О диффузии заряда в однородных молекулярных цепочках на основе анализа обобщенных частотных спектров в рамках модели Холстейна

Обложка

Цитировать

Полный текст

Аннотация

В статье проведён анализ автокорреляционных функций скорости и обобщённых частотных спектров распространения заряда в однородных последовательностях ДНК при конечной температуре. Функции рассчитаны численно в рамках квазиклассической модели Холстейна. Показано, что в системе только один параметр главным образом определяет кинетику заряда для всех последовательностей. Анализ позволил определить характер отдельных движений, вносящих вклад в подвижность заряда, и выделить различные режимы распространения заряда в зависимости от температуры.

Об авторах

Д А Тихонов

Институт математических проблем биологии (ИМПБ РАН); Институт теоретической и экспериментальной биофизики РАН

Email: dmitry.tikhonov@gmail.com
Candidate of Physical and Mathematical Sciences, Senior researcher, Institute of Mathematical Problems of Biology Branch of Keldysh Institute of Applied Mathematics Russian Academy of Sciences ул. проф. Виткевича, д. 1, г.Пущино, Московская область, 142290, Россия; ул. Институтская, д. 3, г. Пущино, Московская область, 142290, Россия

Е В Соболев

Институт математических проблем биологии (ИМПБ РАН); Европейская лаборатория молекулярной биологии, отделение в Гамбурге

Email: egor@embl-hamburg.de
Candidate of Physical and Mathematical Sciences, Postdoctoral fellow, European Molecular Biology Laboratory, Hamburg Unit ул. проф. Виткевича, д. 1, г.Пущино, Московская область, 142290, Россия; c/o DESY, д. 25А, Ноткештрассе 85, 22607 Гамбург, Германия

В Д Лахно

Институт математических проблем биологии (ИМПБ РАН)

Email: lak@impb.ru
Doctor of Physical and Mathematical Sciences, Scientific Director, Institute of Mathematical Problems of Biology Branch of Keldysh Institute of Applied Mathematics Russian Academy of Sciences ул. проф. Виткевича, д. 1, г.Пущино, Московская область, 142290, Россия

Список литературы

  1. P. Maniadis, G. Kalosakas, K. Ø. Rasmussen, and A. R. Bishop, “AC conductivity in a DNA charge transport model,” Physical Review E, vol. 72, p. 021 912, 2 Aug. 2005. doi: 10.1103/PhysRevE.72.021912.
  2. G. L. Goodvin, A. S. Mishchenko, and M. Berciu, “Optical conductivity of the Holstein polaron,” Physical Review Letters, vol. 107, p. 076 403, 7 Aug. 2011. doi: 10.1103/PhysRevLett.107.076403.
  3. L. D. Siebbeles and Y. A. Berlin, “Quantum motion of particles along one-dimensional pathways with static and dynamic energy disorder,” Chemical Physics, vol. 238, no. 1, pp. 97-107, 1998. doi: 10.1016/S0301- 0104(98)00311-5.
  4. P. Prins, F. C. Grozema, J. M. Schins, and L. D. A. Siebbeles, “Frequency dependent mobility of charge carriers along polymer chains with finite length,” Physica Status Solidi B, vol. 243, no. 2, pp. 382-386, 2006. doi: 10.1002/pssb.200562719.
  5. C. J. Murphy, M. R. Arkin, Y. Jenkins, N. D. Ghatlia, S. H. Bossmann, N. J. Turro, and J. K. Barton, “Long-range photoinduced electron transfer through a DNA helix,” Science, vol. 262, no. 5136, pp. 1025- 1029, 1993. doi: 10.1126/science.7802858.
  6. P. O’Neill, A. W. Parker, M. A. Plumb, and L. D. A. Siebbeles, “Guanine modifications following ionization of DNA occurs predominantly via intraand not interstrand charge migration: an experimental and theoretical study,” Journal of Physical Chemistry B, vol. 105, no. 22, pp. 5283-5290, 2001. doi: 10.1021/jp003514t.
  7. G. I. Livshits et al., “Long-range charge transport in single G-quadruplex DNA molecules,” Nature Nanotechnology, vol. 9, no. 12, pp. 1040-1046, 2014. doi: 10.1038/nnano.2014.246.
  8. V. D. Lakhno, “DNA nanobioelectronics,” International Journal of Quantum Chemistry, vol. 108, no. 11, pp. 1970-1981, 2008. DOI: 10.1002/ qua.21717.
  9. T. Chakraborty, Charge migration in DNA: perspectives from Physics, Chemistry, and Biology, ser. NanoScience and Technology. Springer Berlin Heidelberg, 2007.
  10. A. Offenhäusser and R. Rinaldi, Eds., Nanobioelectronics - for Electronics, Biology, and Medicine. Springer, New York, 2009, 337 pp.
  11. T. Holstein, “Studies of polaron motion,” Annals of Physics, vol. 8, no. 3, pp. 325-342, 1959. doi: 10.1016/0003-4916(59)90002-8.
  12. N. S. Fialko and V. D. Lakhno, “Nonlinear dynamics of excitations in DNA,” Physics Letters A, vol. 278, pp. 108-111, 1-2 2000. doi: 10.1016/S0375-9601(00)00755-6.
  13. D. A. Tikhonov, N. S. Fialko, E. V. Sobolev, and V. D. Lakhno, “Scaling of temperature dependence of charge mobility in molecular Holstein chains,” Physical Review E, vol. 89, p. 032 124, 3 Mar. 2014. DOI: 10. 1103/PhysRevE.89.032124.
  14. E. V. Sobolev, D. Tikhonov, and N. S. Fialko, “About Numerical solution of the Holstein’s discrete model [O chislennom reshenii uravneniy diskretnoy modeli Kholsteyna],” in Proceedings of the XIX All-Russian Conference “Theoretical bases and generation of numerical algorithms of solving mathematical physics problems”, devoted to K. I. Babenko, Durso, Russia, 2012, in Russian, Moscow: Keldysh Institute of Applied Mathematics, 2012, p. 90.
  15. E. V. Sobolev, D. Tikhonov, and N. S. Fialko, “Numerical solution of the Holstein’s discrete model in the problem of charge transfer in DNA [Chislennoye resheniye uravneniy diskretnoy modeli Kholsteyna v zadache o modelirovanii perenosa zaryada v DNK],” in Proceedings of the 4th International Conference on Mathematical Biology and Bioinformatics, Pushchino, Russia, 2012, V. D. Lakhno, Ed., in Russian, Moscow: MAKS Press, 2012, p. 18.
  16. D. A. Tikhonov, E. V. Sobolev, V. D. Lakhno, and N. S. Fialko, “Adiabatic approximation for the calculation of the charge mobility in the DNA Holstein model [Adiabaticheskoye priblizheniye pri raschetakh podvizhnosti zaryada v kholsteynovskoy modeli DNK],” Matematicheskaya biologiya i bioinformatika, vol. 6, no. 2, pp. 264-272, 2011, in Russian. doi: 10.17537/2011.6.264.
  17. J. C. Dyre and T. B. Schrøder, “Universality of AC conduction in disordered solids,” Reviews of Modern Physics, vol. 72, pp. 873-892, 3 Jul. 2000. doi: 10.1103/RevModPhys.72.873.
  18. V. D. Lakhno and N. S. Fialko, “Bloch oscillations in a homogeneous nucleotide chain,” English, JETP Letters, vol. 79, no. 10, pp. 464-467, 2004. doi: 10.1134/1.1780553.
  19. D. M. Basko and E. M. Conwell, “Effect of solvation on hole motion in DNA,” Physical Review Letters, vol. 88, p. 098 102, 9 Feb. 2002. doi: 10.1103/PhysRevLett.88.098102.
  20. V. D. Lakhno and N. S. Fialko, “Solvation effects on hole mobility in the poly G/Poly C duplex,” Russian Journal of Physical Chemistry A, vol. 86, no. 5, pp. 832-836, 2012. doi: 10.1134/S0036024412050196.
  21. D. A. Tikhonov, E. V. Sobolev, and V. D. Lakhno, “Charge diffusion in homogeneous molecular chains based on the analysis of generalized frequency spectra in the framework of the Holstein model,” Tech. Rep. 70-e, 2018, pp. 1-16. doi: 10.20948/prepr-2018-70-e.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».