ACCUMULATION OF β-AMYLOID LEADS TO A DECREASE IN LYNX1 AND LYPD6B EXPRESSION IN THE HIPPOCAMPUS AND INCREASED EXPRESSION OF PRO-INFLAMMATORY CYTOKINES IN THE HIPPOCAMPUS AND BLOOD SERUM

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Alzheimer’s disease is a rapidly progressive neurodegenerative disease, the development of which is associated with the accumulation of β-amyloid oligomers, dysfunction of the α7-nAChR nicotinic acetylcholine receptor, and activation of inflammation. Previously, we have shown that the neuromodulator Lynx1, which belongs to the Ly6/uPAR family, competes with β-amyloid(1–42) for binding to α7-nAChR. In the present work, we studied the expression and localization of Ly6/uPAR family proteins in the hippocampus of 2xTg-AD transgenic mice that model AD and demonstrate increased amyloidosis in the brain. Using real-time PCR, we showed a decrease in the expression of the genes encoding Lynx1, Lypd6b, and the postsynaptic marker PSD95, as well as an increase in the expression of the TNFα gene in the hippocampus of 2xTg-AD mice. Histochemical analysis revealed that, in the hippocampus of 2xTg-AD mice Lynx1 does not co-localize with α7-nAChR that can lead to the development of pathology when the receptor interacts with oligomeric β-amyloid. Also, in 2xTg-AD mice, activation of systemic inflammation was shown, which manifests itself in a decrease in the serum level of SLURP-1, a Ly6/uPAR family protein capable of regulating inflammatory processes, as well as an increase in the content of pro-inflammatory cytokines TNFα and TNFβ. Thus, α7-nAChR dysfunction and maintenance of the inflammatory microenvironment in the brain in Alzheimer’s disease may be associated with a decrease in the expression of Ly6/uPAR family proteins that regulate α7-nAChR activity and inflammation.

Авторлар туралы

M. Bychkov

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: ekaterina-lyukmanova@yandex.ru
Russian Federation, Moscow

A. Kirichenko

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: ekaterina-lyukmanova@yandex.ru
Russian Federation, Moscow

A. Paramonov

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: ekaterina-lyukmanova@yandex.ru
Russian Federation, Moscow

M. Kirpichnikov

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; Interdisciplinary Scientific and Educational School “Molecular Technologies of Living Systems and Synthetic Biology”, Faculty of Biology, Lomonosov Moscow State University M.V. Lomonosov

Email: ekaterina-lyukmanova@yandex.ru
Russian Federation, Moscow; Russian Federation, Moscow

E. Lukmanova

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; Interdisciplinary Scientific and Educational School “Molecular Technologies of Living Systems and Synthetic Biology”, Faculty of Biology, Lomonosov Moscow State University M.V. Lomonosov; Shenzhen MSU-BIT University

Хат алмасуға жауапты Автор.
Email: ekaterina-lyukmanova@yandex.ru
Russian Federation, Moscow; Russian Federation, Moscow; China, Shenzhen

Әдебиет тізімі

  1. Ballard C. et al. Alzheimer’s disease // Lancet. 2011. V. 377. № 9770. P. 1019–1031.
  2. Hampel H. et al. The Amyloid-β Pathway in Alzheimer’s Disease // Mol Psychiatry. 2021. V. 26. № 10. P. 5481–5503.
  3. Muralidar S. et al. Role of tau protein in Alzheimer’s disease: The prime pathological player // Int J Biol Macromol. 2020. V. 163. P. 1599–1617.
  4. Buckingham S.D. et al. Nicotinic acetylcholine receptor signalling: roles in Alzheimer’s disease and amyloid neuroprotection // Pharmacol. Rev. 2009. V. 61. № 1. P. 39–61.
  5. Lasala M. et al. Molecular Modulation of Human α7 Nicotinic Receptor by Amyloid-β Peptides // Front Cell Neurosci. 2019. V. 13. P. 37.
  6. Thomsen M.S. et al. Lynx1 and Aβ1–42 bind competitively to multiple nicotinic acetylcholine receptor subtypes // Neurobiology of Aging. 2016. V. 46. P. 13–21.
  7. Hernandez C.M. et al. Loss of alpha7 nicotinic receptors enhances beta-amyloid oligomer accumulation, exacerbating early-stage cognitive decline and septohippocampal pathology in a mouse model of Alzheimer’s disease // J Neurosci. 2010. V. 30. № 7. P. 2442–2453.
  8. Decourt B., Lahiri D.K., Sabbagh M.N. Targeting Tumor Necrosis Factor Alpha for Alzheimer’s Disease // Curr Alzheimer Res. 2017. V. 14. № 4. P. 412–425.
  9. de Jonge W.J., Ulloa L. The alpha7 nicotinic acetylcholine receptor as a pharmacological target for inflammation // Br J Pharmacol. 2007. V. 151. № 7. P. 915–929.
  10. King J.R., Gillevet T.C., Kabbani N. A G protein-coupled α7 nicotinic receptor regulates signaling and TNF-α release in microglia // FEBS Open Bio. 2017. V. 7. № 9. P. 1350–1361.
  11. Miwa J.M. et al. lynx1, an Endogenous Toxin-like Modulator of Nicotinic Acetylcholine Receptors in the Mammalian CNS // Neuron. 1999. V. 23. № 1. P. 105–114.
  12. Shenkarev Z.O. et al. Water-soluble variant of human Lynx1 positively modulates synaptic plasticity and ameliorates cognitive impairment associated with α7-nAChR dysfunction // J Neurochem. 2020. V. 155. № 1. P. 45–61.
  13. Lyukmanova E. et al. Human Secreted Ly-6/uPAR Related Protein-1 (SLURP-1) Is a Selective Allosteric Antagonist of α7 Nicotinic Acetylcholine Receptor // PLOS ONE / ed. Ulrich H. 2016. V. 11. № 2. P. e0149733.
  14. Jensen M.M. et al. Prostate stem cell antigen interacts with nicotinic acetylcholine receptors and is affected in Alzheimer’s disease // Neurobiology of Aging. 2015. V. 36. № 4. P. 1629–1638.
  15. Bychkov M.L. et al. Lynx1 Prevents Long-Term Potentiation Blockade and Reduction of Neuromodulator Expression Caused by Aβ1-42 and JNK Activation // Acta Naturae. 2018. V. 10. № 3. P. 57–61.
  16. Elder G.A. et al. Presenilin transgenic mice as models of Alzheimer’s disease // Brain Struct Funct. 2010. V. 214. № 0. P. 127–143.
  17. Chernyavsky A.I. et al. Anti-Inflammatory Effects of the Nicotinergic Peptides SLURP-1 and SLURP-2 on Human Intestinal Epithelial Cells and Immunocytes // Biomed Res Int. 2014. V. 2014.
  18. Buhrmann C. et al. Evidence that TNF-β (lymphoto-xin α) can activate the inflammatory environment in human chondrocytes // Arthritis Research & Therapy. 2013. V. 15. № 6. P. R202.
  19. Jang D.-I. et al. The Role of Tumor Necrosis Factor Alpha (TNF-α) in Autoimmune Disease and Current TNF-α Inhibitors in Therapeutics // Int J Mol Sci. 2021. V. 22. № 5. P. 2719.
  20. Torres-Acosta N. et al. Therapeutic Potential of TNF-α Inhibition for Alzheimer’s Disease Prevention // J Alzheimers Dis. 2020. V. 78. № 2. P. 619–626.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2.

Жүктеу (332KB)
3.

Жүктеу (1MB)
4.

Жүктеу (114KB)

© М.Л. Бычков, А.В. Кириченко, А.С. Парамонов, М.П. Кирпичников, Е.Н. Люкманова, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>