🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Complete Foliations with Transverse Rigid Geometries and Their Basic Automorphisms

Capa

Citar

Texto integral

Resumo

The notion of rigid geometry is introduced. Rigid geometries include Cartan geometries as
well as rigid geometric structures in the sense of Gromov. Foliations with transverse
rigid geometries are investigated. An invariant g0 of a foliation with transverse rigid
geometry, being a Lie algebra, is introduced. We prove that if, for some foliation with
transverse rigid geometry, g0 is zero, then there exists a unique Lie group structure on its full
basic automorphism group. Some estimates of the dimensions of this group depending on the
transverse geometry are obtained. Examples, illustrating the main results, are constructed.

Sobre autores

N Zhukova

Nizhny Novgorod State University

Кафедра математики и механики; Нижегородский государственный университет им. Н.И. Лобачевского; Nizhny Novgorod State University

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML