Preparation of 6-azido-2-chloropurine-2′-deoxyriboside by enzymatic transglycosylation reaction catalyzed by Lactobacillus leichmannii type 2 nucleoside deoxyribosyltransferase


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

6-azido-2-chloropurine-2′-deoxyriboside, a valuable precursor for the preparation of modified 2-chloropurine nucleosides substituted at the 6-position of the heterocyclic base, was obtained by enzymatic transglycosylation. 6-azido-2-chloropurine-2′-deoxyriboside can also be used as a photocross-linking agent to study the nucleic acids – proteins interactions. A type 2 nucleoside deoxyribosyltransferase from Lactobacillus leichmannii was used as a biocatalyst. The optimal conditions for the formation of 6-azido-2-chloropurine-2′-deoxyriboside using 7-methyl-2′-deoxyguanosine as a carbohydrate residue donor were determined.

Sobre autores

C. Alexeev

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: micelle@mail.ru
Moscow, Russian Federation

M. Konkina

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences; Lomonosov Institute of Fine Chemical Technologies, MIREA Russia Technological University

Email: cyril.alex@eimb.ru
Moscow, Russian Federation; Moscow, Russian Federation

N. Kurochkin

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: micelle@mail.ru
Moscow, Russian Federation

M. Drenichev

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Autor responsável pela correspondência
Email: micelle@mail.ru
Moscow, Russian Federation

Bibliografia

  1. Iglesias L.E., Lewkowicz E. S., Medici R., et al. Biocatalytic approaches applied to the synthesis of nucleoside prodrugs // Biotechnol. Adv. 2015, Vol. 33, N5. P. 412–434. doi: 10.1016/j.biotechadv.2015.03.009
  2. Holguin J., Cardinaud R. Trans-N-Deoxyribosylase: Purification by Affinity Chromatography and Characterization // Eur. J. Biochem. 1975. Vol. 54, N2. P. 505–514. PMID: 1175596. https://doi.org/10.1111/j.1432–1033.1975.tb04163.x;
  3. Kaminski P. A. Functional Cloning, Heterologous Expression, and Purification of Two Different N-Deoxyribosyltransferases from Lactobacillus helveticus // J. Biol. Chem. 2002. Vol. 277, N17. P. 14400–14407. PMID: 11836245. https://doi.org/10.1074/jbc.M111995200
  4. Del Arco J., Perona A., González L., et al. Reaction mechanism of nucleoside 2′-deoxyribosyltransferases: free-energy landscape supports an oxocarbenium ion as the reaction intermediate. // Org. Biomol. Chem. 2019. Vol. 17, N34. P. 7891–7899. https://doi.org/10.1039/c9ob01315f.
  5. Becker J., Brendel M. Rapid Purification and Characterization of Two Distinct N-Deoxyribosyltransferases of Lactobacillus leichmannii // Biol. Chem. Hoppe Seyler. 1996. Vol. 377, N6. P. 357–362. PMID: 8839981. https://doi.org/10.1515/bchm3.1996.377.6.357
  6. Crespo N, Sánchez-Murcia P. A., Gago F., et. al. 2′-Deoxyribosyltransferase from Leishmania mexicana, an efficient biocatalyst for one-pot, one-step synthesis of nucleosides from poorly soluble purine bases // Appl. Microbiol. Biotechnol. 2017. Vol. 101, N19. P. 7187–7200. PMID: 28785897. https://doi.org/10.1007/s00253-017-8450-y
  7. Pérez E., Sánchez-Murcia P. A., Jordaan J., et. al. Enzymatic Synthesis of Therapeutic Nucleosides using a Highly Versatile Purine Nucleoside 2'-DeoxyribosylTransferase from Trypanosoma brucei // Chem. Cat. Chem. 2018. Vol. 10, N19. P. 4406–4416. https://doi.org/10.1002/cctc.201800775
  8. Cardinaud R, Holguin J. Nucleoside deoxyribosyltransferase-II from Lactobacillus helveticus. Substrate specificity studies. Pyrimidine bases as acceptors // Biochim. Biophys. Acta – Enzymology. 1979. Vol. 568, N2. P. 339–347. PMID: 486487. https://doi.org/10.1016/0005-2744(79)90301-2
  9. Fernández-Lucas J., Acebal C., Sinisterra J. V., et al. Lactobacillus reuteri 2′-Deoxyribosyltransferase, a Novel Biocatalyst for Tailoring of Nucleosides // Appl. Environ. Microbiol. 2010. Vol. 76, N5. P. 1462–1470. PMID: 20048065; PMCID: PMC2832402. https://doi.org/10.1128/AEM.01685-09
  10. Del Arco J., Acosta J., Fernández-Lucas J. New trends in the biocatalytic production of nucleosidic active pharmaceutical ingredients using 2′-deoxyribosyltransferases // Biotechnol. Adv. 2021. Vol. 51. P. 107701. PMID: 33515673 https://doi.org 10.1016/ j.biotechadv.2021.107701
  11. Kovaļovs A., Novosjolova I, Bizdēna Ē., et al. 1, 2, 3-Triazoles as leaving groups in purine chemistry: a three-step synthesis of N6-substituted-2-triazolyl-adenine nucleosides and photophysical properties thereof //Tetrahedron Letters. 2013. Vol. 54, N8. P. 850–853. https://doi.org/10.1016/j.tetlet.2012.11.095
  12. Meisenheimer K. M., Koch T. H. Photocross-Linking of Nucleic Acids to Associated Proteins // Critical Reviews in Biochemistry and Molecular Biology. 1997. Vol. 32, N2. P. 101–140. https://doi.org/10.3109/10409239709108550
  13. Salihovic A., Ascham A., Taladriz-Sender A., et al. Gram-scale enzymatic synthesis of 2′-deoxyribonucleoside analogues using nucleoside transglycosylase-2 // Chem. Sci. 2024. Vol. 15. P. 15399–15407. https://doi.org/10.1039/D4SC04938As
  14. Konkina M.A., Drenichev M. S., Nasyrova D. I., et al. Studies on enzymatic transglycosylation catalyzed by bacterial Nucleoside deoxyribosyltransferase II and Nucleoside phosphorylase for the synthesis of pyrimidine 2′-Deoxyribonucleosides containing modified heterocyclic base // Sustain. Chem. and Pharm. 2023. Vol. 32. P. 101011. https://doi.org/10.1016/j.scp.2023.101011
  15. Frieden M., Aviñó A., Eritja R. Convenient Synthesis of 8-Amino-2′-deoxyadenosine // Nucleosides, Nucleotides & Nucleic Acids. 2003. Vol. 22, N2. P. 193–202. https://doi.org/10.1081/NCN-120019521
  16. Lakshman M. K., Singh M. K., Parrish D., et al. Azide– Tetrazole equilibrium of C-6 azidopurine nucleosides and their ligation reactions with alkynes // The Journal of organic chemistry. 2010. Vol. 75, N8. P. 2461–2473.
  17. Drenichev M.S., Alexeev C. S., Kurochkin N. N., et al. Use of nucleoside phosphorylases for the preparation of purine and pyrimidine 2′-deoxynucleosides. // Adv. Synth. Catal. 2018. Vol.360. P. 305–312. https://doi.org/10.1002/adsc.201701005.
  18. Rabuffetti M., Bavaro, T., Semproli, R., et al. Synthesis of ribavirin, tecadenoson, and cladribine by enzymatic transglycosylation. // Catalysts. 2019. Vol. 9. P. 355. doi: 10.3390/catal9040355.
  19. Komodziński K., Nowak J., Lepczyńska J., et. al. Photochemistry of 6-azidopurine ribonucleoside in aqueous solution // Tetrahedron Lett. 2012. Vol. 53, N18. P. 2316–2318. https://doi.org/10.1016/j.tetlet.2012.02.103.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».