Optimization of A549 cell transfection efficiency with a plasmid encoding the N-protein of the SARS-CoV-2 virus

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

To test new antiviral drugs aimed at degrading the nucleocapsid protein (N-protein) of the SARS-CoV-2 virus, it is desirable to have cells expressing the N-protein, for which it is necessary to find conditions for the maximum achievable efficiency of cell transfection with a plasmid encoding this protein. For transfection, polyplexes were used consisting of a plasmid encoding the N-protein fused with the mRuby3 fluorescent protein and polyethyleneimine (PEI)-polyethylene glycol (PEG)-TAT peptide block copolymers. The dependence of the transfection efficiency of human lung adenocarcinoma A549 cells on the PEG/PEI and N/P ratios (the ratio of nitrogen in PEI to phosphate in DNA) was studied. Significant positive correlations were shown between transfection efficiency determined by flow cytometry, the N/P ratio, and the proportion of polyplexes sized 40–54 nm. The data obtained can serve as a basis for creating an animal model of lung cells transiently expressing the N protein of the SARS-CoV-2 virus.

Sobre autores

Yu. Khramtsov

Institute of Gene Biology, RAS

Moscow, Russian Federation

T. Lupanova

Institute of Gene Biology, RAS

Moscow, Russian Federation

A. Rosenkranz

Institute of Gene Biology, RAS; Lomonosov Moscow State University

Moscow, Russian Federation; Moscow, Russian Federation

G. Georgiev

Institute of Gene Biology, RAS

Moscow, Russian Federation

A. Sobolev

Institute of Gene Biology, RAS; Lomonosov Moscow State University

Email: alsobolev@yandex.ru
Moscow, Russian Federation; Moscow, Russian Federation

Bibliografia

  1. Surjit M., Lal S. K. // Infect Genet Evol. 2008. V. 8. P. 397–405.
  2. Wu C., Zheng, M. // Preprints. 2020. 2020020247.
  3. Prajapat M., Sarma P., Shekhar N., et al. // Indian J Pharmacol. 2020. V. 52. P. 56.
  4. Bestion E., Halfon P., Mezouar S., et al. // Viruses. 2022. V. 14. 1507.
  5. Ulasov A. V., Khramtsov Y. V., Trusov G. A., et al. // Mol. Ther. 2011. V. 19. P. 103–112.
  6. Shahbazi S., Haghighipour N., Soleymani S., et al. // Biotechnology letters. 2018. V. 40. P. 923–931.
  7. Hall A., Lachelt U., Bartek J., et al. // Mol. Ther. 2017. V. 25. P. 1476–1490.
  8. Трусов Г. А., Уласов А. В., Белецкая Е. А., и др. // ДАН. 2011. Т. 437. С. 266–268.
  9. Perrine T. D., Landis W. R. // J. Polym. Sci. A1. 1967. V. 5. P. 1993–2003.
  10. Kunath K., von Harpe A., Petersen H. et al. // Pharm. Res. 2002. V. 19. P. 810–817.
  11. Gong X. W., Wei D. Z., He M. L. et al. // Talanta. 2007. V. 71. P. 381–384.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).