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1. Introduction. Structure of theSO(3) generators
The main idea behind this research concerns the problem of unifying the approaches suggested by
Skyrme [1] and Faddeev [2] for interpreting baryons and leptons as topological solitons. To this aim,
the 16-spinor 𝛹 realization of the Skyrme–Faddeev chiral models was considered some years ago [3].
Within the scope of this spinor realization there exist two kinds of the internal SO(3) generators:

𝛬𝑖/2 = 𝐼8 ⊗ 𝜎𝑖/2

and also
𝜆𝑖/2 = 𝐼4 ⊗ 𝜎𝑖 ⊗ 𝐼2/2,

where 𝜎𝑖, 𝑖 = 1, 2, 3, stands for the Pauli matrices and 𝐼𝑛 denotes the unity matrix of the 𝑛-th order.
The generators 𝛬𝑖/2 are used for constructing the 𝑆2 manifold (𝛹̄𝛬𝑖𝛹)2 = const determining the Hopf
invariant 𝑄H, which is interpreted as the lepton charge 𝕃 according to Faddeev. As for the generators
𝜆𝑖/2, they determine the isotopic space symmetry, with its localization implying the Yang–Mills axial
vector field, which gives the main contribution to strong interactions.
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2. Breaking the isotopic symmetry
However, the isotopic symmetry is broken by the electromagnetic interactions due to the extension
of derivatives:

𝜕𝜇𝛹 → 𝜕𝜇𝛹 − 𝚤𝑒0𝛤𝑒𝐴𝜇𝛹; 𝜇 = 0, 1, 2, 3,

where the electromagnetic coupling constant 𝑒0 and the corresponding charge generator 𝛤𝑒 = 𝑃3𝛬 are
introduced. Here the denotations are used: 𝑃3 = (1 − 𝜆3)/2; 𝛬 = (1 − 𝛬3)/2. We are now in a position
to mention the other possibility of the isotopic symmetry breaking due to extending the derivatives:

𝜕𝜇𝛹 → 𝜕𝜇𝛹 − 𝚤 ̃𝑒0𝛤𝑐𝐶𝜇𝛹,

where the newmassless vector field𝐶𝜇, the new coupling constant ̃𝑒0 and the corresponding generator
𝛤𝑐 = 𝑁3𝛬, are introduced. Here the new isotopic projector 𝑁3 = (1 + 𝜆3)/2 is used. It is worth while to
underline that this new vector field should be generated by the special charge, which is similar to the
electromagnetic one. However, only neutral leptons (neutrinos) should be endowed with this charge,
so it can be called “the neutrino charge” [4, 5], and the corresponding vector field 𝐶𝜇 describes the
unusual photons called “shadow” or “dark” ones. It should be also stressed that the universal vacuum
state 𝛹0 there exists in this model, with the natural projector property being 𝛬𝛹0 = 0, where the
boundary condition at space infinity reads:

𝛹0 = lim
|𝑥⃗|→∞

𝛹. (1)

3. Correspondence with quantummechanics.
Lepton part of the Lagrangian

The other problem to be solved in this model concerns the correspondence with quantummechanics.
According to Einstein [6, 7], particles should be represented as soliton-like configurations described
by some regular solutions to field equations. Let us consider small excitations of the particle-soliton
near the vacuum: 𝛹 = 𝛹0 + 𝜉, where 𝜉 → 0 as | ⃗𝑥| → ∞. Correspondence with quantummechanics
means that the field 𝜉 should satisfy the Klein–Gordon equation of the form

(𝜕𝜇𝜕𝜇 +𝑀2) 𝜉 = 0, (2)

where𝑀 stands for the mass of the particle-soliton in natural units ℏ = 𝑐 = 1. The latter condition
implies the special structure of the Lagrangian density of the model in question [3]:

ℒ = ℒspin + ℒem + ℒ𝑐 + ℒ𝑔,

where the following denotations are used:

ℒspin =
1
2𝜆2𝐷 + 𝜀2

4 𝑓𝜇𝜈𝑓
𝜇𝜈 − 𝑉,

𝐷 = 𝐷𝜇𝛹𝛾𝜈𝐽𝜈𝐷𝜇𝛹,

𝑓𝜇𝜈 = (𝛹̄𝛾𝛼𝐷[𝜇𝛹)(𝐷𝜈]𝛹𝛾𝛼𝛹),

𝑉 = − 2𝐷3

𝜆2𝐾2ℓ4Pl𝜘
8
0
(𝐽𝜇𝐽𝜇 − 𝜘20)2,



Rybakov, Y. P. Darkmatter hypothesis andnewpossibilities of the Skyrme–Faddeev chiralmodel 301

𝐷𝜇𝛹 = 𝜕𝜇𝛹 − (𝚤𝑒0𝛤𝑒𝐴𝜇 + 𝚤 ̃𝑒0𝛤𝑐𝐶𝜇 + 𝛤𝜇) 𝛹.

Here the extended derivative contains the spinor affine connection 𝛤𝜇. The Lagrangian includes the
sigma-model part 𝐷 with the projector 𝛾0𝐽𝜈𝛾𝜈 on the positive energy states. The first two terms in
the Lagrangian ℒspin imply the lower estimate of the energy through the corresponding topological
charge (lepton or baryon one). Here the Dirac current reads 𝐽𝜇 = 𝛹̄𝛾𝜇𝛹. At last, the Higgs potential 𝑉
has the special structure based on the boundary condition:

lim
|𝑥⃗|→∞

𝐽𝜇𝐽𝜇 = 𝜘20. (3)

For providing the compatibility of the conditions (1), (3) and (4) the Higgs potential 𝑉 includes the
special gravitational invariant known as that of Kretschmann:

𝐾 = 𝑅𝜇𝜈𝜍𝜆𝑅𝜇𝜈𝜍𝜆,

that is the square of the Riemann curvature tensor. Finally, the Einstein gravitational term is included:

ℒ𝑔 = − 1
2𝜘𝑅,

where 𝜘 = 8𝜋𝐺/(𝑐4) and 𝑅, 𝐺 stand for the scalar curvature and the Newton gravitational constant,
respectively.

4. Quantization of the electric and the neutrino charges
It is worth while to underline that the discrete nature of the chargesmentioned above can be provided
through the special structure of the electromagnetic Lagrangian density and that of the dark/shadow
photons part. Introducing intensity tensors for the electromagnetic and shadow fields respectively:
𝐹𝜇𝜈 = 𝜕[𝜇𝐴𝜈]; 𝐺𝜇𝜈 = 𝜕[𝜇𝐶𝜈], let us write down the corresponding Lagrangian densities:

ℒem = − 1
16𝜋𝐹𝜇𝜈𝐹

𝜇𝜈[1 + 𝜇0 sin
2 𝜋𝑈
2𝑒 ], 𝜇0 = const;

ℒ𝑐 = − 1
16𝜋𝐺𝜇𝜈𝐺

𝜇𝜈[1 + 𝜈0 sin
2 𝜋𝑈̃
2 ̃𝑒 ], 𝜈0 = const;

where the special denotations are used:

𝑈 = (𝑛𝜇𝐴𝜇)2(−𝐸𝜈𝐸𝜈)−1/2; 𝑈̃ = (𝑛𝜇𝐶𝜇)2(−𝐺𝜈𝐺𝜈)−1/2.

Here the following quantities are introduced: 𝐸𝜈 = 𝑛𝜇𝐹𝜇𝜈; 𝐺𝜈 = 𝑛𝜇𝐺𝜇𝜈, where 𝑛𝜇 = 𝐽𝜇/𝐽 is the unit
vector. It can be shown that at the space infinity the asymptotic behavior of the vector fields coincides
with that of the Coulomb potential: 𝐴0 = 𝑞/𝑟; 𝐶0 = ̃𝑞/𝑟, where 𝑟 = | ⃗𝑥|, with the corresponding charges
taking integer values of the fundamental charges 𝑒 and ̃𝑒.

5. Mirror symmetry and the intersection problem of lepton and baryon
states

Let us now recall the Skyrme’s idea [1] to determine the 𝑆3 manifold by the O(4) invariant condition

(𝛹̄𝛹)2 + (𝚤𝛹̄𝛾5 ⃗𝜆𝛹)2 = const (4)
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and identify the baryon charge𝔹with thewinding number deg(𝑆3 → 𝑆3). However, themain question
arises: how to exclude the intersection of baryon and lepton sectors? The answer is given by the
special mirror symmetry that should be attributed to the states in the lepton sector:

𝛹L = 𝛾(0)𝛹L. (5)

The similar mirror symmetry but in the isotopic space should be attributed to the states in the baryon
sector:

𝛹B = 𝛾(0)𝛾5𝛾(2)𝜆2𝛹∗
B . (6)

Here the following structure of the plane Dirac 𝛾-matrices are used:

𝛾(0) = 𝐼2 ⊗ 𝜎1 ⊗ 𝐼4; 𝛾(𝑘) = −𝚤𝜎𝑘 ⊗ 𝜎2 ⊗ 𝐼4,

where 𝑘 = 1, 2, 3, and 𝛾5 = 𝐼2 ⊗ 𝜎3 ⊗ 𝐼4. The physical origin of the symmetry (6) reduces to the fact of
charge independence of strong interactions. To prove the impossibility of intersecting lepton and
baryon states let us introduce the following representation of the 16-spinor [8]:

𝛹 = ⊕2
𝑗=1 (𝜑𝑗 ⊕𝜒𝑗 ⊕ 𝜉𝑗 ⊕ 𝜁𝑗) , (7)

where 𝜑𝑗, 𝜒𝑗, 𝜉𝑗, 𝜁𝑗 stand for some 2-spinors. Applying the symmetry (6) to (7), one finds 𝜑𝑗 = 𝜒𝑗, 𝜉𝑗 = 𝜁𝑗
for the Weyl representation of 𝛾-matrices. For this effective 8-spinor one obtains (𝛹̄ ⃗𝛬𝛹) ≠ 0, but
(𝛹̄𝛾5 ⃗𝜆𝛹) = 0. Therefore, in view of (5) one gets 𝔹 = 0, 𝕃 ≠ 0.
On the contrary, applying the symmetry (6) to (7), one finds for the baryon sector 𝜉𝑗 = 𝚤𝜎2𝜑∗𝑗 ,

𝜁𝑗 = 𝚤𝜎2𝜒∗𝑗 . For this effective 8-spinor one gets (𝛹̄𝛬2𝛹) = 0, but (𝛹̄𝛹) ≠ 0, (𝛹̄𝛾5 ⃗𝜆𝛹) ≠ 0. Thus, as
a consequence, 𝔹 ≠ 0, 𝕃 = 0. Taking these facts into account, one concludes about impossibility of
intersecting lepton and baryon states.
Finally, one can deduce the structure of the vacuum state 𝛹0. To this end, due to the universal

character of the vacuum state, let us apply to 𝛹0 both (6) and (6) symmetries, with the result being:

𝛹0 = col{[
𝑎0
0
] , [

𝑎0
0
] , [

0

−𝑎∗0
] , [

0

−𝑎∗0
]}.

Here 4|𝑎0|2 = 𝜘0 is the new fundamental constant, characterizing the vacuum state.

6. Axially symmetric states
First one remarks that due to space reflection symmetry of the lepton sector one gets 𝜑𝑗 = 𝜒𝑗 and
also 𝜉𝑗 = 𝜁𝑗. To study the angular structure of the spinor field let us use the principle of symmetric
criticality [9] and consider a class of axially symmetric states invariant under the special group of
combined space and isotopic rotations:

𝐺 = diag [SO(2)𝑆 ⊗ SO(2)𝐼] , (8)

with the corresponding generators reading: ̄𝐽3 = −𝚤𝜕𝜙 + 𝜎3/2; 𝑇3 = 𝜆3𝛬3/2, respectively. Solving the
invariance equations:

̄𝐽3𝛹1 =
𝜆3
2 𝛹1, ̄𝐽3𝛹2 = −

𝜆3
2 𝛹2,
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one can find the dependence of the fields on the azimuth angle 𝜙:

𝜑1 = [
𝑓1

𝑔1 exp[𝚤𝜙]
] ; 𝜁1 = [

𝑢1 exp[−𝚤𝜙]

𝑣1
] ;

𝜑2 = [
𝑔2 exp[−𝚤𝜙]

𝑓2
] ; 𝜁2 = [

𝑢2
𝑣2 exp[𝚤𝜙]

] .

It should be also underlined that the fields satisfy the vacuum boundary condition at the space infinity
𝛹 →

𝑟→∞
𝛹0, if the following nontrivial boundary conditions read:

𝑓1 →
𝑟→∞

𝑎0, (9)

𝑣1 →
𝑟→∞

−𝑎∗0. (10)

7. Structure of the lepton charge
First of all one should remark that all calculations in the lepton sector appear to be drastically
simplified through using the toroidal coordinates 𝑥 ≥ 0, 𝜉 ∈ [−𝜋, 𝜋]. Their connection to the
cylindrical ones reads:

𝜌 = 𝑎 sinh𝑥
cosh𝑥 − cos 𝜉

, 𝑧 = 𝑎
sin 𝜉

cosh𝑥 − cos 𝜉
,

where 𝑎 stands for the length parameter. The explanation for this effect can be seen if one identifies,
following Faddeev, the lepton charge 𝕃 with the Hopf invariant 𝑄H = 𝕃. To define the structure
of 𝑄H, let us introduce the unit 3-vector ⃗𝑛 = ⃗𝑉/| ⃗𝑉|, where ⃗𝑉 = (𝛹+ ⃗𝛬𝛹), the manifold 𝑆2 being
determined by the condition ⃗𝑛2 = 1. In view of the boundary conditions (9) and (10) one can put:
𝑢1 = 𝑔1 = 𝑓2 = 𝑣2 = 0 and also:

𝑓1 = 𝑠𝑎0, 𝑣1 = −𝑠𝑎∗0, 𝑠∗ = 𝑠;

𝑔2 = 𝑎0𝑣 exp[𝚤𝜇], 𝑢2 = 𝑢, 𝑣∗ = 𝑣, 𝑢∗ = 𝑢, 𝜇∗ = 𝜇.

As a result, one finds that the quantity 𝑉1 + 𝚤𝑉2 = 2𝛹+
1 𝛹2 reduces to the following one:

𝑉1 + 𝚤𝑉2 = 𝜘0𝑠𝑣 exp [𝚤(𝜇 − 𝜙)]. (11)

On the other hand, there exists the following correspondence between the 3-vector 𝑛𝑎, 𝑎 = 1, 2, 3,
and the special 4-vector 𝑎𝜇:

𝜕𝜇𝑎𝜈 − 𝜕𝜈𝑎𝜇 = 2𝜖𝑎𝑏𝑐𝜕𝜇𝑛𝑎𝜕𝜈𝑛𝑏𝑛𝑐. (12)

On the basis of the relation (12) one can construct the identically conserved topological current:

𝑗𝜇H = −(128𝜋2)−1𝜖𝜇𝜈𝜍𝜏 (𝜕𝜈𝑎𝜍 − 𝜕𝜍𝑎𝜈) 𝑎𝜏, (13)

the conservation equation 𝜕𝜇𝑗
𝜇
H = 0 being implied by the 𝑆2-condition ⃗𝑛2 = 1. Identifying the

conserved charge ∫𝑑𝑉𝑗0H, where 𝑑𝑉 is the element of the 3-volume, with the Hopf topological
invariant, one finds the well-known Whitehead formula for the degree of knottedness or link
invariant [10, 11]:

𝑄H = −(8𝜋)−2∫𝑑𝑉([∇ ⃗𝑎] ⃗𝑎). (14)
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In our case of axially symmetric configurations the expression (14) can be reduced to the standard
winding number deg(𝑆3 → 𝑆3) through applying the Hopf mapping 𝑆3 → 𝑆2 and the definitions (12),
(13), (14). To this end, let us introduce the auxiliary 2-spinor:

𝜒 = col[cos ̃𝐴 + 𝚤 sin ̃𝐴 cos ̃𝐵, sin ̃𝐴 sin ̃𝐵 exp(𝚤 ̃𝐶)] (15)

and calculate the following 3-vectors:

⃗𝑛 = 𝜒+𝜎⃗𝜒, ⃗𝑎 = −𝚤𝜒+∇𝜒, [∇ ⃗𝑎] = −2𝚤[∇𝜒+∇𝜒].

As a result, one gets from (15) the desired form of 𝑄H:

𝑄H = 1
2𝜋2 ∫𝑑𝑉 sin2 ̃𝐴 sin ̃𝐵(∇ ̃𝐶[∇ ̃𝐴∇ ̃𝐵]). (16)

However, the integral (16) can be calculated exactly for the axially symmetric states via the
substitution:

sin ̃𝐴 sin ̃𝐵 = sin(𝜎̃/2), tan ̃𝐴 cos ̃𝐵 = tan𝜑.

Thus, the integral (16) takes the form:

𝑄H = 1
8𝜋2 ∫𝑑𝑉([∇(𝜑∇𝑛3)]∇ ̃𝐶), (17)

where 𝑛3 = cos 𝜎̃. Comparing the phases in (11) and in 𝑛1 + 𝚤𝑛2 = 2𝜒+1 𝜒2 ∼ exp[𝚤( ̃𝐶 − 𝜑)], one finds
̃𝐶 = −𝜙 and 𝜑 = −𝜇. First, one deduces from (17) that

𝑄H = 1
8𝜋2 ∫𝑑𝑉([∇(𝜇∇𝑛3)]∇𝜙).

Using the Stokes theorem and performing the 𝜙-integration, one gets the contour integral:

𝑄H = − 1
4𝜋 ∮

𝐿

𝜇𝑑𝑛3. (18)

It is worth while to stress that the contour 𝐿 in (18) contains the 𝑧-axis, the large asymptotic
circumference, where sin 𝜎̃ = 0, and also surrounds the interval 0 ≤ 𝜌 ≤ 𝑎, 𝑧 = 0. Therefore, one
concludes that the integral (18) reduces to the jump [𝜇] of the function 𝜇 on that interval, the latter
one connecting the north and the south poles of the sphere 𝑆2, i. e. the points 𝑛3 = ±1, respectively.
Finally, one obtains the value of the lepton number 𝕃 = 𝑛 characterizing our particle-soliton, since

1
4𝜋 ∫

+1

−1
[𝜇]𝑑𝑛3 = 𝑛.

Here the evident property of the angular variable 𝜉 was taken into account:

lim
𝑧→+0

𝜉 = 𝜋, lim
𝑧→−0

𝜉 = −𝜋.

Therefore, the following relations hold: 𝜇 = 𝑛𝜉, [𝜇] = 𝑛[𝜉] = 2𝜋𝑛, with 𝑛 being some integer number.
Let us now recall the final angular structure of the spinor field 𝛹:

𝜑1 = [
𝑠𝑎0
0
] , 𝜑2 = [

𝑣𝑎0 exp[𝚤(𝑛𝜉 − 𝜙)]

0
] ,

𝜁1 = [
0

−𝑠𝑎∗0
] , 𝜁2 = [

𝑢

0
] ;

(19)
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with 𝑠, 𝑣, 𝑢 being some real functions of the radial toroidal coordinate 𝑥. Inserting (19) into the
current 𝐽𝜇 = 𝛹̄𝛾𝜇𝛹, one gets 𝐽𝜇𝐽𝜇 = 𝐽2, where 𝐽 = 2 [|𝑎0|2(2𝑠2 + 𝑣2) + 𝑢2]. This structure of the current
𝐽𝜇 suggests the following simplifying substitution:

𝑠|𝑎0| =
√𝐽
2 sin𝐴 cos𝐵, 𝑢 = ( 𝐽2)

1/2
cos𝐴, 𝑣|𝑎0| = ( 𝐽2)

1/2
sin𝐴 sin𝐵.

8. Neutrino dark charge and spin. Neutrino oscillations
Let us first recall the invariant definition of the neutrino charge (or shadow/dark charge):

𝑈̃ =
𝐶2
0

| ̇𝐶0|
= ̃𝑒 ≡ ̃𝑒0(ℏ𝑐).

Solving this equation, one finds 𝐶0 = ̃𝑒(1 + 𝑡)−1; 𝑡 = − log tanh(𝑥/2), that corresponds to the closed
string approximation 𝑥 → ∞, or 𝑡 → 0. On the other hand, one can use the charge conservation law
due to the Nœther’s theorem:

𝑈̃ = ∫ 𝜕ℒ
𝜕𝐶0 𝑑𝑉 = ̃𝑒. (20)

However, there exists the definition of the spin 𝑧-projection:

𝑆3 = ∫2ℜ[ 𝜕ℒ
𝜕(𝐷0𝛹)

̄𝐽3𝛹]𝑑𝑉,

which is equivalent, in view of the symmetry group (8), to the relation:

𝑆3 =
1
2𝑐 ∫

𝜕ℒ
𝜕( ̃𝑒0𝐶0)

𝑑𝑉. (21)

Therefore, unifying (20) and (21), one gets

𝑆3 = 𝑈̃(2𝑐 ̃𝑒0)−1 = ℏ/2.

Fixing the neutrino charge 𝑄𝜈 = 1 in the units of ̃𝑒, it is possible to attack the very old neutrino
oscillations problem. According to observations [12–20], in the flux of 𝜈𝜏 some time later there can be
found a mixture of 𝜈𝜇, 𝜈𝑒, ̄𝜈𝜇, ̄𝜈𝑒. The same concerns the flux of 𝜈𝜇. First of all, one should take into
account the conservation law of the lepton number 𝕃 due to its topological origin. Let us recall the
properties of the lepton family:

𝕃 = 1 ∶ (𝑒−, 𝜈𝑒); 𝕃 = 2 ∶ (𝜇−, 𝜈𝜇); 𝕃 = 3 ∶ (𝜏−, 𝜈𝜏).

Taking into account the neutron decay: 𝑛 → 𝑝 + 𝑒− + ̄𝜈𝑒, one should attribute to the neutron the
neutrino charge 𝑄𝜈 = −1. The conservation laws of 𝕃 and 𝑄𝜈 imply the following reaction and its
inversion process (in a medium):

𝜈𝜏 → 2𝜈𝜇 + ̄𝜈𝑒, 2𝜈𝜇 + 𝑝 → 𝜈𝑒 + 𝜈𝜏 + 𝑝,

that explains the oscillations of 𝜈𝜏.
Now let us consider the flux of high energy 𝜈𝜇 in a medium: Then the following reactions hold:

𝜈𝜇 + 𝑛 → 𝑝 + 𝜇−, 𝜇− → 𝑒− + ̄𝜈𝑒 + 𝜈′𝜇,

that explains the oscillations of 𝜈𝜇.
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9. Results and Discussions
Some aspects of the dark matter problem are discussed in this paper. First, one remarks two
possibilities of breaking the isotopic invariance, which imply the existence of two kinds of electric
charges and corresponding electromagnetic fields and photons: ordinary and dark/shadow ones.
The realization of this program specifies the adequate structure of the basic field model, the Skyrme–
Faddeev chiralmodel. The topological solitons in thismodel correspond to the two classes of particles:
leptons and baryons, endowed with the lepton 𝕃 and baryon 𝔹 charges, respectively. The intersection
problem of these classes can be solved via introducing the Brioschi 16-spinors 𝛹 as fundamental
unitary fields advocated by Einstein. The hypothesis of the alternative (dark) electric charge, called
the neutrino charge 𝑄𝜈, permits one to attack and to solve the neutrino oscillation problem.

10. Conclusion
Basing on the dark matter hypothesis, the neutrino oscillation problem is attacked. The solution of
this problem is given due to the conservation laws of the lepton and of the neutrino charges.
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Гипотеза о тёмной материи и новые возможности
киральной модели Скирма–Фаддеева
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Аннотация. Обсуждаются новые возможности 16-спинорной реализации киральной модели Скирма–
Фаддеева. Используя принцип калибровочной инвариантности, показывается, что есть два независимых
способа нарушения изотопической симметрии. Первый способ состоит в том, чтобы включить взаимо-
действие с электромагнитным полем (обыкновенными фотонами, порождаемыми электрическим
зарядом), а второй опирается на взаимодействие с новым векторным полем (теневыми/тёмными
фотонами, порождаемыми специальным нейтринным зарядом). Объясняется явление нейтринных
осцилляций.

Ключевые слова: киральная модель, 16-спинорное поле, теневые/тёмные фотоны, нейтринный заряд


