Regenerative Rehabilitation in Injuries of Tendons
- Authors: Sсherbak S.G.1,2, Makarenko S.V.1,2, Shneider O.V.2, Kamilova T.A.2, Golota A.S.2
-
Affiliations:
- Saint-Petersburg State University
- Saint Petersburg City Hospital No 40
- Issue: Vol 3, No 2 (2021)
- Pages: 192-206
- Section: REVIEWS
- URL: https://journals.rcsi.science/2658-6843/article/view/70760
- DOI: https://doi.org/10.36425/rehab70760
- ID: 70760
Cite item
Full Text
Abstract
The mechanical properties of tendons are thought to be affected by different loading levels. Changes in the mechanical properties of tendons, such as stiffness, have been reported to influence the risk of tendon injuries chiefly in athletes and the elderly, thereby affecting motor function execution. Unloading resulted in reduced tendons stiffness, and resistance exercise exercise counteracts this. Transforming growth factor-β1 is a potent inducer of type I collagen and mechanosensitive genes encoding tenogenic differentiation markers expression which play critical roles in tendon tissue formation, tendon healing and their adaptation during exercise. In recent years, our understanding of the molecular biology of tendons growth and repair has expanded. It is probable that the next advance in the treatment of tendon injuries will result from the application of this basic science knowledge and the clinical solution will encompass not only the the best postoperative rehabilitation protocols, but also the optimal biological modulation of the healing process.
Full Text
##article.viewOnOriginalSite##About the authors
Sergey G. Sсherbak
Saint-Petersburg State University; Saint Petersburg City Hospital No 40
Email: b40@zdrav.spb.ru
ORCID iD: 0000-0001-5047-2792
SPIN-code: 1537-9822
MD, Dr. Sci. (Med.), Professor
Russian Federation, 7/9 Universitetskaya nab., 199034, Saint Petersburg; Saint PetersburgStanislav V. Makarenko
Saint-Petersburg State University; Saint Petersburg City Hospital No 40
Author for correspondence.
Email: st.makarenko@gmail.com
ORCID iD: 0000-0002-1595-6668
SPIN-code: 8114-3984
Russian Federation, 7/9 Universitetskaya nab., 199034, Saint Petersburg; Saint Petersburg
Olga V. Shneider
Saint Petersburg City Hospital No 40
Email: o.shneider@gb40.ru
ORCID iD: 0000-0001-8341-2454
SPIN-code: 8405-1051
MD, Cand. Sci. (Med.)
Russian Federation, Saint PetersburgTatyana A. Kamilova
Saint Petersburg City Hospital No 40
Email: kamilovaspb@mail.ru
ORCID iD: 0000-0001-6360-132X
SPIN-code: 2922-4404
Cand. Sci. (Biol.)
Russian Federation, Saint PetersburgAlexander S. Golota
Saint Petersburg City Hospital No 40
Email: golotaa@yahoo.com
ORCID iD: 0000-0002-5632-3963
SPIN-code: 7234-7870
MD, Cand. Sci. (Med.), Associate Professor
Russian Federation, Saint PetersburgReferences
- Thompson WR, Scott A, Loghmani MT, et al. Understanding mechanobiology: physical therapists as a force in mechanotherapy and musculoskeletal regenerative rehabilitation. Phys Ther. 2016;96(4):560–569. doi: 10.2522/ptj.20150224
- Dunn SL, Olmedo ML. Mechanotransduction: relevance to physical therapist practice-understanding our ability to affect genetic expression through mechanical forces. Phys Ther. 2016;96(5):712–721. doi: 10.2522/ptj.20150073
- Dias RG, Silva MS, Duarte NE, et al. PBMCs express a transcriptome signature predictor of oxygen uptake responsiveness to endurance exercise training in men. Physiol Genomics. 2015;47(2):13–23. doi: 10.1152/physiolgenomics.00072.2014
- Metzger TA, Kreipke TC, Vaughan TJ, et al. The in situ mechanics of trabecular bone marrow: the potential for mechanobiological response. J Biomech Eng. 2015;137(1). doi: 10.1115/1.4028985
- Sen B, Xie Z, Case N, et al. mTORC2 regulates mechanically induced cytoskeletal reorganization and lineage selection in marrow-derived mesenchymal stem cells. J Bone Miner Res. 2014;29(1):78–89. doi: 10.1002/jbmr.2031
- Ambrosio F, Kleim, JA. Regenerative rehabilitation and genomics: frontiers in clinical practice. Physical Therapy. 2016;96(4):430–432. doi: 10.2522/ptj.2016.96.4.430
- Graham JG, Wang ML, Rivlin M, Beredjiklian PK. Biologic and mechanical aspects of tendon fibrosis after injury and repair. Connect Tissue Res. 2019;60(1):10–20. doi: 10.1080/03008207.2018.1512979
- Jacobson JA, Yablon CM, Henning PT, et al. Greater trochanteric pain syndrome: percutaneous tendon fenestration versus platelet-rich plasma injection for treatment of gluteal tendinosis. J Ultrasound Med. 2016;35(11): 2413–2420. doi: 10.7863/ultra.15.11046
- Sussman WI, Mautner K, Malanga G. The role of rehabilitation after regenerative and orthobiologic procedures for the treatment of tendinopathy: a systematic review. Regen Med. 2018;13(2):249–263. doi: 10.2217/rme-2017-0110.8
- Lungu E, Grondin P, Tétreault P, et al. Ultrasound-guided tendon fenestration versus open-release surgery for the treatment of chronic lateral epicondylosis of the elbow: protocol for a prospective, randomised, single blinded study. BMJ Open. 2018;8(6):e021373. doi: 10.1136/bmjopen-2017-021373
- Ingber DE. From mechanobiology to developmentally inspired engineering. Philos Trans R Soc Lond B Biol Sci. 2018;373(1759). pii: 20170323. doi: 10.1098/rstb.2017.0323
- Shams A, El-Sayed M, Gamal O, Ewes W. Subacromial injection of autologous platelet-rich plasma versus corticosteroid for the treatment of symptomatic partial rotator cuff tears. Eur J Orthop Surg Traumatol. 2016;26(8): 837–842. doi: 10.1007/s00590-016-1826-3
- Von Wehren L, Blanke F, Todorov A, et al. The effect of subacromial injections of autologous conditioned plasma versus cortisone for the treatment of symptomatic partial rotator cuff tears. Knee Surg Sports Traumatol Arthrosc. 2016;24(12):3787–3792. doi: 10.1007/s00167-015-3651-3
- Chechik O, Dolkart O, Mozes G, et al. Timing matters: NSAIDs interfere with the late proliferation stage of a repaired rotator cuff tendon healing in rats. Arch Orthop Trauma Surg. 2014;134(4):515–520. doi: 10.1007/s00402-014-1928-5
- Montalvan B, Le Goux P, Klouche S, et al. Inefficacy of ultrasound-guided local injections of autologous conditioned plasma for recent epicondylitis: results of a double-blind placebo-controlled randomized clinical trial with one-year follow-up. Rheumatology (Oxford). 2016;55(2):279–285. doi: 10.1093/rheumatology/kev326
- Behm DG, Blazevich AJ, Kay AD, Mchugh M. Acute effects of muscle stretching on physical performance, range of motion, and injury incidence in healthy active individuals: a systematic review. Appl Physiol Nutr Metab. 2016;41(1):1–11. doi: 10.1139/apnm-2015-0235
- Van Ark M, Van Den Akker-Scheek I, Meijer LT, Zwerver J. An exercise-based physical therapy program for patients with patellar tendinopathy after platelet-rich plasma injection. Phys Ther Sport. 2013;14(2):124–130. doi: 10.1016/j.ptsp.2012.05.002
- Guillodo Y, Madouas G, Simon T, et al. Platelet-rich plasma (PRP) treatment of sports-related severe acute hamstring injuries. Muscles Ligaments Tendons J. 2015;5(4):284–288. doi: 10.11138/mltj/2015.5.4.284
- Rio E, Kidgell D, Purdam C, et al. Isometric exercise induces analgesia and reduces inhibition in patellar tendinopathy. Br J Sports Med. 2015;49(19):1277–1283. doi: 10.1136/bjsports-2014-094386
- Frizziero A, Trainito S, Oliva F, et al. The role of eccentric exercise in sport injuries rehabilitation. Br Med Bull. 2014;110(1):47–75. doi: 10.1093/bmb/ldu006
- Peterson M, Butler S, Eriksson M, Svardsudd K. A randomized controlled trial of eccentric vs concentric graded exercise in chronic tennis elbow (lateral elbow tendinopathy). Clin Rehabil. 2014;28(9):862–872. doi: 10.1177/0269215514527595
- Dorrel BS, Long T, Shaffer S, Myer GD. Evaluation of the functional movement screen as an injury prediction tool among active adult populations: a systematic review and meta-analysis. Sports Health. 2015;7(6):532–537. doi: 10.1177/1941738115607445
- Stolarczyk A, Sarzyńska S, Gondek A, Cudnoch-Jędrzejewska A. Influence of diabetes on tissue healing in orthopaedic injuries. Clin Exp Pharmacol Physiol. 2018;45(7): 619–627. doi: 10.1111/1440-1681.12939
- Chen CH, Lin YH, Chen CH, et al. Transforming growth factor beta 1 mediates the low-frequency vertical vibration enhanced production of tenomodulin and type I collagen in rat Achilles tendon. PLoS One. 2018;13(10):e0205258. doi: 10.1371/journal.pone.0205258
- Dex S, Alberton P, Willkomm L, et al. Tenomodulin is required for tendon endurance running and collagen i fibril adaptation to mechanical load. EBioMedicine. 2017;20: 240–254. doi: 10.1016/j.ebiom.2017.05.003
- Ogasawara R1, Akimoto T, Umeno T, et al. MicroRNA expression profiling in skeletal muscle reveals different regulatory patterns in high and low responders to resistance training. Physiol Genomics. 2016;48(4):320–324. doi: 10.1152/physiolgenomics.00124.2015
- Li X, Pongkitwitoon S, Lu H, et al. CTGF induces tenogenic differentiation and proliferation of adipose-derived stromal cells. J Orthop Res. 2019;37(3):574–582. doi: 10.1002/jor.24248
- Alviti F, Gurzì M, Santilli V, et al. Achilles tendon open surgical treatment with platelet-rich fibrin matrix augmentation: biomechanical evaluation. J Foot Ankle Surg. 2017;56(3):581–585. doi: 10.1053/j.jfas.2017.01.039
- Stein BE, Stroh DA, Schon LC. Outcomes of acute Achilles tendon rupture repair with bone marrow aspirate concentrate augmentation. Int Orthop. 2015;39(5):901–905. doi: 10.1007/s00264-015-2725-7
- Zhou Y, Wang JH. PRP treatment efficacy for tendinopathy: a review of basic science studies. BioMed. Res. Int. 2016;2016:9103792. doi: 10.1155/2016/9103792.
- Jayaram P, Ikpeama U, Rothenberg JB, Malanga GA. Bone marrow-derived and adipose-derived mesenchymal stem cell therapy in primary knee osteoarthritis: a narrative review. PMR. 2019;11(2):177–191. doi: 10.1016/j.pmrj.2018.06.019
- Yang X, Meng H, Quan Q et al. Management of acute Achilles tendon ruptures: A review. Bone Joint Res. 2018;7(10): 561–569. doi: 10.1302/2046-3758.710.BJR-2018-0004.R2
- Zou J, Mo X, Shi Z. A prospective study of platelet-rich plasma as biological augmentation for acute Achilles tendon rupture repair. Biomed Res Int. 2016;2016:9364170. doi: 10.1155/2016/9364170
- Alsousou J, Thompson M, Harrison P, et al. Effect of platelet-rich plasma on healing tissues in acute ruptured Achilles tendon: a human immunohistochemistry study. Lancet. 2015;385(Suppl 1):S19. doi: 10.1016/S0140-6736(15)60334-8
- Lee CS, Bishop ES, Zhang R, et al. Adenovirus-mediated gene delivery: potential applications for gene and cell-based therapies in the new era of personalized medicine. Genes Dis. 2017;4(2):43–63. doi: 10.1016/j.gendis.2017.04.001
- Hussain N, Johal H, Bhandari M. An evidence-based evaluation on the use of platelet rich plasma in orthopedics — a review of the literature. SICOT J. 2017;3:57. doi: 10.1051/sicotj/2017036
- Chirichella PS, Jow S, Iacono S, et al. Treatment of knee meniscus pathology: rehabilitation, surgery, and orthobiologics. PMR. 2019;11(3):292–308. doi: 10.1016/j.pmrj.2018.08.384
- Roos TR, Roos AK, Avins AL, et al. Genome-wide association study identifies a locus associated with rotator cuff injury. PLoS One. 2017;12(12):e0189317. doi: 10.1371/journal.pone.0189317
- Dabija DI, Gao C, Edwards TL, et al. Genetic and familial predisposition to rotator cuff disease: a systematic review. J Shoulder Elbow Surg. 2017;26(6):1103–1112. doi: 10.1016/j.jse.2016.11.038
- Bonato LL, Quinelato V, Pinheiro AR, et al. ESRRB polymorphisms are associated with comorbidity of temporomandibular disorders and rotator cuff disease. Int J Oral Maxillofac Surg. 2016;45(3):323–331. doi: 10.1016/j.ijom.2015.10.007
- Motta GR, Amaral MV, Rezende E, et al. Evidence of genetic variations associated with rotator cuff disease. J Shoulder Elbow Surg. 2014;23(2):227–235. doi: 10.1016/j.jse.2013.07.053
- Tashjian RZ, Granger EK, Farnham JM, et al. Genome-wide association study for rotator cuff tears identifies two significant single-nucleotide polymorphisms. J Shoulder Elbow Surgery. 2016;25(2):174–179. doi: 10.1016/j.jse.2015.07.005
- Teerlink CC, Cannon-Albright LA, Tashjian RZ. Significant association of full-thickness rotator cuff tears and estrogen-related receptor-β (ESRRB). J Shoulder Elbow Surg. 2015;24(2):e31–35. doi: 10.1016/j.jse.2014.06.052
- Kluger R, Burgstaller J, Vogl C, et al. Candidate gene approach identifies six SNPs in tenascin-C (TNC) associated with degenerative rotator cuff tears. J Orthop Res. 2017;35(4):894–901. doi: 10.1002/jor.23321
- Assunção JH, Godoy-Santos AL, Dos Santos MC, et al. Matrix metalloproteases 1 and 3 promoter gene polymorphism is associated with rotator cuff tear. Clin Orthop Relat Res. 2017;475(7):1904–1910. doi: 10.1007/s11999-017-5271-3
- Ren YM, Duan YH, Sun YB, et al. Bioinformatics analysis of differentially expressed genes in rotator cuff tear patients using microarray data. J Orthop Surg Res. 2018;13(1):284. doi: 10.1186/s13018-018-0989-5
- Kim SK, Kleimeyer JP, Ahmed MA, et al. Two genetic loci associated with ankle injury. PLoS One. 2017;12(9): e0185355. doi: 10.1371/journal.pone.0185355
- Shang X, Li Z, Cao X, et al. The association between the ACTN3 R577X polymorphism and noncontact acute ankle sprains. J Sports Sci. 2015;33(17):1775–1779. doi: 10.1080/02640414.2015.1012098
- Mattson CM, Wheeler MT, Waggott D, et al. Sports genetics moving forward: Lessons learned from medical research. Physiol Genom. 2016;48(3):175–182. doi: 10.1152/physiolgenomics.00109.2015
Supplementary files
