Аналитические методы исследования устойчивости линейных и квазилинейных систем с полиномиально периодической матрицей

Обложка

Цитировать

Аннотация

Предложен метод анализа линейных и квазилинейных модельных систем обыкновенных дифференциальных уравнений (ОДУ) с полиномиально периодической матрицей при наличии определяющей матрицы A0(t) различной стабильной жордановой структуры. С помощью современного алгоритма метода расщепления (предложенного в девяностых годах двадцатого века) изучены новые вышеуказанные классы систем ОДУ. Для этик классов сформулирован ряд нетривиальных теорем о приводимости к эквивалентным системам с почти диагональной матрицей, что позволяет найти достаточные условия устойчивости решения таких систем. Разработанный метод дал возможность исследовать ряд конкретных прикладных модельных задач, что обобщает или уточняет известные ранее результаты.

Об авторах

- Нгуен Вьет Хоа

Российский Университет дружбы народов

Email: nvkhoa@yandex.ru
Кафедра высшей математики

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).