Построение классификаторов с использованием искусственных нейронных сетей и принципа ADA BOOST

Обложка

Цитировать

Полный текст

Аннотация

Проблема построения различного рода детекторов объектов на изображениях до сих пор остаётся актуальной задачей, несмотря на набор достаточно сильных методов, описанных в литературе. Одним из методов, ставших стандартом для построения эффективных и быстрых классификаторов, является каскад Виолы-Джонса, который до сих пор является основополагающим для поиска объектов на изображении в реальном времени и его реализация была включена в открытую библиотеку компьютерного зрения OpenCV. Для экспериментов в данной работе использовалась база данных изображений CMU Face Database. При прикладном использовании алгоритмов в компьютерном зрении существенным фактором становится вычислительная сложность. Предпочтительно использовать в качестве классификаторов пороговые решающие функции или Хаар-признаки, вычислительная сложность которых мала. Однако, на практике ADABOOST, как жадный алгоритм, не всегда даёт эффективную комбинацию классификаторов. В данной работе рассмотрен подход к построению классификаторов сравнимой эффективности, на примере задачи детектирования лица. Для построения детектора были исследован подход, предполагающий разбиение процесса детекции на два отдельных этапа: этап построения дескриптора изображения и этап классификации. Для этапа, отвечающего за классификацию, были рассмотрены две возможности: двухслойная нейронная сеть, т.е. использование многослойного перцептрона в качестве «сильного» классификатора, и каскад из нескольких таких сетей увеличивающего размера. Для этапа формирования дескриптора также в работе исследовались две возможности. В качестве первой был построен фиксированный базис Хаара, дающий вектор признаков в качестве дескриптора входного изображения. Данный базис был построен с использованием принципа ADABOOST. Второй возможностью, исследованной в работе, было построение базиса признаков Хаара из меньшего количества необходимых признаков, более точно отражающего характерные особенности объектов, который был получен с использованием преобразования Карунена-Лоэва. Для получения признаков Хаара собственные вектора были подвергнуты квантованию. В результате построен классификатор, сравнимый по эффективности с каскадом Хаара.

Об авторах

Алексей Викторович Стадник

Международный университет природы, общества и человека «Дубна»

Email: alexeystadnik@gmail.com
Кафедра прикладной математики и информатики

Андрей Владимирович Кравчук

Международный университет природы, общества и человека «Дубна»

Email: awkravchuk@gmail.com
Кафедра прикладной математики и информатики

Кира Игоревна Гулина

Международный университет природы, общества и человека «Дубна»

Email: icida13@mail.ru
Кафедра прикладной математики и информатики

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».