A new link activation policy for latency reduction in 5G integrated access and backhaul systems

Cover Page

Cite item

Full Text

Abstract

The blockage of the propagation path is one of the major challenges preventing the deployment of fifth-generation New Radio systems in the millimeter-wave band. To address this issue, the Integrated Access and Backhaul technology has been proposed as a cost-effective solution for increasing the density of access networks. These systems are designed with the goal of avoiding blockages, leaving the question of providing quality-of-service guarantees aside. However, the use of multi-hop transmission negatively impacts the end-to-end packet latency. In this work, motivated by the need for latency reduction, we design a new link activation policy for self-backhauled Integrated Access and Backhaul systems operating in half-duplex mode. The proposed approach utilizes dynamic queue prioritization based on the number of packets that can be transmitted within a single time slot, enabling more efficient use of resources. Our numerical results show that the proposed priority-based algorithm performs better than existing link scheduling methods for typical system parameter values.

About the authors

Anna A. Zhivtsova

RUDN University

Email: aazhivtsova@sci.pfu.edu.ru
ORCID iD: 0009-0007-8438-6850

bachelor’s degree student of Department of Probability Theory and Cyber Security

6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation

Vitaly A. Beschastnyy

RUDN University

Author for correspondence.
Email: vbeschastny@sci.pfu.edu.ru
ORCID iD: 0000-0003-1373-4014
Scopus Author ID: 57192573001

Candidate of Physical and Mathematical Sciences, assistant professor of Department of Probability Theory and Cyber Security

6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation

References

  1. Molchanov, D. A., Begishev, V. O., Samuilov, K. E. & Kucheryavy, E. A. 5G/6G networks: architecture, technologies, methods of analysis and calculation 516 pp. (PFUR, 2022).
  2. Holma, H., Toskala, A. & Nakamura, T. 5G Technology: 3GPP New Radio (Wiley, 2020).
  3. GPP. Study on Integrated Access and Backhaul Technical Report (TR) 38.874. Version 16.0.0 (3GPP, Dec. 2018).
  4. Monteiro, V., Lima, F., Moreira, D., Sousa, D., Maciel, T., Behrooz, M. & Hannu, H. Paving the Way Toward Mobile IAB: Problems, Solutions and Challenges. IEEE Open Journal of the Communications Society PP, 1-1. doi: 10.1109/OJCOMS.2022.3224576 (Jan. 2022).
  5. Sadovaya, Y., Moltchanov, D., Mao, W., Orhan, O., Yeh, S.-p., Nikopour, H., Talwar, S. & Andreev, S. Integrated Access and Backhaul in Millimeter-Wave Cellular: Benefits and Challenges. IEEE Communications Magazine 60, 81-86. doi: 10.1109/MCOM.004.2101082 (2022).
  6. Hong, S., Brand, J., Choi, J. I., Jain, M., Mehlman, J., Katti, S. & Levis, P. Applications of self-interference cancellation in 5G and beyond. IEEE Communications Magazine 52, 114-121. doi: 10.1109/MCOM.2014.6736751 (2014).
  7. Ford, R., Gómez-Cuba, F., Mezzavilla, M. & Rangan, S. Dynamic time-domain duplexing for self-backhauled millimeter wave cellular networks in 2015 IEEE International Conference on Communication Workshop (ICCW) (2015), 13-18. doi: 10.1109/ICCW.2015.7247068.
  8. Ahmed, I. & Mohamed, A. On the joint scheduling and intra-cell interference coordination in multirelay LTE uplink in 2012 IEEE Globecom Workshops (2012), 111-115. doi: 10.1109/GLOCOMW.2012.6477554.
  9. Wang, L., Ai, B., Niu, Y., Jiang, H., Mao, S., Zhong, Z. & Wang, N. Joint User Association and Transmission Scheduling in Integrated mmWave Access and Terahertz Backhaul Networks. IEEE Transactions on Vehicular Technology, 1-11. doi: 10.1109/TVT.2023.3293788 (2023).
  10. Qiao, J., Cai, L. X., Shen, X. & Mark, J. W. STDMA-based scheduling algorithm for concurrent transmissions in directional millimeter wave networks in 2012 IEEE International Conference on Communications (ICC) (2012), 5221-5225. doi: 10.1109/ICC.2012.6364219.
  11. Gómez-Cuba, F. & Zorzi, M. Optimal Link Scheduling in Millimeter Wave Multi-Hop Networks With MU-MIMO Radios. IEEE Transactions on Wireless Communications 19, 1839-1854. doi:10. 1109/TWC.2019.2959295 (2020).
  12. Yarkina, N., Moltchanov, D. & Koucheryavy, Y. Counter Waves Link Activation Policy for Latency Control in In-Band IAB Systems. IEEE Communications Letters 27, 3108-3112. doi:10. 1109/LCOMM.2023.3313233 (2023).
  13. Gupta, M., Rao, A., Visotsky, E., Ghosh, A. & Andrews, J. G. Learning Link Schedules in SelfBackhauled Millimeter Wave Cellular Networks. IEEE Transactions on Wireless Communications 19, 8024-8038. doi: 10.1109/TWC.2020.3018955 (2020).
  14. Gopalam, S., Hanly, S. V. & Whiting, P. Distributed and Local Scheduling Algorithms for mmWave Integrated Access and Backhaul. IEEE/ACM Transactions on Networking 30, 1749- 1764. doi: 10.1109/TNET.2022.3154367 (2022).
  15. Tassiulas, L. & Ephremides, A. Stability properties of constrained queueing systems and scheduling policies for maximum throughput in multihop radio networks. IEEE Transactions on Automatic Control 37, 1936-1948. doi: 10.1109/9.182479 (1992).
  16. Neely, M., Modiano, E. & Li, C.-P. Fairnessandoptimalstochasticcontrolforheterogeneousnetworks in Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies. 3 (2005), 1723-1734 vol. 3. doi: 10.1109/INFCOM.2005.1498453.
  17. Li, Q. & Negi, R. Scheduling in Wireless Networks under Uncertainties: A Greedy Primal-Dual Approach in 2011 IEEE International Conference on Communications (ICC) (2011), 1-5. doi:10. 1109/icc.2011.5963357.
  18. Bui, L., Srikant, R. & Stolyar, A. Novel Architectures and Algorithms for Delay Reduction in BackPressure Scheduling and Routing in IEEE INFOCOM 2009 (2009), 2936-2940. doi: 10.1109/INFCOM.2009.5062262.
  19. Stolyar, A. & Ramanan, K. Largest Weighted Delay First Scheduling: Large Deviations and Optimality. The Annals of Applied Probability 11. doi: 10.1214/aoap/998926986 (Feb. 2001).
  20. Andrews, M., Kumaran, K., Ramanan, K., Stolyar, A., Vijayakumar, R. & Whiting, P. Scheduling in a queuing system with asynchronously varying service rates. Probability in the Engineering and Informational Sciences 18, 191-217. doi: 10.1017/S0269964804182041 (Apr. 2004).
  21. McKeown, N., Mekkittikul, A., Anantharam, V. & Walrand, J. Achieving 100% throughput in an input-queued switch. IEEE Transactions on Communications 47, 1260-1267. doi: 10.1109/26.780463 (1999).
  22. Ji, B., Joo, C. & Shroff, N. B. Delay-based Back-Pressure scheduling in multi-hop wireless networks in 2011 Proceedings IEEE INFOCOM (2011), 2579-2587. doi: 10.1109/INFCOM.2011.5935084.
  23. Venkataramanan, V. J. & Lin, X. On Wireless Scheduling Algorithms for Minimizing the QueueOverflow Probability. IEEE/ACM Transactions on Networking 18, 788-801. doi: 10.1109/TNET. 2009.2037896 (2010).
  24. Venkataramanan, V. J., Lin, X., Ying, L. & Shakkottai, S. On Scheduling for Minimizing End-toEnd Buffer Usage over Multihop Wireless Networks in 2010 Proceedings IEEE INFOCOM (2010), 1-9. doi: 10.1109/INFCOM.2010.5462117.
  25. Neely, M. Stochastic Network Optimization with Application to Communication and Queueing Systems doi: 10.2200/S00271ED1V01Y201006CNT007 (Jan. 2010).
  26. Venkataramanan, V. J. & Lin, X. Low-complexity scheduling algorithm for sum-queue minimization in wireless convergecast in 2011 Proceedings IEEE INFOCOM (2011), 2336-2344. doi: 10.1109/INFCOM.2011.5935052.
  27. Bui, L., Srikant, R. & Stolyar, A. Optimal resource allocation for multicast flows in multihop wireless networks in 2007 46th IEEE Conference on Decision and Control (2007), 1134-1139. doi: 10.1109/CDC.2007.4434451.
  28. GPP. User Equipment (UE) radio access capabilities Technical Specification (TS) 38.306. Version 17.2.0 (3rd Generation Partnership Project (3GPP), Sept. 2022).

Supplementary files

Supplementary Files
Action
1. JATS XML