Увеличение производительности ЭЦР источника отрицательных водородных ионов с помощью дополнительных эмиттеров низкотемпературных электронов

Обложка

Цитировать

Полный текст

Аннотация

Анализ механизмов образования отрицательных водородных ионов в источнике плазмы, работающем на электронном циклотронном резонансе, позволяет сделать вывод о принципиально важной роли, которую играют в этом процессе низкотемпературные электроны. В источниках такого типа получение отрицательных ионов происходит следующим образом. Вначале молекулы водорода, сталкиваясь в плазме с энергичными электронами, переходят на высоковозбуждённые электронные и колебательные уровни. Далее, присоединяя электроны низких энергий, возбуждённые молекулы приобретают отрицательный заряд. Отрицательные атомарные ионы получаются в результате диссоциации возбуждённых отрицательно заряженных молекул водорода. Необходимые для этого процесса электроны низких энергий получаются в результате столкновений быстрых электронов плазмы с плазменными электродами. В представленных экспериментах для дополнительного увеличения числа электронов низких энергий использовалась термоэлектронная эмиссия из вольфрамовых нагревателей и керамических LaB6 электродов, размещённых в камере источника. В экспериментах установлено, что термоэлектронная эмиссия электронов из вольфрамовых нагревателей улучшала стабильность разряда и расширяла диапазон давлений, при которых существовал разряд, существенно не изменяя величину тока отрицательных ионов. Эмиссия же электронов из LaB6 электродов увеличивала ток отрицательных ионов из источника более чем в 3 раза.

Об авторах

Валерий Дондокович Дугар-Жабон

Индустриальный университет Сантандер

Автор, ответственный за переписку.
Email: vdougar@uis.edu.co

профессор, кандидат физико-математических наук, профессор Индустриального университета Сантандер

АА 678 Букараманга, Колумбия

Владимир Иванович Каряка

Российский университет дружбы народов

Email: volkar2@mail.ru

доцент, кандидат физико-математических наук, доцент Института физических исследований и технологий РУДН

ул. Миклухо-Маклая, д. 6, Москва, Россия, 117198

Александр Яковлевич Терлецкий

Российский университет дружбы народов

Email: veselovich50@mail.ru

доцент, кандидат физико-математических наук, доцент Института физических исследований и технологий РУДН

ул. Миклухо-Маклая, д. 6, Москва, Россия, 117198

Список литературы

  1. M. D. Gabovich, N. V. Pleshivtsev, N. N. Semashko, Beams of Ions and Atoms for Connection of Thermonuclear Fusion and Technological Purposes, Moscow, 1986, in Russian.
  2. V. D. Dougar-Jabon, Production of Hydrogen and Deuterium Negative Ions in an Electron Cyclotron Resonance Driven Plasma, Physica Scripta 63 (4) (2001) 322. doi: 10.1238/Physica.Regular.063a00322.
  3. M. Alan, S. F. Wong, Effect of Vibrational and Rotational Excitation on Dissociative Attachment in Hydrogen, Physical Review Letters 41 (1978) 1791–1794. doi: 10.1103/PhysRevLett.41.1791.
  4. J. M. Wadehra, J. N. Bardsley, Vibrational and Rotational-State Dependence of Dissociative Attachment in e–H2 Collisions, Physical Review Letters 41 (1978) 1795– 1798. doi: 10.1103/PhysRevLett.41.1795.
  5. L. A. Pinnaduwage, L. G. Christophorou, H− Formation in Laser- Excited Molecular Hydrogen, Physical Review Letters 70 (1993) 754–757. doi: 10.1103/PhysRevLett.70.754.
  6. P. G. Datscos, L. A. Pinnaduwage, J. F. Kielkopf, Electron Attachment to Photofragments and Rydberg States in Laser-Irradiated CCl2F2, Journal of Applied Physics 84 (1998) 3442. doi: 10.1063/1.368518.
  7. V. D. Dougar-Jabon, D. V. Reznikov, R. Santos Mayorga, Influence of an ElectronBeam Injection on Ions Charge State Distribution in an ECR Source at 2.4 GHz, in: Proc. Int. Conf. on Phenomena in Ionized Gases, 1991.
  8. V. D. Dougar-Jabon, A. J. Chacon Velasco, F. A. Vivas, Hydrogen Negative Ion Production in an Electron Cyclotron Resonance Driven Plasma, Review of Scientific Instruments 69 (1998) 950. doi: 10.1063/1.1148618.
  9. V. D. Dougar-Jabon, X-ray Source Based on Electron Cyclotron Resonance Discharge in a Magnetic Mirror Trap, Physica Scripta 69 (4) (2004) 313. doi: 10.1238/Physica.Regular.069a00313.
  10. H. Ikegami, M. Ikezi, S. Tanaka, K. Takayama, Shell Structure of a Hot-Electron Plasma, Physical Review Letters 19 (1967) 778. doi: 10.1103/PhysRevLett.19.778.
  11. V. Dugar-Zhabon, E. Oronzco, Cyclotron Spatial Autoresonance Acceleration Model, Physical Review Accelerators and Beams 12 (2009) 041301. doi: 10.1103/PhysRevSTAB.12.041301.
  12. V. Dugar-Zhabon, E. Oronzco, Three-Dimensional Particle-In-Cell Simulation of Spatial Autoresonance Electron-Beam Motion, IEEE Transactions on Plasma Science 38 (2010) 2980–2984. doi: 10.1109/TPS.2010.2060362.
  13. V. Dugar-Zhabon, V. I. Karyaka, An Increase in the Flux of Negative Hydrogen Ions from the ECR of the Plasma Source by Means of Low-Temperature Electrons, in: LI All-Russia Conference on Problems in Dynamics, Particle Physics, Plasma Physics and Optoelectronics, Moscow, 2015, p. 233, in Russian.
  14. V. Dugar-Zhabon, V. I. Karyaka, Improving the Productivity of an ECR Source of Negative Hydrogen Ions by Means of Additional Emitters of Low-Temperature Electrons, in: LII All-Russia Conference on Problems in Dynamics, Particle Physics, Plasma Physics and Optoelectronics, Moscow, 2016, p. 170, in Russian.
  15. O. Tarvainen, S. X. Peng, Radiofrequency and 2.45 GHz Electron Cyclotron Resonance H− Volume Production Ion Sources, New Journal of Physics 18 (10) (2016) 105008. doi: 10.1088/1367-2630/18/10/105008.
  16. M. Bacal, M. Wada, Negative Hydrogen Ion Production Mechanisms, Applied Physics Reviews 2 (2) (2015) 021305. doi: 10.1063/1.4921298.
  17. J. R. Hiskes, A. M. Karo, Recombination and Dissociation of H+ and H+ Ions on 2 3 Ssurfaces to Form H2(v′): Negative?Ion Formation on Low?Work?Function Surfaces, Journal of Applied Physics 67 (11) (1990) 6621–6632. doi: 10.1063/1.345095.
  18. M. Capitelli, D. Bruno, A. Laricchiuta, Fundamental Aspects of Plasma Chemical Physics Transport, Springer, New York, 2016. doi: 10.1007/978-1-4419-8185-1.
  19. R. I. Hall, I. Cˇ adeˇz, M. Landau, F. Pichou, S. C., Vibrational Excitation of Hydrogen via Recombinative Desorption of Atomic Hydrogen Gas on a Metal Surface, Phys. Rev. Lett. 60 (4) (1988) 337–340. doi: 10.1103/PhysRevLett.60.337.
  20. Y. An, W. Cho, K. Chung, Wave Frequency Dependence of H− Ion Production and Extraction in a Transformer Coupled Plasma H−Ion Source at SNU, Review of Scientific Instruments 83 (2) (2012) 02A727. doi: 10.1063/1.3678659.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».