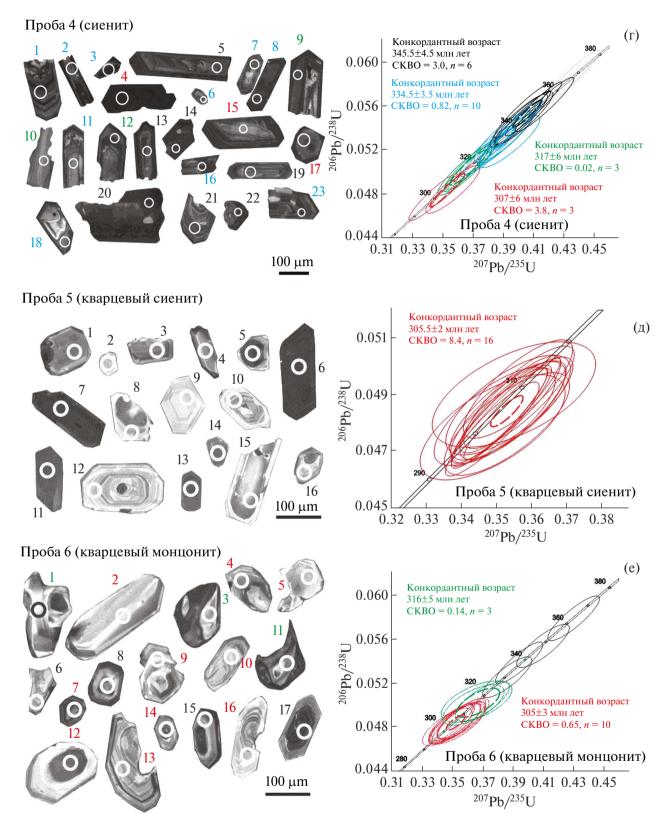
No moo	-	2	No mode 1 2 3 4 5 6 1 2 3 4	4	5	9		-	2		4	\ <u>\</u>	9
	•	ı	,		KBaD-	KBap-		1	1	,		KBap-	KBap-
породы	монцо- диорит	монцо- нит	кампто- нит	сиенит	цевый сиенит	цевый монцонит		монцо- диорит	монцо- нит	кампто- нит	сиенит	цевый сиенит	тевый монцонит
SiO ₂	53.23	55.36	47.58	58.86	62.05	62.78	Np	29.4	25.4	28.6	36.3	29.2	56.3
TiO_2	1.05	0.83	1.55	0.52	0.46	0.32	Y	27.6	26.8	25.0	18.3	17.1	17.5
Al_2O_3	15.73	17.28	15.32	16.38	16.77	17.99	Mo	4.75	3.82	4.31	4.19	3.81	4.99
Fe_2O_3	2.84	2.31	3.43	1.93	1.94	1.99	W	2.01	2.54	1.86	1.56	1.82	5.11
FeO	4.06	3.23	5.08	2.38	2.08	1.04	Sn	3.19	4.82	4.93	5.44	5.35	5.40
MnO	0.10	0.09	0.12	0.07	0.08	0.05	C	1.94	1.57	1.64	2.10	1.86	1.82
MgO	4.82	3.07	5.90	2.62	1.93	1.13	Hf	5.21	9.58	6.63	8.19	6.37	8.29
CaO	7.31	4.80	7.80	4.73	3.74	3.19	Та	0.98	1.26	1.29	1.88	1.63	2.15
Na_2O	3.81	4.50	3.60	4.79	4.89	5.20	Ga	21.8	19.3	18.8	16.2	14.6	20.6
K_2O	4.22	4.96	2.46	5.39	3.95	3.87	Th	11.4	10.1	9.74	18.7	16.1	32.5
P_2O_5	0.99	0.61	1.14	0.47	0.39	0.25	U	2.20	2.37	1.79	10.4	4.31	6.19
Щ	0.160	0.099	0.120	0.120	0.110	0.040	Cu	19.3	44.3	20.1	21.7	49.9	22.3
CO_2	<0.20	0.49	2.85	<0.20	<0.20	0.39	Zn	119	99.4	125	54.6	40.2	83.2
S total	<0.10	<0.10	0.22	<0.10	<0.10	<0.10	Pb	22.7	28.3	16.6	25.7	36.0	29.5
H ₂ O ⁻	<0.10	<0.10	0.10	0.12	0.11	0.15	La	217	82.8	125	181	127	137
$\mathrm{H}_{2}\mathrm{O}^{+}$	0.24	0.90	1.00	0.56	0.58	0.70	Ce	319	164	215	227	219	201
Total	98.96	98.73	98.27	99.24	99.38	99.19	Pr	50.8	31.9	25.7	32.1	28.4	30.2
							Nd	123	60.7	79.8	89.3	80.5	85.4
Ba	3438	2928	1921	3419	2782	3137	Sm	19.8	8.43	12.0	10.9	12.4	9.58
Sr	3975	1344	1456	2230	1839	1872	Eu	4.44	2.19	3.47	3.59	3.29	2.31
Co	39.8	35.9	30.9	9.19	7.99	61.9	В	12.7	8.81	7.44	6.19	5.72	5.19
ïZ	38.0	40.4	54.1	29.5	33.0	21.8	Тр	0.99	0.79	0.95	0.79	0.91	0.80
Λ	186	165	183	81.0	54.9	55.8	Dy	5.95	7.11	5.11	3.99	3.28	3.01
Cr	174	155	149	110	94.3	71.2	Но	1.04	1.24	0.94	0.89	0.72	69.0
Rb	138	110	54.4	132	104	108	Er	2.75	3.12	2.33	2.01	1.73	1.72
Li	24.3	17.9	9.65	8.28	5.83	6.53	Tm	0.30	0.33	0.32	0.27	0.25	0.29
Be	2.18	1.43	2.43	2.83	3.11	4.19	Yb	2.12	1.97	2.47	2.99	1.87	1.82
Zr	216	431	318	383	331	392	Lu	0.28	0.26	0.31	0.29	0.20	0.24
Примеча методом	ние. Анали ионной хр	Примечание. Анализы породообразую методом ионной хроматографии, СО2 -	образующи $CO_2 - 1$	их оксидов иетодом ки	зыполнен телотного т	Примечание. Анализы породообразующих оксидов выполнены рентгенофлюоресцентным методом, FeO методом ионной хроматографии, CO_2 — методом кислотного титрования, S_{06111} — методом йодного титров	флюоре , Sofin. –	сцентным - методом Ì	методом, іодного ти	сцентным методом, FeO — волюмометрическим методом, F методом йодного титрования, ${\rm H}_2{\rm O}^+$ — гравиметрическим м	420^{+0}	лическим методом, F – гравиметрическим ме-	одом, F – ским ме-
тодом, ра	ссеянных,	редких и р	едкоземел	ьных элемс	знтов — ме	тодом, рассеянных, редких и редкоземельных элементов – методом ІСР-МЅ в лабораториях ВИМСа и ЦНИГРИ	МS в ла	боратория	х ВИМСа	и ЦНИГРК	1.	ı	

ДОКЛАДЫ АКАДЕМИИ НАУК. НАУКИ О ЗЕМЛЕ том 518 № 2 2024

возраст кристаллизации "автокристов" циркона составляет 306 ± 4 млн лет (СКВО = 0.94) (камптониты), 307 ± 6 млн лет (СКВО = 3.8) (сиениты) и 305 ± 3 млн лет (СКВО = 0.65) (кварцевые монцониты) (рис. 3). Полученные значения не позволяют различить время кристаллизации разных интрузивных фаз, т.к. они совпадают в пределах погрешности определения.

В монцонитах и камптонитах установлены зёрна циркона с гораздо более древним (порядка 0.80 и 1.9 млрд лет) изотопным возрастом, которые могут быть отнесены к "унаследованным" (по [13]), захваченным из пород, через которые внедрялась магма монцонитов и камптонитов или её материнские расплавы.


ОБСУЖЛЕНИЕ


Полученные значения (в диапазоне 325-302 млн лет для "автокристов" циркона) возраста кристаллизации изученных интрузивных пород показывают длительное (в целом не менее 20 млн лет) становление Кенсуйского плутона. С учётом данных, полученных для "антекристов" циркона, время становления плутона может быть увеличено ещё, по крайней мере, на 5-10 млн лет, таким образом, составив порядка 25-30 млн лет. Именно длительная магматическая дифференциация и кристаллизация, по-видимому, является необходимым условием для аккумуляции флюидов и металлов в остаточных расплавах, приводящей к формированию крупных плутоногенных месторождений вольфрама, золота и ассоциирующих металлов. Это согласуется с длительной историей магматогенно-флюидной эволюции месторождения Кенсу, связанного с этим плутоном, где вольфрамоносные скарны являются ранними, а основные концентрации сульфидов связаны с более поздними жильно-штокверковыми системами низкотемпературных карбонатсерицит-кварцевых метасоматитов [6].

Полученные данные изотопного возраста позволяют провести корреляцию времени становления Кенсуйского плутона в рамках принятых в настоящее время моделей тектонической и металлогенической эволюции Тянь-Шаня [2, 3]. При этом начало позднепалеозойской субдукции в регионе проявлено в накоплении флишевых толщ и развитии олистостром в аккреционном комплексе Южного Тянь-Шаня, что протекало в интервале времени порядка 330–325 млн лет в западном сегменте киргизского Тянь-Шаня, и в интервале около 315 млн лет — в восточном сегменте последнего [3, 14]. Коллизия Казахстан-Северо-Тяньшаньского и Таримского палеоконтинентов началась в позднекаменноугольное время, одновременно с формированием трогов вдоль северной окраины Таримского кратона. В раннепермское время (около 295 млн лет) началась "зрелая коллизия", которой отвечало финальное закрытие океанических бассейнов в Тянь-Шане, интенсивная складчатость, и начало интенсивного гранитоидного магматизма в Южном Тянь-Шане [3, 14]. В данном контексте, установленный возраст становления Кенсуйского плутона (порядка 325–302 млн лет), ближе соответствует времени проявления субдукции, с погружением субдуцируемой пластины в северном направлении, под структуры Срединного Тянь-Шаня.

Вместе с этим, имеются свидетельства о более раннем начале коллизионных процессов в восточном сегменте Тянь-Шаня [15, 16], с "ножницевидным" закрытием весьма узкого океанического бассейна (Туркестанского палеоокеана) между Таримским кратоном и Казахстан-Северо-Тяньшаньским палеоконтинентом уже начиная, по крайней мере, с раннего карбона [17]. Это закрытие палеоокеана прогрессировало начиная с востока региона и далее на запад [15, 16], с соответствующим установлением коллизионного и затем пост-коллизионного режимов в западном направлении. Как следствие среди близких по возрасту (порядка 330-300 млн лет) плутонов Срединного Тянь-Шаня, становление тех, что расположены в его западной части, отвечало субдукционнному режиму, тогда как тех, расположенных в восточной части региона - коллизионной и пост-коллизионной обстановке.

Особенности химического состава пород Кенсуйского плутона согласуются с возможностью его формирования в пост-коллизионной обстановке, определяемой прекращением субдукции и формированием разрывов сплошности субдуцированного слэба. Именно в этих условиях, под влиянием поднимавшейся горячей астеносферной мантии и при частичном плавлении литосферной мантии, модифицированной при субдукции, могли формироваться магматические породы сложного состава. В частности, содержания Zr и Та в интрузивных породах Кенсуйского плутона скорее невысоки (порядка 200– 400 ppm и <1-2 ppm, соответственно; табл. 1; см. также [6]), что характерно для магм, связанных с субдукцией [17]. Напротив, содержания Nb и Y в этих породах отчётливо повышены (до 56 ррт и 27 ррт, соответственно; табл. 1; см. также [6]), что характерно для производных пост-коллизионного магматизма [18].

Рис. 3. Катодолюминесцентные изображения кристаллов циркона (окружностями обозначены точки, где проводилось изотопное датирование, номера точек соответствуют таковым в таблице 2) и диаграммы с конкордией для цирконов из интрузивных пород Кенсуйского плутона (тонкие сплошные эллипсы — результаты единичных анализов, пунктирный эллипс соответствует конкордантному значению; погрешности единичных анализов и вычисленных конкордантных возрастов приведены на уровне 2 σ).

Таблица 2. Результаты изотопных U—Рb-исследований циркона из пород Кенсуйского плутона

No no more	Содерже	Содержание, г/т			Изотопные	Изотопные отношения				Возрас	Возраст, млн лет		
анализа	²⁰⁶ Pb	Ω	Th/U	207 DL /23511	-	206pb, /238r		Rho	207 DF /23511	, ,	206 DL /23811	5	D, %
				ru/ 0	10	0 /01			10/ 0	07	10/0	707	
						Проба 1 (мс	Проба 1 (монцодиорит)						
1	10	128	223	0.57	0.37768	1.8	0.05162	1.5	0.82	325	10	325	10
2	12	230	265	0.87	0.36871	2.3	0.05044	1.5	0.65	319	13	317	6
3	13	253	282	0.90	0.37149	1.7	0.05090	1.5	98.0	321	10	320	6
4	11	160	236	89.0	0.37007	2.2	0.05101	1.5	29.0	320	12	321	6
5	6	193	209	0.92	0.37580	1.9	0.05133	1.5	0.79	324	11	323	10
9	7	149	157	0.95	0.37575	1.9	0.05143	1.5	0.80	324	11	323	10
7	6	162	203	0.80	0.37268	1.8	0.05120	1.5	0.83	322	10	322	10
8	17	213	395	0.54	0.36491	2.0	0.05028	1.5	0.72	316	11	316	6
6	15	167	328	0.51	0.37689	2.2	0.05153	1.6	0.71	325	12	324	10
10	8	108	180	0.60	0.37448	2.0	0.05091	1.5	0.78	323	11	320	10
						Проба 2 (1	Проба 2 (монцонит)						
1	9	81	140	0.58	0.37162	1.9	0.05073	1.5	0.79	321	11	319	10
2	3	46	74	0.62	0.36736	3.6	0.05062	1.6	0.46	318	20	318	10
3	3	45	99	0.68	0.37432	2.6	0.05138	1.6	0.61	323	14	323	10
4	11	82	246	0.34	0.36838	2.5	0.05051	1.5	0.61	319	14	318	6
5	61	92	201	0.46	5.66143	1.6	0.34673	1.5	96.0	1926	27	6161	50
9	123	92	404	0.19	5.66940	1.5	0.34858	1.4	0.95	1927	26	1928	47
7	7	19	162	0.37	0.36424	2.4	0.05017	1.5	0.61	315	13	316	6
8	9	97	144	0.67	0.37134	3.0	0.05070	1.6	0.52	321	17	319	10
6	14	27	123	0.22	1.20239	1.8	0.13055	1.5	0.85	802	20	791	23
10	2	22	55	0.41	0.37008	4.4	0.05100	1.7	0.40	320	24	321	11
11	82	225	277	0.81	5.54747	1.6	0.34135	1.5	0.95	1908	27	1893	50
						Проба 3 (к	Проба 3 (камптонит)						
1	31	262	723	0.36	0.35349	1.7	0.04872	1.4	0.84	307	6	307	6
2	74	129	249	0.52	5.57456	1.6	0.34329	1.4	0.91	1912	27	1903	48
3	32	436	754	0.58	0.35441	1.7	0.04895	1.4	0.85	308	6	308	6
4	74	750	1632	0.46	0.37352	1.6	0.05162	1.4	0.91	322	6	324	6

327 9	326 9	308	304 9	335 9		334 12	338 12	341 12	309	350 12	333 12	332 12	340 12	318	316 11	335 12	319	367 13	345 12	305 11	328 11	301	326 11	345 12	352 12	343 12	349 12	334 12		
10	6	8	6	6		11	11	11	10	11	11	12	11	10	11	12	11	12	11	11	10	10	11	12	11	11	11	11		
326	326	305	307	334		334	339	340	311	349	335	337	339	318	315	335	318	396	344	309	328	300	326	344	354	342	343	336		
0.77	06.0	0.95	0.83	0.92		96.0	0.97	96.0	86.0	96.0	0.94	0.87	96.0	0.94	06.0	0.87	0.93	0.95	96.0	0.88	0.95	0.92	06.0	0.91	0.95	0.92	0.95	0.94		
1.4	1.4	1.4	1.4	1.4		1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	(H	(11)
0.05196	0.05193	0.04898	0.04820	0.05337	(сиенит)	0.05324	0.05388	0.05426	0.04906	0.05578	0.05298	0.05281	0.05410	0.05049	0.05018	0.05328	0.05071	0.05855	0.05500	0.04847	0.05212	0.04776	0.05194	0.05494	0.05619	0.05472	0.05558	0.05313	Ппоба 5 (кварпевый сиенит	TODDIN OND IN
1.9	1.6	1.5	1.7	1.5	Проба 4	1.9	1.9	1.9	1.8	1.9	1.9	2.1	1.9	1.9	2.0	2.1	1.9	1.9	1.9	2.1	1.9	2.0	2.0	2.0	1.9	2.0	1.9	1.9	nofa 5 (kBan	
0.37790	0.37790	0.35088	0.35294	0.39006		0.38963	0.39650	0.39754	0.35806	0.40985	0.39089	0.39392	0.39592	0.36734	0.36401	0.39027	0.36826	0.43402	0.40271	0.35617	0.38060	0.34341	0.37917	0.40322	0.41739	0.39997	0.40224	0.39206		77
0.79	0.47	0.16	0.27	0.13		0.20	0.54	0.44	0.13	0.30	1.12	0.29	0.43	0.19	0.22	0.46	0.33	0.42	0.62	0.20	0.19	0.54	0.08	0.35	0.22	0.19	0.43	0.48		
337	1444	8004	807	2388		9150	15901	18882	81345	17717	8659	4435	12840	7705	3117	3254	6075	12575	15295	3098	47521	7250	4413	4763	16420	6420	25909	32869		
265	685	1283	218	316		1830	8524	8240	10332	5328	7405	1299	5460	1468	269	1486	9861	5326	9457	609	9048	3935	365	1686	3643	1216	11063	15900		
15	99	344	34	112		419	737	882	3437	852	302	202	009	336	135	150	267	637	730	130	2153	301	199	228	803	306	1255	1518		
5	9	7	8	6		1	2	3	4	5	9	7	∞	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23		

Окончание таблицы 2

1 1.9 0.04844 1.5 0.76 307 10 305 9 7 1.7 0.04827 1.5 0.90 306 9 304 9 0 1.6 0.04831 1.5 0.94 308 9 304 9 0 1.6 0.04818 1.5 0.93 305 9 304 9 2 1.6 0.04882 1.5 0.72 304 13 304 9 2 2.0 0.04885 1.5 0.74 307 11 304 9 4 2.1 0.04886 1.5 0.74 307 11 306 9 3 1.6 0.04880 1.5 0.74 307 11 306 9 4 1.7 0.04880 1.5 0.74 307 11 306 9 5 0.04880 1.5 0.74 307 11 308 9 <th>578</th>	578
1.7 0.04827 1.5 0.90 306 9 304 1.6 0.04831 1.5 0.94 308 9 305 1.6 0.04818 1.5 0.93 305 9 303 2.0 0.04818 1.5 0.93 305 9 303 2.1 0.04882 1.5 0.72 304 11 304 2.1 0.04885 1.5 0.72 304 11 306 2.1 0.04786 1.4 0.90 304 8 301 1.6 0.04780 1.4 0.90 305 8 304 1.7 0.04877 1.4 0.90 305 8 304 1.7 0.04840 1.5 0.72 307 10 305 2.0 0.04830 1.5 0.72 306 11 305 2.0 0.04830 1.5 0.73 306 11 307 2.0 0.04830 1.4 0.88 331 10 304 1.0 0.04882 1.5 0.73 304 8 305 2.0 0.04882 1.5 0.73 304 8 305 2.0 0.04882 1.5 0.73 304 11 307 2.0 0.04883 1.5 0.73 309 10 306 2.0 0.04883 1.5 0.78 309 10 306 2.0 0.04883 1.5 0.78 309 10 306 2.0 0.04883 1.5 0.78 309 10 306 2.0 0.04831 1.5 0.78 309 10 306 2.0 0.04832 1.5 0.88 363 10 363 2.0 0.04833 1.5 0.88 363 10 304 2.0 0.04834 1.5 0.78 309 10 306 2.0 0.04834 1.5 0.78 309 10 306 2.0 0.04834 1.5 0.78 309 10 306 2.0 0.04834 1.5 0.78 309 10 306 2.0 0.04834 1.5 0.78 309 10 306 2.0 0.04834 1.5 0.78 309 10 304 2.0 0.04834 1.5 0.78 309 10 304 2.0 0.04834 1.5 0.78 309 10 304 2.0 0.04834 1.5 0.78 309 10 304 2.0 0.04834 1.5 0.78 309 10 304 2.0 0.04834 1.5 0.78 309 10 304 2.0 0.04834 1.5 0.78 309 10 304 2.0 0.04834 1.5 0.78 309 10 304 2.0 0.04834 1.5 0.79 309 10 304 2.0 0.04834 1.5 0.79 309 10 304 2.0 0.04834 1.5 0.79 306 10 304 2.0 0.04834 1.5 0.79 309 10 304 2.0 0.04834 1.5 0.79 306 10 304 2.0 0.04834 1.5 0.79 306 10 304 2.0 0.04834 1.5 0.84 349 34	1.18 0.35301
1.6 0.04851 1.5 0.94 308 9 305 1.6 0.04818 1.5 0.93 305 9 305 2.0 0.04818 1.5 0.93 305 9 303 2.1 0.04865 1.5 0.72 304 11 304 2.1 0.04786 1.6 0.65 304 13 301 3.1 0.04786 1.5 0.72 307 11 306 1.6 0.04780 1.4 0.90 304 8 301 1.6 0.04877 1.4 0.90 305 8 304 1.7 0.04867 1.5 0.74 307 11 305 1.9 0.04867 1.4 0.86 308 9 306 1.0 0.04887 1.5 0.75 305 11 305 2.0 0.04887 1.5 0.75 305 11 305 2.0 0.04887 1.5 0.75 305 11 305 2.0 0.04882 1.5 0.75 305 11 306 2.1 0.04882 1.5 0.75 305 11 306 2.2 0.04882 1.4 0.88 337 9 338 1.6 0.04882 1.5 0.78 310 11 307 2.0 0.04882 1.5 0.78 310 11 307 2.0 0.04883 1.5 0.78 309 10 304 2.0 0.04883 1.5 0.78 309 10 306 2.1 0.04883 1.5 0.88 363 10 306 2.2 0.04883 1.5 0.88 363 10 306 2.3 0.05038 1.5 0.88 363 10 306 2.4 0.04883 1.5 0.88 363 10 306 2.5 0.04884 1.5 0.88 363 10 306 2.6 0.04883 1.5 0.88 363 10 306 2.8 0.04883 1.5 0.88 363 10 304 2.9 0.04884 1.5 0.88 363 10 304 2.9 0.04884 1.5 0.88 363 10 304 2.9 0.04884 1.5 0.79 308 10 304 2.9 0.04884 1.5 0.79 308 10 304 2.9 0.04884 1.5 0.79 308 10 304 2.9 0.04884 1.5 0.79 308 10 304 2.9 0.04884 1.5 0.79 308 10 304 2.9 0.04884 1.5 0.79 308 10 304 2.9 0.04884 1.5 0.79 308 10 304 2.9 0.05381 1.4 0.88 363 10 304 2.9 0.05381 1.4 0.88 363 10 304 2.9 0.05381 1.4 0.88 363 10 304 2.9 0.05381 1.4 0.88 363 10 304 2.9 0.05381 1.4 0.88 363 10 304 2.9 0.05381 1.4 0.88 363 10 304 3.9 0.05381 1.4 0.83 349	0.66 0.35117
1.6 0.04818 1.5 0.93 305 9 303 2.0 0.04825 1.5 0.72 304 11 304 2.1 0.04865 1.5 0.72 307 11 306 1.6 0.04780 1.4 0.90 304 8 301 2.1 0.04867 1.4 0.90 305 8 304 1.6 0.04807 1.4 0.90 305 8 304 1.7 0.04867 1.4 0.86 308 9 306 1.9 0.04884 1.5 0.77 306 11 305 2.0 0.04884 1.5 0.75 307 11 305 2.1 0.04884 1.5 0.75 306 11 305 2.0 0.04884 1.5 0.75 306 11 305 2.0 0.04885 1.5 0.75 306 11 305 2.1 0.04885 1.4 0.88 331 10 305 2.0 0.04885 1.4 0.88 331 10 306 2.1 0.04885 1.4 0.88 337 9 338 2.2 0.05388 1.4 0.88 337 9 338 2.1 0.04885 1.5 0.77 306 11 306 2.1 0.04885 1.5 0.78 309 10 307 2.1 0.04885 1.5 0.78 309 10 307 2.1 0.04888 1.5 0.78 309 10 307 2.1 0.04884 1.5 0.79 306 10 307 2.1 0.04884 1.5 0.79 306 10 307 2.1 0.04884 1.5 0.79 306 10 307 2.1 0.04884 1.5 0.79 306 10 304 2.1 0.04884 1.5 0.79 306 10 304 2.1 0.04884 1.5 0.79 306 10 304 2.1 0.04884 1.5 0.79 306 10 304 2.1 0.04884 1.5 0.79 306 10 304 2.1 0.05381 1.4 0.88 363 10 348 2.1 0.04884 1.5 0.79 349 10 348 2.1 0.05384 1.4 0.88 363 10 348 2.1 0.05384 1.5 0.79 349 10 348 2.1 0.05384 1.5 0.79 349 10 348 2.1 0.05384 1.5 0.79 349 10 348 2.1 0.05384 1.5 0.79 349 10 348 2.1 0.05384 1.5 0.79 349 10 2.1 0.05384 1.5 0.79 349 10 2.1 0.05384 1.5 0.79 349 10 2.1 0.05384 1.5 0.81 349 10 2.1 0.05384 1.5 0.81 349 10 2.1 0.05384 1.5 0.81 349 10 2.1 0.05384 1.5 0.81 349 10 2.1 0.05384 1.5 0.81 349 10 2.1 0.05384 1.5 0.81 349	0.11 0.35430
2.0 0.04825 1.5 0.72 304 11 304 2.4 0.04786 1.6 0.653 304 13 301 301 2.4 0.04786 1.6 0.653 304 13 301 301 301 301 301 301 301 302 301 302 304 302 302 302 302 302 302 302 302 302 302	0.12 0.35070
2.4 0.04786 1.6 0.65 304 13 301 2.1 0.04865 1.5 0.72 307 11 306 1.6 0.04805 1.5 0.74 307 11 306 2.1 0.04805 1.5 0.74 307 11 306 1.6 0.04827 1.4 0.90 305 8 304 1.7 0.04880 1.5 0.74 307 11 305 1.0 0.04880 1.5 0.80 307 10 305 1.0 0.04880 1.5 0.80 307 10 305 2.0 0.04844 1.5 0.75 305 11 305 2.0 0.04844 1.5 0.75 306 11 305 2.0 0.04805 1.5 0.75 306 11 304 2.0 0.04805 1.4 0.83 334 10 334	1.04 0.34925
1.1 0.04865 1.5 0.72 307 11 306 1.6 0.04780 1.4 0.90 304 8 301 1.6 0.04780 1.5 0.74 307 11 302 1.6 0.04867 1.4 0.90 305 8 304 1.7 0.04867 1.4 0.86 308 9 306 1.9 0.04884 1.5 0.88 316 14 317 2.0 0.04805 1.5 0.52 315 12 315 2.0 0.04805 1.5 0.77 306 11 305 2.1 0.04832 1.4 0.83 331 10 336 1.5 0.05338 1.4 0.89 304 8 305 1.6 0.04832 1.5 0.71 307 11 306 2.1 0.04836 1.5 0.73 319 11 317 2.0 0.04882 1.5 0.73 319 11 317 2.0 0.04883 1.5 0.78 309 10 304 2.0 0.04883 1.5 0.84 304 9 304 1.8 0.04829 1.5 0.84 304 9 304 1.8 0.04829 1.5 0.88 309 10 306 1.8 0.04839 1.5 0.88 309 10 306 1.8 0.04839 1.5 0.88 309 10 306 1.8 0.04839 1.5 0.88 363 10 306 1.8 0.04834 1.5 0.88 363 10 304 1.8 0.04834 1.5 0.88 363 10 304 1.9 0.04834 1.5 0.79 306 10 304 1.1 1.1 0.05531 1.4 0.88 363 10 348 1.1 1.1 0.05531 1.4 0.88 363 10 348 1.1 1.1 0.05531 1.4 0.88 363 309 300 1.1 0.04834 1.5 0.79 306 10 306 1.1 0.05531 1.4 0.88 363 309 300 1.1 0.05531 1.4 0.88 363 300 300 1.1 0.05531 1.4 0.88 363 300 300 1.1 0.05531 1.4 0.88 363 300 300 1.1 0.05531 1.4 0.88 363 300 300 1.1 0.05531 1.4 0.88 363 300 300 1.1 0.05531 1.4 0.88 363 300 300 1.1 0.05531 1.4 0.88 363 300 300 1.1 0.05531 1.4 0.88 363 300 300 1.1 0.05531 1.4 0.88 363 300 300 1.1 0.05531 1.4 0.88 363 300 300 1.1 0.05531 1.4 0.88 363 300 300 1.1 0.05531 1.4 0.88 363 300 300 1.2 0.05531 1.4 0.88 363 300 300 1.2 0.05531 1.4 0.88 363 300 300	0.34870
1.6 0.04780 1.4 0.90 304 8 301 301 302 301 302 302 302 303 304 305 305 304 305 3	1.91
1.6 0.04798 1.5 0.74 307 11 302 1.6 0.04827 1.4 0.96 305 8 304 1.7 0.04867 1.4 0.86 308 9 306 1.9 0.04840 1.5 0.80 307 10 305 2.0 0.04844 1.5 0.77 306 11 305 2.0 0.04844 1.5 0.77 306 11 305 2.0 0.04832 1.5 0.65 315 12 315 1.7 0.05257 1.4 0.83 331 10 305 1.6 0.04832 1.5 0.77 306 11 306 1.7 0.04832 1.4 0.83 331 10 305 1.6 0.04882 1.5 0.78 310 11 306 2.0 0.04882 1.5 0.78 310 11 307 2.0 0.04882 1.5 0.73 319 11 317 2.0 0.04882 1.5 0.73 319 11 317 2.0 0.04882 1.5 0.73 319 11 317 2.0 0.04882 1.5 0.73 319 11 317 1.8 0.04884 1.5 0.78 309 10 304 1.8 0.04864 1.5 0.79 309 10 306 1.6 0.05324 1.4 0.88 363 10 344 1.1 0.05324 1.4 0.88 349 10 348 1.1 0.04834 1.5 0.79 349 10 348 1.1 0.05341 1.4 0.83 349 10 348 1.1 0.05341 1.4 0.83 349 10 348 1.1 0.05341 1.4 0.83 349 10 348 1.1 0.05341 1.4 0.83 349 10 348 1.1 0.05341 1.4 0.83 349 10 348 1.1 0.05341 1.4 0.83 349 10 348 1.1 0.05341 1.4 0.83 349 10 348 1.1 0.05341 1.4 0.83 349 10 348 1.1 0.05341 1.4 0.83 349 10 348 1.1 0.05341 1.4 0.83 349 10 348 1.1 0.05341 1.4 0.83 349 10 348 1.1 0.05341 1.4 0.83 349 10 348 1.1 0.05341 1.4 0.83 349 10 348 1.2 0.05341 1.4 0.83 349 10 0.43 1.3 0.05341 1.4 0.83 349 10 0.43 1.4 0.05341 1.4 0.83 349 10 0.43 1.5 0.05341 1.5 0.43 349 10 0.43 1.5 0.65341 1.4 0.83 349 10 0.43 1.5 0.65341 1.4 0.83 349 10 0.43 1.5 0.65341 1.4 0.83 349 10 0.43 1.5 0.65341 1.4 0.83 349 10 0.43 1.5 0.65341 1.4	0.14 0.34862
1.6 0.04827 1.4 0.90 305 8 304 1.7 0.04867 1.4 0.86 308 9 306 1.9 0.04840 1.5 0.80 307 10 305 2.0 0.04844 1.5 0.58 316 11 305 2.0 0.04844 1.5 0.75 302 10 303 2.0 0.04832 1.5 0.75 302 10 303 1.7 0.05257 1.4 0.89 304 8 305 1.6 0.04839 1.4 0.89 304 8 305 1.6 0.04882 1.5 0.71 307 11 306 1.7 0.04829 1.5 0.73 319 11 307 2.0 0.04882 1.5 0.73 319 11 307 2.0 0.04882 1.5 0.73 319 11 317 2.0 0.04882 1.5 0.73 319 11 317 2.0 0.04882 1.5 0.73 319 11 317 1.8 0.04884 1.5 0.79 309 10 306 1.8 0.04864 1.5 0.79 306 10 306 1.8 0.04884 1.5 0.79 306 10 304 1.8 0.04884 1.5 0.79 306 10 304 1.8 0.04884 1.5 0.79 306 10 304 1.9 0.04884 1.5 0.79 306 10 308 1.1 0.05534 1.4 0.88 349 10 348 1.1 1.1 0.05534 1.4 0.83 349 10 348 1.1 1.1 0.05534 1.4 0.83 349 10 348 1.1 1.1 0.05541 1.4 0.83 349 10 348 1.1 1.1 0.05541 1.4 0.83 349 10 1.1 1.1 0.05541 1.4 0.83 349 10 1.1 0.05541 1.4 0.83 349 10 1.1 0.05541 1.4 0.83 349 10 1.2 0.04834 1.5 0.79 349 10 1.3 0.05541 1.4 0.83 349 10 1.4 0.05541 1.4 0.83 349 10 1.5 0.05541 1.4 0.83 349 10 1.5 0.05541 1.4 0.83 349 10 1.5 0.05541 1.4 0.83 349 10 1.5 0.05541 1.4 0.83 349 10 1.5 0.05541 1.4 0.83 349 10 1.5 0.05541 1.4 0.83 349 10 1.5 0.05541 1.4 0.83 349 10 1.5 0.05541 1.4 0.83 349 10 1.5 0.05541 1.4 0.83 349 10 1.5 0.05541 1.4 0.83 349 10 1.5 0.05541 1.4 0.83 349 10 1.5 0.05541 1.4 0.83 349 10 1.5 0.05541 1.5 0.44 340 340 340 1.5 0.05541 1.4	1.36 0.35279
1.7 0.04867 1.4 0.86 308 9 306 1.9 0.04840 1.5 0.80 307 10 305 2.0 0.04844 1.5 0.58 316 14 317 2.0 0.04844 1.5 0.77 306 11 305 2.0 0.04805 1.5 0.75 302 10 303 2.0 0.04805 1.5 0.75 306 11 304 2.1 0.04832 1.4 0.83 331 10 330 1.7 0.05257 1.4 0.83 331 10 305 1.6 0.04836 1.5 0.71 307 11 307 2.0 0.04882 1.5 0.78 310 11 307 2.0 0.04882 1.5 0.78 310 11 307 2.0 0.04882 1.5 0.78 310 11 307 2.0 0.04884 1.5 0.78 309 10 306 1.8 0.04884 1.5 0.78 309 10 306 1.8 0.04884 1.5 0.78 309 10 306 1.8 0.04884 1.5 0.79 309 10 306 1.8 0.04884 1.5 0.79 309 10 304 1.8 0.04884 1.5 0.79 309 10 304 1.8 0.04884 1.5 0.79 309 10 304 1.9 0.04834 1.5 0.79 306 10 304 1.1 0.05541 1.4 0.83 349 10 348 1.1 0.05541 1.4 0.83 349 10 348 1.1 0.05541 1.4 0.83 349 10 348 1.1 0.05541 1.4 0.83 349 10 348 1.1 0.05541 1.4 0.83 349 10 348 1.1 0.05541 1.4 0.83 349 10 348 1.1 0.05541 1.4 0.83 349 10 348 1.1 0.05541 1.4 0.83 349 10 1.1 0.05541 1.4 0.83 349 10 1.2 0.05541 1.4 0.83 349 10 1.3 0.05541 1.4 0.83 349 10 1.4 0.05541 1.5 0.79 349 1.5 0.79 349 10 1.5 0.79 349 10 1.5 0.79 349 10 1.5 0.79 349 10 1.5 0.79 349 10 1.5 0.79 349 10 1.5 0.79 349 10 1.5 0.79 349 10 1.5 0.79 349 10 1.5 0.79 349 348 1.5 0.79 348 1.5 0.79 348 1.5 0.79 348 1.5 0.79 348 1.5 0.79 348 1.5 0.79 348 1.5 0.79 348 1.5 0.79 348 1.5 0.79 348 1.5 0.79 348 1.5 0.79 348 1.5 0.79 348 1.5 0.79 348 1.5 0.79	0.13 0.35073
1.9 0.04840 1.5 0.80 307 10 305 2.6 0.05035 1.5 0.58 316 14 317 2.0 0.04844 1.5 0.77 306 11 305 2.0 0.04805 1.5 0.65 315 12 315 2.0 0.04805 1.5 0.72 306 11 304 2.1 0.04832 1.4 0.83 331 10 330 1.1 0.04832 1.4 0.88 337 9 338 2.0 0.04882 1.5 0.78 310 11 307 2.0 0.04882 1.5 0.78 310 11 307 2.0 0.04882 1.5 0.78 310 11 307 2.0 0.04882 1.5 0.78 310 11 307 2.0 0.04883 1.5 0.78 309 10 306 1.8 0.04884 1.5 0.79 309 10 306 1.8 0.04884 1.5 0.79 306 10 306 1.8 0.04884 1.5 0.79 306 10 304 1.9 0.04834 1.5 0.79 306 10 304 1.1 0.05541 1.4 0.88 363 10 348 1.1 0.05541 1.4 0.88 363 10 348 1.1 0.05541 1.4 0.88 363 10 348 1.1 0.05541 1.4 0.88 363 10 348 1.1 0.05541 1.4 0.88 349 10 348 1.1 0.05541 1.4 0.88 349 10 348 1.1 0.05541 1.4 0.88 349 10 348 1.1 0.05541 1.4 0.88 349 10 348 1.1 0.05541 1.4 0.88 349 10 348 1.1 0.05541 1.4 0.88 349 10 348 1.1 0.05541 1.4 0.88 349 10 348 1.1 0.05541 1.4 0.88 349 10 348 1.1 0.05541 1.4 0.88 349 10 348 1.1 0.05541 1.4 0.88 349 10 348 1.2 0.05541 1.4 0.88 349 10 348 1.3 0.04864 1.5 0.79 349 1.3 0.04864 1.5 0.79 349 1.4 0.88 349 10 348 1.5 0.79 349 348 1.5 0.79 349 348 1.5 0.79 349 348 1.5 0.79 349 348 1.5 0.79 348 1.5 0.79 348 1.5 0.79 348 1.5 0.79 348 1.5 0.79 348 1.5 0.79 348 1.5 0.79 348 1.5 0.79 348 1.5 0.79 348 1.5 0.79 348 1.5 0.79 348 1.5 0.79 348 1.5 0.79 348 1.5 0.79 348 1.5 0.79 348 1.5 0.79 348 1.5 0	1.81 0.35374
Profit of (KBaplicababit MoHillorint) 12.6 0.05035 1.5 0.58 316 14 317 305 1.5 0.05005 1.5 0.077 306 11 305 315 2.0 0.04844 1.5 0.075 306 11 304 303 304 305	1.15 0.35326
2.6 0.05035 1.5 0.58 316 14 317 2.0 0.04844 1.5 0.77 306 11 305 2.3 0.05005 1.5 0.65 315 12 315 2.0 0.04805 1.5 0.65 302 10 303 2.2 0.04832 1.6 0.72 306 11 304 1.7 0.05257 1.4 0.83 331 10 330 1.6 0.04839 1.4 0.89 304 8 305 1.6 0.04856 1.5 0.71 307 11 306 2.1 0.04856 1.5 0.71 307 11 306 2.0 0.04882 1.5 0.73 319 11 307 1.8 0.04883 1.5 0.84 304 9 304 1.8 0.04884 1.5 0.79 309 10 304 <t< td=""><td></td></t<>	
2.0 0.04844 1.5 0.77 306 11 305 2.3 0.05005 1.5 0.65 315 12 315 2.0 0.04805 1.5 0.65 315 12 315 2.0 0.04805 1.5 0.75 306 11 304 1.7 0.04832 1.4 0.83 331 10 330 1.6 0.04839 1.4 0.89 304 8 305 1.6 0.05388 1.4 0.88 337 9 338 2.1 0.04836 1.5 0.71 307 11 306 2.0 0.04885 1.5 0.78 319 11 304 1.8 0.04829 1.5 0.84 304 9 304 1.8 0.04883 1.5 0.83 369 10 304 1.9 0.04864 1.5 0.79 309 10 304 <tr< td=""><td>1.01 0.36546</td></tr<>	1.01 0.36546
2.3 0.05005 1.5 0.655 315 115 0.15 305 315	1.22 0.35101
2.0 0.04805 1.5 0.75 302 10 303 2.2 0.04832 1.6 0.72 306 11 304 1.7 0.05257 1.4 0.83 331 10 330 1.6 0.04839 1.4 0.89 304 8 305 1.6 0.05388 1.4 0.88 337 9 338 2.1 0.04856 1.5 0.71 307 11 306 2.0 0.04882 1.5 0.78 310 11 307 1.8 0.04829 1.5 0.73 319 11 317 1.8 0.04883 1.5 0.84 304 10 304 1.8 0.04864 1.5 0.79 309 10 306 1.6 0.05792 1.4 0.88 363 10 363 1.9 0.04834 1.5 0.79 306 10 304 <t< td=""><td>1.10 0.36331</td></t<>	1.10 0.36331
2.2 0.04832 1.6 0.72 306 11 304 1.7 0.05257 1.4 0.83 331 10 330 1.6 0.04839 1.4 0.89 304 8 305 1.6 0.04836 1.4 0.88 337 9 338 2.1 0.04885 1.5 0.71 307 11 306 2.0 0.04882 1.5 0.78 310 11 307 2.0 0.05038 1.5 0.78 304 9 304 1.8 0.04829 1.5 0.84 304 9 304 1.8 0.04883 1.5 0.83 309 10 306 1.8 0.04884 1.5 0.79 309 10 304 1.9 0.04883 1.5 0.79 309 10 304 1.9 0.04834 1.5 0.79 349 10 348	0.82 0.34592
1.7 0.05257 1.4 0.83 331 10 330 1.6 0.04839 1.4 0.89 304 8 305 1.6 0.04836 1.4 0.88 337 9 338 2.1 0.04856 1.5 0.71 307 11 306 2.0 0.04882 1.5 0.78 310 11 307 1.8 0.04829 1.5 0.73 319 11 307 1.8 0.04883 1.5 0.84 304 9 304 1.8 0.04883 1.5 0.83 309 10 306 1.6 0.05792 1.4 0.88 363 10 363 1.9 0.04834 1.5 0.79 306 10 304 1.7 0.05541 1.4 0.83 349 10 348	1.18 0.35220
1.6 0.04839 1.4 0.89 304 8 305 1.6 0.05388 1.4 0.88 337 9 338 2.1 0.04856 1.5 0.71 307 11 306 2.0 0.04882 1.5 0.78 319 11 307 1.8 0.04829 1.5 0.84 304 9 304 1.8 0.04883 1.5 0.83 309 10 306 1.8 0.04864 1.5 0.79 309 10 306 1.6 0.05792 1.4 0.88 363 10 363 1.9 0.04834 1.5 0.79 306 10 304 1.7 0.05541 1.4 0.83 349 10 348	1.31 0.38590
1.6 0.05388 1.4 0.88 337 9 338 2.1 0.04856 1.5 0.71 307 11 306 2.0 0.04882 1.5 0.78 310 11 307 2.0 0.05038 1.5 0.73 319 11 317 1.8 0.04829 1.5 0.84 304 9 304 1.8 0.04883 1.5 0.83 309 10 306 1.8 0.04864 1.5 0.79 309 10 306 1.6 0.05792 1.4 0.88 363 10 363 1.9 0.04834 1.5 0.79 306 10 304 1.7 0.05541 1.4 0.83 349 10 348	1.05 0.34949
2.1 0.04856 1.5 0.71 307 11 306 2.0 0.04882 1.5 0.78 310 11 307 2.0 0.04882 1.5 0.73 319 11 317 1.8 0.04829 1.5 0.84 304 9 304 1.8 0.04883 1.5 0.83 309 10 306 1.8 0.04864 1.5 0.79 309 10 306 1.6 0.05792 1.4 0.88 363 10 363 1.9 0.04834 1.5 0.79 306 10 304 1.7 0.05541 1.4 0.83 349 10 348	1.46 0.39376
2.0 0.04882 1.5 0.78 310 11 307 2.0 0.05038 1.5 0.73 319 11 317 1.8 0.04829 1.5 0.84 304 9 304 1.8 0.04883 1.5 0.83 309 10 307 1.8 0.04864 1.5 0.79 309 10 306 1.6 0.05792 1.4 0.88 363 10 363 1.9 0.04834 1.5 0.79 306 10 304 1.7 0.05541 1.4 0.83 349 10 348	1.19 0.35358
2.0 0.05038 1.5 0.73 319 11 317 1.8 0.04829 1.5 0.84 304 9 304 1.8 0.04883 1.5 0.83 309 10 307 1.8 0.04864 1.5 0.79 309 10 306 1.6 0.05792 1.4 0.88 363 10 363 1.9 0.04834 1.5 0.79 306 10 304 1.7 0.05541 1.4 0.83 349 10 348	0.91 0.35643
1.8 0.04829 1.5 0.84 304 9 304 1.8 0.04883 1.5 0.83 309 10 307 1.8 0.04864 1.5 0.79 309 10 306 1.6 0.05792 1.4 0.88 363 10 363 1.9 0.04834 1.5 0.79 306 10 304 1.7 0.05541 1.4 0.83 349 10 348	1.25 0.36928
1.8 0.04883 1.5 0.83 309 10 307 1.8 0.04864 1.5 0.79 309 10 306 1.6 0.05792 1.4 0.88 363 10 363 1.9 0.04834 1.5 0.79 306 10 304 1.7 0.05541 1.4 0.83 349 10 348	1.66 0.34884
1.8 0.04864 1.5 0.79 309 10 306 1.6 0.05792 1.4 0.88 363 10 363 1.9 0.04834 1.5 0.79 306 10 304 1.7 0.05541 1.4 0.83 349 10 348	1.02 0.35536
1.6 0.05792 1.4 0.88 363 10 363 1.9 0.04834 1.5 0.79 306 10 304 1.7 0.05541 1.4 0.83 349 10 348	1.20 0.35526
1.9 0.04834 1.5 0.79 306 10 304 1.7 0.05541 1.4 0.83 349 10 348	1.15 0.43005
1.7 0.05541 1.4 0.83 349 10 348	1.11 0.35119
	1.52 0.40969

Особенностям металлогении пост-коллизионного этапа соответствует и явно выраженная молибден-вольфрамовая специфика минерализации, связанной с Кенсуйским плутоном [6]. как и других рудных объектов Сонкуль-Кенсуйской металлогенической зоны, трассирующей систему глубинных разломов "линии В.А. Николаева" [1]. Как было показано в ряде других регионов, скарново-порфировые золото-медно-молибден-вольфрамовые или золото-медные (с W и Mo) месторождения, связанные с интрузиями пород высококалиевой известково-шелочной и шошонитовой серий, формируются именно на пост-коллизионном этапе вдоль орогенных поясов и крупных структурных неоднородностей, главным образом, во внутри- и окраинноконтинентальных обстановках — вдоль кратонных и перикратонных тектонических границ, которые подверглись серии тектонических трансформаций, включая субдукцию, коллизию конвергентных плит, соответствующий рост мошности коры и последующий пост-коллизионный коллапс, последний в том числе отражающий апвеллинг астеносферы и формирование рифтогенных структур [19, 20]. По-видимому, такую или близкую последовательность тектонических событий следует допускать и для позднепалеозойской эволюции рассматриваемого региона Тянь-Шаня.

Установленный наиболее древний изотопный U-Pb-возраст (1.9 млрд лет) "унаследованного" ширкона в породах Кенсуйского плутона, по-видимому, соответствует возрасту пород фундамента Срединного Тянь-Шаня. В качестве последнего рассматриваются, в частности, метаморфические породы блоков-фрагментов основания Таримской платформы, которые были отделены от последней по системе рифтов, и возраст циркона в которых составляет 1.85-2.33 млрд лет [4]. Формирование коровых магматических очагов в субстрате данных пород могло быть инициировано при эволюции высококалиевого известково-щелочного и шошонитового магматизма, связанного с глубинными (мантийными) магматическими очагами. Развитие коровых магматических очагов могло явиться дополнительным фактором формирования соответствующей молибден-вольфрамовой "специализации" изученных магматических пород.

БЛАГОДАРНОСТИ

Авторы благодарны А.В. Тышкевич (ЦНИГРИ) за отбор и подготовку проб циркона.

ИСТОЧНИКИ ФИНАНСИРОВАНИЯ

Исследование выполнено при финансовой поддержке научных программ ИГЕМ РАН и ИГМ СО РАН.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы подтверждают отсутствие у них конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Kudrin V.S., Soloviev S. G., Stavinsky V.A., Kabardin L.L.* The gold-copper-molybdenum-tungsten ore belt of the Tien Shan // Internat. Geol. Rev. 1990. V. 32. P. 930–941.
- 2. Yakubchuk A., Cole A., Seltmann R., Shatov V. Tectonic setting, characteristics and regional exploration criteria for gold mineralization in central Eurasia: the southern Tien Shan province as a key example / In: Goldfarb R., Nielsen R. (Eds.), Integrated Methods for Discovery: Global Exploration in Twenty-First Century. Economic Geology Special Publication. 2002. V. 9. P. 77–201.
- 3. Seltmann R., Konopelko D., Biske G., Divaev F., Sergeev S. Hercynian post-collisional magmatism in the context of Paleozoic magmatic evolution of the Tien Shan orogenic belt // Journal of Asian Earth Sciences. 2011. V. 42. P. 821–838.
- 4. Алексеев Д. В., Дегтярев К. Е., Котов А. Б., Сальникова Е. В., Третьяков А. А., Яковлева С. З., Анисимова И. В., Шатагин К. Н. Позднепалеозойские субдукционные и коллизионные магматические комплексы в Нарынском сегменте Срединного Тянь-Шаня (Кыргызстан) // Доклады РАН. Науки о Земле. 2009. Т. 427. № 2. С. 219—223.
- 5. Kröner A., Alexeiev D. V., Kovach V. P., Rojas-Agramonte Ya., Tretyakov A. A., Mikolaichuk A. V., Xie H. Q., Sobel E. R. Zircon ages, geochemistry and Nd isotopic systematics for the Palaeoproterozoic 2.3 to 1.8 Ga Kuilyu Complex, East Kyrgyzstan the oldest continental basement fragment in the Tianshan orogenic belt // Journal of Asian Earth Sciences. 2017. V. 135. P. 122–135.
- 6. Soloviev S. G. Geology, mineralization, and fluid inclusion characteristics of the Kensu W-Mo skarn and Mo-W-Cu-Au alkalic porphyry deposit, Tien-Shan, Kyrgyzstan // Economic Geology. 2011. V. 106. P. 193–222.
- 7. Соломович Л. И. Герцинский интрузивный магматизм Кыргызстана (геодинамика, петрогенезис и рудоносность) / Автореф. дисс. доктора геол.мин. наук. Бишкек: Институт Геологии Кыргызстана, 1997. 42 с.
- 8. *Griffin W. L.*, *Powell W. J.*, *Pearson N. J.*, *O'Reilly S. Y.* GLITTER: Data reduction software for laser ablation

- ICP-MS / P. Sylvester (Ed.). Miner. Assoc. of Canada, Short Course Series, 2008. V. 40. P. 307–311.
- 9. Hiess J., Condon D. J., McLean N., Noble S. R. ²³⁸U/²³⁵U systematics in terrestrial uranium-bearing minerals // Science. 2012. V. 335. P. 1610–1614.
- 10. *Slama J., Kosler J., Condon D. J. et al.* Plesovice zircon a new natural reference material for U-Pb and Hf isotopic microanalysis // Chemical Geology. 2008. V. 249. № 1–2. P. 1–35.
- 11. *Ludwig K*. User's Manual for Isoplot 3.00. Berkeley Geochronology Center, Berkeley, CA. 2003. P. 1–70.
- 12. Black L. P., Kamo S. L., Allen C. M. et al. Improved ²⁰⁶Pb/²³⁸U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards // Chemical Geology. 2004. V. 205. P. 115–140.
- 13. *Miller J. S.*, *Matzel J. E.*, *Miller C. F.*, *Burgess S. D.*, *Miller R. B.* Zircon growth and recycling during the assembly of large, composite arc plutons // J. Volcanol. Geotherm. Res. 2007. V. 167. № 1/4. P. 282–299.
- 14. *Биске Ю. С.* Палеозойская структура и история Южного Тянь-Шаня. СПб.: Изд-во СПГУ, 1996. 192 с.

- Charvet J., Shu L., Laurent-Charvet S., Wang B., Faure M., Cluzel D., Chen Y., De Jong K. Palaeozoic tectonic evolution of the Tianshan belt, NW China // Science China, Earth Sciences. 2011. V. 54 (2). P. 166–184.
- Biske Y. S., Konopelko D. L., Seltmann R. Paleozoic collisional belt of the South Tien Shan: A review // Earth-Science Reviews. 2023. V. 248. Paper 104637.
- 17. *Pearce J. A., Peate D. W.* Tectonic implications of the composition of volcanic arc magmas // Annual Rev. Earth Planet. Sci. 1995. V. 23. P. 251–285.
- 18. *Lustrino M., Wilson M.* The circum-Mediterranean anorogenic Cenozoic igneous province // Earth-Science Reviews. 2007. V. 81. P. 1–65.
- 19. *Pirajno F., Zhou T. F.* Intracontinental porphyry and porphyry-skarn mineral systems in eastern China: scrutiny of a special case "made-in-China" // Economic Geology. 2015. V. 110. P. 603–639.
- 20. Zhou T., Wang S., Fan Y., Yuan F., Zhang D., White N. C. A review of the intracontinental porphyry deposits in the Middle-Lower Yangtze River Valley metallogenic belt, Eastern China // Ore Geology Reviews. 2015. V. 65. P. 433–456.

POST-COLLISIONAL W-Mo-Cu-Au MINERALIZATION IN THE MIDDLETIEN SHAN: FIRST DATA ON ISOTOPIC U-Pb DATING (LA-ICP-MS METHOD) OF ZIRCON FROM INTRUSIVE ROCKS OF THE KENSU PLUTON (EASTERN KYRGYZSTAN)

S. G. Soloviev^{a,#}, S. G. Kryazhev^b, D. V. Semenova^c, Y. A. Kalinin^c, Academician of the RAS N.S. Bortnikov^a

^aInstitute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences, Moscow, Russian Federation
 ^bCentral Research Institute of Geological Prospecting for Base and Precious Metals, Moscow, Russian Federation
 ^cV.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russian Federation
 [#]E-mail: serguei07@mail.ru

The paper presents first data on isotopic U-Pb study (LA-ICP-MS method) of zircon from intrusive rocks of the Kensu pluton situated in the eastern part of the deep-seated fault system of the "Nikolaev Line". This pluton of high-potassic (shoshonitic series) rocks is accompanied by the Kensu deposit and other occurrences of skarn and porphyry W-Mo-Cu-Au mineralization. Together with the other Au, W and Cu deposits and occurrences, they are parts of the extended metallogenic belt of Tien Shan. The concordant isotopic U-Pb age data for zircon autocrysts from the rocks of the consecutive intrusive phases span over the interval of approximately 325 to 302 Ma. This interval comprised the crystallization of monzogabbro $(321\pm4 \text{ Ma})$, monzonite $(319\pm4 \text{ Ma})$, camptonite $(306\pm4 \text{ Ma})$, syenite $(307\pm6 \text{ Ma})$, quartz syenite $(305.5\pm2 \text{ Ma})$, and quartz monzonite $(305\pm3 \text{ Ma})$. Zircon antecrysts dated at 316-325 Ma to 335-345 Ma have also been identified. The age data obtained are consistent with the age of subduction processes

defined for the western part of the Middle Tien Shan. However, both geochemical characteristics of the rocks from the Kensu pluton and a distinct W-Mo mineralization related to this pluton contradict the subduction-related setting of the pluton emplacement but, instead, point out the post-collisional setting of the intrusion emplacement. This discrepancy can be explained by a "scissor-like" (from east to west) closure of the Turkestan paleoocean that has resulted in the post-collisional regime in the eastern part of the "Nikolaev Line", whereas subduction continued in its western part. The rocks also contain zircon xenocrysts with a much older age (in to order of 1.9 Gb) that probably represents the age of the Tarim craton basement rocks; this indicates an involvement of the ancient material in the magma generation.

Keywords: isotopic U-Pb geochronology, LA-ICP-MS method, zircon, granitoids, W-Mo-Cu-Au deposits, Kyrgyzstan, Tien Shan