Метод Ричардсона-Калиткина в абстрактном изложении

Обложка

Цитировать

Полный текст

Аннотация

Дано абстрактное описание метода Ричардсона-Калиткина для получения апостериорных оценок близости точного и найденного приближённого решения начальных задач для обыкновенных дифференциальных уравнений (ОДУ). Рассматривается задача Ρ{{\Rho}}, результатом решения которой является вещественное число uu. Для решения этой задачи используется численный метод, то есть заданы множество H{H\subset \mathbb{R}} и отображение uh:H{u_h:H\to\mathbb{R}}, значения которого имеется возможность вычислять конструктивно. При этом предполагается, что 0 является предельной точкой множества HH, uh{u_h} можно разложить в сходящийся ряд по степеням h:uh=u+c1hk+...{h:u_h=u+c_1h^k+...}. В этой весьма общей ситуации сформулирован метод Ричардсона–Калиткина получения оценок для uu и cc по двум значениям uh{u_h} . Рассмотрен вопрос об использовании большего числа значений uh{u_h} для получения такого рода оценок. Приведены примеры, иллюстрирующие теорию. Показано, что подход Ричардсона–Калиткина с успехом может быть применён к задачам, которые решаются не только методом конечных разностей.

Об авторах

Али Баддур

Российский университет дружбы народов

Автор, ответственный за переписку.
Email: alibddour@gmail.com
ORCID iD: 0000-0001-8950-1781

PhD student of Department of Applied Probability and Informatics

ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия

М. Д. Малых

Российский университет дружбы народов; Объединённый институт ядерных исследований

Email: malykh_md@pfur.ru
ORCID iD: 0000-0001-6541-6603

Doctor of Physical and Mathematical Sciences, Assistant professor of Department of Applied Probability and Informatics of Peoples’ Friendship University of Russia (RUDN University); Researcher in Meshcheryakov Laboratory of Information Technologies, Joint Institute for Nuclear Research

ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия; ул. Жолио-Кюри, д. 6, Дубна, Московская область, 141980, Россия

Список литературы

  1. E. Hairer, G. Wanner, and S. P. Nørsett, Solving Ordinary Differential Equations, 3rd ed. New York: Springer, 2008, vol. 1.
  2. L. F. Richardson and J. A. Gaunt, “The deferred approach to the limit,” Phil. Trans. A, vol. 226, pp. 299-349, 1927. doi: 10.1098/rsta.1927.0008.
  3. N. N. Kalitkin, A. B. Al’shin, E. A. Al’shina, and B. V. Rogov, Calculations on quasi-uniform grids. Moscow: Fizmatlit, 2005, In Russian.
  4. N. N. Kalitkin, Numerical methods [Chislennyye metody]. Moscow: Nauka, 1979, In Russian.
  5. A. A. Belov, N. N. Kalitkin, and I. P. Poshivaylo, “Geometrically adaptive grids for stiff Cauchy problems,” Doklady Mathematics, vol. 93, no. 1, pp. 112-116, 2016. doi: 10.1134/S1064562416010129.
  6. A. A. Belov and N. N. Kalitkin, “Nonlinearity problem in the numerical solution of superstiff Cauchy problems,” Mathematical Models and Computer Simulations, vol. 8, no. 6, pp. 638-650, 2016. doi: 10.1134/S2070048216060065.
  7. A. A. Belov, N. N. Kalitkin, P. E. Bulatov, and E. K. Zholkovskii, “Explicit methods for integrating stiff Cauchy problems,” Doklady Mathematics, vol. 99, no. 2, pp. 230-234, 2019. doi: 10.1134/S1064562419020273.
  8. L. N. Trefethen and J. A. C. Weideman, “The exponentially convergent trapezoidal rule,” SIAM Review, vol. 56, pp. 385-458, 3 2014. doi: 10.1137/130932132.
  9. A. A. Belov and V. S. Khokhlachev, “Asymptotically accurate error estimates of exponential convergence for the trapezoid rule,” Discrete and Continuous Models and Applied Computational Science, vol. 3, pp. 251- 259, 2021. doi: 10.22363/2658-4670-2021-29-3-251-259.
  10. A. Baddour, M. D. Malykh, A. A. Panin, and L. A. Sevastianov, “Numerical determination of the singularity order of a system of differential equations,” Discrete and Continuous Models and Applied Computational Science, vol. 28, no. 5, pp. 17-34, 2020. doi: 10.22363/2658-46702020-28-1-17-34.
  11. The Sage Developers. “SageMath, the Sage Mathematics Software System (Version 7.4).” (2016), [Online]. Available: https://www.sagemath.org.
  12. O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu, The finite element method: its basis and fundamentals, 7th ed. Elsiver, 2013.
  13. F. Hecht, “New development in FreeFem++,” Journal of Numerical Mathematics, vol. 20, no. 3-4, pp. 251-265, 2012. doi: 10.1515/jnum2012-0013.
  14. A. A. Panin, “Estimates of the accuracy of approximate solutions and their application in the problems of mathematical theory of waveguides [Otsenki tochnosti priblizhonnykh resheniy i ikh primeneniye v zadachakh matematicheskoy teorii volnovodov],” in Russian, Ph.D. dissertation, MSU, Moscow, 2009.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».