Сравнительное исследование кластерного и нейросетевого подходов в задаче анализа белковых структур

Обложка

Цитировать

Полный текст

Аннотация

В данной статье описывается работа, которая является продолжением предыдущего исследования, направленного на поиски решения проблем, возникающих в задаче автоматизации процедуры распознавания генетических белковых структур по их электрофоретическим спектрам (ЭФ-спектрам). Спектральная идентификация сортовой принадлежности зёрен пшеницы является одной из важных сельскохозяйственных задач, для решения которой было предложено использовать Искусственную Нейронную Сеть (ИНС), обученную на выборке из специально подготовленных экспертами сортов. Рассматриваются особенности применения методов нейросетевой классификации и кластерного анализа на примере определения сортовой принадлежности ЭФ-спектров. Правомерность использования предложенных алгоритмов подтверждается положительными результатами, полученными на основе специально подготовленных модельных данных в виде многомерных векторов, имитирующих особенности реальных ЭФспектров, прошедших предварительную обработку, которая включает оцифровку, устранение шумовых и фоновых составляющих, нормализацию. По естественной причине генетического сходства, наблюдаемого у некоторых родственных сортов, ЭФ-спектры имеют трудно различимый характер, что оказывает неблагоприятное влияние на эффективность распознавания схожих экземпляров средствами ИНС. Это накладывает ограничение на количество одновременно распознаваемых сортов. Для преодоления данной особенности был предложен алгоритм кластерного разбиения всего множества сортов на отдельные сортовые группы с последующим применением нейросетевой обработки для каждой группы.

Об авторах

Дмитрий Александрович Баранов

Объединённый институт ядерных исследований

Email: DmitriyBaranof@gmail.com
Лаборатория информационных технологий

Геннадий Алексеевич Ососков

Объединённый институт ядерных исследований

Email: ososkov@jinr.ru
Лаборатория информационных технологий

Андрей Александрович Баранов

Московский государственный технический университет радиотехники, электроники и автоматики (технический университет)

Email: andbar91@yandex.ru

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».