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Abstract. This paper describes the application of physics-informed neural network (PINN) for solving partial
derivative equations. Physics Informed Neural Network is a type of deep learning that takes into account physical
laws to solve physical equationsmore efficiently compared to classicalmethods. The solution of partial derivative
equations (PDEs) is ofmost interest, since numericalmethods and classical deep learningmethods are inefficient
and too difficult to tune in cases when the complex physics of the process needs to be taken into account. The
advantage of PINN is that it minimizes a loss function during training, which takes into account the constraints of
the system and th e laws of the domain. In this paper, we consider the solution of ordinary differential equations
(ODEs) and PDEs using PINN, and then compare the efficiency and accuracy of this solution method compared
to classical methods. The solution is implemented in the Julia programming language. We use NeuralPDE.jl,
a package containing methods for solving equations in partial derivatives using physics-based neural networks.
The classical method for solving PDEs is implemented through the DifferentialEquations.jl library. As a result,
a comparative analysis of the considered solution methods for ODEs and PDEs has been performed, and an
evaluation of their performance and accuracy has been obtained. In this paper we have demonstrated the basic
capabilities of the NeuralPDE.jl package and its efficiency in comparison with numerical methods.

Key words and phrases: physics-informed neural networks, numerical methods, differential equations, Julia
programming language, NeuralPDE

For citation: Belicheva,D.M., Demidova, E. A., Shtepa, K. A., Gevorkyan,M.N., Korolkova, A. V., Kulyabov,D. S. Using Neu-
ralPDE.jl to solve differential equations. Discrete and Continuous Models and Applied Computational Science 33 (3), 284–298. doi:
10.22363/2658-4670-2025-33-3-284-298. edn: HHCVPK (2025).

1. Introduction
Physics-informed neural networks (PINNs) are deep learningmethods designed to solve various types
of differential equations (DEs) that arise in computational science and engineering [1]. By integrating
data and physical laws, PINNs construct a neural network that approximates the solution of a DE
system. Such a network is obtained through the minimization of a loss function that encodes any
prior knowledge about the DEs and the available data.
To demonstrate the functionality of PINNs, we employ the NeuralPDE.jl library [1], implemented

in Julia programming language [2, 3]. We consider a simple mathematical model based on a system
of ordinary differential equations (ODEs). The system is solved numerically and using PINNs, then
the resulting solutions are compared with the first integral of a system.
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2. Physics-informed neural networks
Physics-informed neural networks (PINNs) have become an increasingly effective approach for
solving differential equations and constructing neural equivalents of physical models. Classical
neural networks derive solutions solely based on data represented as pairs of “state–value.” A key
feature of PINNs is that they take into account the physical laws behind the problem, which are
expressed as ordinary or partial differential equations. In other words, the loss function explicitly
includes the ODE/PDE terms as well as the initial and boundary conditions. The term PINN was
introduced in [4], where it was defined as a new class of universal function approximators capable of
encoding fundamental physical laws that can be described by partial differential equations.

2.1. Overview

Consider a differential equation of the following form:

𝐹(𝑢(𝑥); 𝜆) = 0,

where 𝐹 is a differential operator, 𝑢 is the solution of the differential equation, 𝜆 denotes the
parameters of the equation, and 𝑥 = 𝑥1,… , 𝑥𝑛 ∈ 𝛺 is an n-dimensional coordinate vector defined on
the domain𝛺.

Let𝐵denote the boundary operator, and let the function𝑢 satisfy the following boundary conditions:

𝐵(𝑢(𝑥); 𝜆) = 0

And 𝐼 denotes the initial condition operator, while the function 𝑢 satisfies the following initial
conditions:

𝐼(𝑢(𝑥); 𝜆) = 0.

PINNs solve partial differential equations (PDEs) by utilizing the Universal Approximation
Theorem [5], which states that for any measurable function 𝑢, there exists a sufficiently large neural
network 𝑁 with weights 𝑤 such that ||𝑁(𝑥; 𝑤) − 𝑢(𝑥)|| < 𝜀 for all 𝑥 ∈ 𝛺. This implies that an arbitrary
differential equation can be solved by replacing the unknown solution 𝑢(𝑥)with a neural network
𝑁(𝑥;𝑤) and finding the weights 𝑤 such that 𝐹(𝑁; 𝜆) ≈ 0 for all 𝑥 ∈ 𝛺. Formally, this condition can be
expressed as a single equation by summing the the residuals over all points 𝑥.

𝐿(𝑤) = ∫
𝛺

||𝐹(𝑁(𝑥; 𝑤); 𝜆)||𝑑𝑥, (1)

where the objective is to determine the neural network weights 𝑤 that minimize the loss function
𝐿(𝑤). In contrast to the exact analytical solution, if 𝐿(𝑤) = 0, the neural network can be regarded, by
definition, as the solution of the corresponding differential equation.

Since the boundary conditions must be satisfied only on a certain subset 𝜕𝛺, it is useful to separate
the boundary and initial conditions into their own equation. Thus, we obtain:

𝐿(𝑤) = ∫
𝛺\𝜕𝛺

||𝐹(𝑁(𝑥, 𝑤); 𝜆)||𝑑𝑥 +∫
𝜕𝛺

||𝐵(𝑁(𝑥, 𝑤); 𝜆)||𝑑𝑥 + ||𝐼(𝑁(𝑥, 𝑤); 𝜆)||. (2)

Equation (1) is equivalent to (2), but it provides a clearer view of the implementation. Let us rewrite
it using the following notation:
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𝐿(𝑤) = 𝐿𝑟 + 𝐿𝑖𝑐 + 𝐿𝑏𝑐,

where 𝐿𝑟 is the differential equation residual, 𝐿𝑖𝑐 is the initial condition error, and 𝐿𝑏𝑐 is the boundary
condition error.

2.2. General workflow

The workflow of PINNs consists of the following main steps:
1. Definition of the problem based on physical laws and formulation of the governing equations

describing the system.
2. Collection of data representing the system’s behavior from experiments, simulations or other

sources.
3. Selection of the neural network architecture and initialization of its parameters.
4. Formulation of the loss function, which incorporates both the agreement with experimental

data and the satisfaction of the physical equations.
5. Training of the neural network by minimizing the loss function.
6. Verification of the training stopping criteria (e.g., reaching a predefined number of epochs or

achieving minimal loss).
7. Analysis and interpretation of the obtained results.
A more detailed workflow of PINNs can be outlined as follows:
1. Definition of the physics-based problem:

– formulate the governing equations that describe the behavior of the system (these
equations may be derived from fundamental principles such as conservation laws or
constitutive equations);

– specify the boundary and initial conditions for the problem.
2. Data collection:

– obtain data representing the behavior of the system from experiments, simulations, or
other sources;

– prepare the training data by selecting the points (spatial or temporal coordinates) at
which predictions and losses will be evaluated.

3. Design and configuration of the neural network architecture:
– define the type of neural network (e.g., fully connected network);
– select the number of layers and neurons per layer;
– choose activation functions;
– initialize network parameters (weights and biases).

4. Formulation of the loss function:
– include two main components in the loss function:

– data fidelity term —measures the discrepancy between network predictions and
observed data;

– physics-informed term — enforces the satisfaction of the governing physical
equations as constraints;

– adjust the weighting of the loss components to balance data accuracy and physical
consistency.

5. Training of the neural network:
– feed input data into the network and compute predictions;
– evaluate the loss using the formulated loss function;
– update the network parameters using an optimization algorithm;
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Figure 1. Flow diagram of the PINN training process

– apply automatic differentiation to compute the derivatives required for training.
6. Verification of stopping criteria:

– monitor whether a predefined number of training epochs (iterations) has been reached;
– track the minimization of the loss function or other convergence criteria;
– assess the stability and quality of the predictions.

7. Iterative refinement of training and validation until the stopping conditions are met. This
process can be represented by a block diagram (Fig. 1).

8. Evaluation of results:
– analyze network predictions for consistency with both experimental data and physical

laws;
– assess the accuracy and interpretability of the obtained solution.

9. Interpretation and application of results:
– use the trained model to predict system behavior under new conditions;
– apply the model to solve forward and inverse problems, data assimilation tasks, and

related applications.
10. Model optimization and refinement (if required):

– adjust the network architecture, loss function, or training process to improve
performance;

– retrain the model with updated parameters if the results are unsatisfactory.

2.3. Overview of the NeuralPDE package

The NeuralPDE package [6] is part of the SciML [7] ecosystem for the Julia programming language.
This collection includes packages that enable the computation of mathematical models based on
various types of differential equations, combining traditional numerical methods with machine
learning techniques.

TheNeuralPDEpackage employs neural networkswhose loss function incorporates the differential
equations defining the mathematical model. This enables the training process to account for the
underlying physical laws governing the problem, thereby implementing the concept of PINNs [8].
NeuralPDE is used to address three broad classes of problems:
– approximation of solutions to systems of ordinary differential equations (ODEs);
– approximation of solutions to partial differential equations (PDEs);
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– solution of inverse problems, which involve determining the coefficients of ODEs and PDEs
from known solutions.

The NeuralPDE package has been in active development since 2019 [9]. It can be installed through
Julia’s standard package manager by executing the command add NeuralPDE. Installation involves
downloading a substantial number of dependencies, including both additional Julia packages and
artifacts. In the Julia ecosystem, artifacts refer to external binary files of libraries or auxiliary utilities
required by dependent packages. By default, NeuralPDE performs computations on the central
processing unit (CPU). To enable graphics processing unit (GPU) acceleration, one must additionally
install either Flux.jl [10] or Lux.jl [11]. The formulation of ordinary and partial differential
equations relies on the syntax provided by the ModelingToolkit.jl package [12], which is also
part of the SciML ecosystem. According to its official documentation, ModelingToolkit.jl is
a framework for high-performance symbolic–numerical computation designed for mathematical
modeling and scientific machine learning. It enables high-level symbolic specification of problems
for subsequent numerical computation and analysis. The symbolic representation is built upon
the Symbolics.jl package [13], which serves as a computer algebra system (CAS) within the Julia
environment.

2.4. Solving ODEs in Julia

In mathematical terms, ODEProblem represents the following formulation:

𝑢′ = 𝑓(𝑢, 𝑝, 𝑡)

for the interval 𝑡 ∈ (𝑡0, 𝑡𝑓) with the initial condition 𝑢(𝑡0) = 𝑢0.
Let us solve a simple ordinary differential equation (ODE):

𝑢′ = 𝑐𝑜𝑠(2𝜋𝑡)

for 𝑡 ∈ (0, 1) with 𝑢0 = 0, we use NNODE and a numerical method, and then compare the results.
The problem is defined using the ODEProblemmethod by specifying the equation, initial condition,

and time interval.

linear(u, p, t) = cos(t * 2 * pi)
tspan = (0.0, 1.0)
u0 = 0.0
prob = ODEProblem(linear, u0, tspan)

We set NeuralPDE.NNODE(), an algorithm for solving ordinary differential equationswith a neural
network. It represents a specialized form of the physics-informed neural network approach that
serves as a solver for standard ODE problems. We then specify the neural network architecture using
Lux.jl by defining a multilayer perceptron (MLP) with one hidden layer of 5 units and a sigmoid
activation function, as follows:

rng = Random.default_rng()
Random.seed!(rng, 0)
chain = Chain(Dense(1, 5, σ), Dense(5, 1))
ps, st = Lux.setup(rng, chain) |> Lux.f64

We use the solvemethod to compute the solution of the defined problem, applying the Tsit5()
solver with a step size of 0.01 (see Fig. 2):

sol_num = solve(prob, Tsit5(), saveat = 0.01)

A similar procedure is applied to produce the plot for the time interval [0, 15] (Fig. 3).
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Figure 2. Comparison of solutions over the interval [0, 1] Figure 3. Comparison of solutions over the interval [0, 15]

3. Lotka–Volterra model

3.1. Description of the Lotka–Volterra model

Let us consider the Lotka–Volterra mathematical model (predator–prey model), which describes the
interaction between two species of animals. One species preys on the other, while the prey population
has access to unlimited food resources [14, 15]. The model is represented by the following system of
equations:

⎧

⎨
⎩

𝑑𝑥
𝑑𝑡 = 𝛼𝑥(𝑡) − 𝛽𝑥(𝑡)𝑦(𝑡),

𝑑𝑦
𝑑𝑡 = −𝛾𝑦(𝑡) + 𝛿𝑥(𝑡)𝑦(𝑡).

In this model 𝑥 denotes the number of prey and 𝑦 the number of predators. The coefficient 𝑎
represents the natural growth rate of the prey population in the absence of predators, while 𝑐describes
the natural mortality rate of predators deprived of food (prey). The probability of interaction between
prey and predators is assumed to be proportional to both their population sizes. Each interaction
decreases the prey population but contributes to the growth of the predator population (the terms
−𝑏𝑥𝑦 and 𝑑𝑥𝑦 in the right–hand side of the equations).
The first integral of the system can be written as follows:

𝛼 log 𝑦 − 𝛽𝑦 + 𝛾 log𝑥 − 𝛿𝑥 = 𝐶, 𝐶 = const.

To solve the system, we set the parameters 𝛼 = 1.5, 𝛽 = 1.0, 𝛾 = 3.0, 𝛿 = 1.0. We consider the initial
value problem (Cauchy problem) with the following initial conditions:

{
𝑥(0) = 1,

𝑦(0) = 1.

3.2. Numerical investigation

We solve the system numerically using Tsit5() with a step size of 0.01 from the
DifferentialEquations.jl library [16]. We consider the time interval [0, 4]. The results
obtained by the numerical method are shown in Figs. 4, 5.
As shown in Fig. 4, the trajectory of the numerical solution forms a closed curve, indicating that

the phase volume is conserved, similar to the analytical case.
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Figure 4. Phase portrait of the Lotka–Volterra model.
Numerical method

Figure 5. Numerical solution of the
Lotka–Volterra model

Figure 6. Phase portrait of the Lotka–Volterra model
obtained using PINN

Figure 7. PINN-based solution of the
Lotka–Volterra model

3.3. PINN-based solution of themodel

Wenow solve the systemusing the NeuralPDE.jl library. The neural network architecture is defined
with the Lux.jl library. A three-layer neural network is employed, consisting of one input neuron,
two output neurons, and sixteen neurons in the hidden layer. The activation function for the first
two layers is the hyperbolic tangent. Parameter optimization is carried out using the Broyden–
Fletcher–Goldfarb–Shanno (BFGS) algorithm from the OptimizationOptimJL.jl package. The
NeuralPDE.NNODE() algorithm is used to solve the system of ordinary differential equations. This
algorithm is a specialization of the physics-informed neural network (PINN) approach applied to
standard ODE problems.

chain = Lux.Chain(Lux.Dense(1, 16, tanh), Lux.Dense(16, 16,tanh),
Lux.Dense(16, 2))↪

opt = OptimizationOptimJL.BFGS()
alg = NeuralPDE.NNODE(chain, opt)

We proceed by calling solve as in a typical ODEProblem. The verbose option is enabled to
monitor the loss evolution during training. The maximum number of training epochs (iterations) is
set to 1000:

sol = solve(prob, alg, verbose = true, abstol=1e-8, maxiters = 1000)

As a result we obtain the following plots (Fig. 6, 7).
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Figure 8. Comparison of solution errors

3.4. Comparative analysis of methods

We compare the phase trajectories obtained from the numerical solution and from the neural network
with the first integral of the system. The corresponding squared error plots are shown in Fig. 8.

The plot indicates that the numerical solution provides higher accuracy than the PINN-based one.
A performance comparison of the two approaches is then conducted using the BenchmarkTools.jl
package. The efficiency of the numerical method is assessed in terms of computation time and
memory consumption:

233.154 μs (7052 allocations: 567.62 KiB)

A similar evaluation is performed for the NeuralPDE.jl library:

2463.046 s (3569138613 allocations: 2682.28 GiB)

Neural networks require significantly more computational resources and time compared to
numerical methods.

4. SIRmodel
Consider a system of differential equations whose solutions are aperiodic.
Compartmental models represent a general framework for modeling dynamic systems. They are

widely used in the mathematical modeling of infectious diseases, where the population is divided
into compartments labeled, for example, S, I, or R (susceptible, infectious, or recovered). Individuals
can move between compartments according to the transition rules defined by the model.
The SIR model is one of the simplest compartmental models, and many other models are derived

from this basic form. The model consists of three compartments:

– 𝑆: the number of susceptible individuals. When a susceptible and an infectious individual
come into “infectious contact”, the susceptible individual becomes infected and moves to the
infectious compartment.

– 𝐼: the number of infectious individuals. These are individuals who have been infected and are
capable of transmitting the disease to susceptible individuals.

– 𝑅: the number of recovered (and immune) individuals. These are individuals who have been
infected and recovered from the disease and moved to the recovered compartment. This
compartment may also be referred to as “resistant.”
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Figure 9. Numerical solution of the SIR model Figure 10. PINN-based solution of the SIR model

As long as the number of infected individuals does not exceed a critical threshold 𝐼∗, all infected
persons are assumed to be isolated and unable to transmit the disease. Once 𝐼(𝑡) > 𝐼∗, the infected
individuals begin to spread the infection among the susceptible population.
The SIR model without vital dynamics (birth and death processes, sometimes referred to as

demographic effects) can be formulated as the following system of ordinary differential equations:

⎧
⎪⎪

⎨
⎪⎪
⎩

𝑑𝑆
𝑑𝑡
= − 𝛽𝐼𝑆

𝑁
,

𝑑𝐼
𝑑𝑡
= 𝛽𝐼𝑆

𝑁
− 𝛾𝐼,

𝑑𝑅
𝑑𝑡

= 𝛾𝐼,

where 𝑆 is the number of susceptible individuals, 𝐼 is the number of infected individuals, 𝑅 is the
number of recovered individuals, and 𝑁 is the total population given by the sum of these three
compartments. The parameters 𝛽 and 𝛾 represent the infection and recovery rates, respectively.
The system is solved numerically using the Tsit5() method with a step size of 0.1 from the

DifferentialEquations.jl library [16]. We consider the time interval [0, 50] with the initial
conditions 𝑆 = 990.0, 𝐼 = 10.0, and 𝑅 = 0.0. The resulting solution is shown in Fig. 9.
Next, we solve the same system using the NeuralPDE.jl library. We employ a three-layer neural

network with one neuron in the input layer, three neurons in the output layer, and thirty-two neurons
in the hidden layer. The activation function in the first two layers is the sigmoid function. The
optimization is performed using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm from the
OptimizationOptimJL.jl package.

chain = Lux.Chain(Lux.Dense(1, 32, σ), Lux.Dense(32, 32, σ), Lux.Dense(32,
3))↪

opt = OptimizationOptimJL.BFGS()
alg = NeuralPDE.NNODE(chain, opt)

With themaximumnumber of training epochs set to 1000, the resulting solution is shown in Fig. 10.
In the case of a simple epidemic model the solution obtained using a physics-informed neural

network demonstrated low accuracy. Therefore, this approach cannot be recommended for solving
the given problem.
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Figure 11. Visualization of the Poisson’s equation solution based on the official NeuralPDE documentation

5. Eikonal equation

5.1. Poisson’s equation

The official NeuralPDE documentation provides an example illustrating the solution of the two-
dimensional Poisson’s equation.

𝜕2𝑢(𝑥, 𝑦)
𝜕𝑥2 +

𝜕2𝑢(𝑥, 𝑦)
𝜕𝑦2 = − sin(𝜋𝑥) sin(𝜋𝑦),

in a rectangular domain defined by the intervals 𝑥 ∈ [0, 1] and 𝑦 ∈ [0, 1], with the following boundary
conditions:

𝑢(0, 𝑦) = 0,𝑢(1, 𝑦) = 0,

𝑢(𝑥, 0) = 0,𝑢(𝑥, 1) = 0.

The computation took approximately 30–40 minutes, resulting in plots consistent with those
presented in the official documentation (Fig. 11).

5.2. Solving the Eikonal equation with NeuralPDE

Let us write the Eikonal equation [17–20] in Cartesian coordinates on the plane.

(𝜕𝑢𝜕𝑥)
2
+ (𝜕𝑢𝜕𝑦 )

2
= 𝑛2(𝑥, 𝑦).

The function 𝑛(𝑥, 𝑦) is piecewise continuous.
This example employs the function describing the two-dimensional Maxwell lens [21].
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𝑛(𝑟) =
⎧
⎪
⎨
⎪
⎩

𝑛0

1 + ( 𝑟𝑅)
2 , 𝑟 ⩽ 𝑅,

𝑛0, 𝑟 > 𝑅,

where 𝑟 = √(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 is the distance from the center of coordinates to points on the lens,
which has a circular shape. The center of the lens is located at (𝑥0, 𝑦0) = (0, 0). The lens radius is
𝑅 = 1, and the refractive index of the medium is 𝑛0 = 1.
The example from the official documentation was modified by replacing the Poisson’s equation

and its boundary conditions with the Eikonal equation. The first modification involved substituting
the second derivatives with the squares of the first derivatives:

Dx = Differential(x)
Dy = Differential(y)

Additionally, for the Maxwell lens:

eq = Dx(u(x, y))*Dx(u(x, y)) + Dy(u(x, y))*Dy(u(x, y)) ~ n(x, y)

In the Differential function, the symbol ^ specifies the order of differentiation rather than
exponentiation. For this reason, it was replaced by an explicit multiplication of the derivative by
itself. Also the boundary conditions and the domains of 𝑥, 𝑦 were adjusted:

# Boundary condition (indicating that the point source is located at the
origin)↪

bcs = [
u(-1, 0) ~ 0.0

]
# Domain (x, y)
domains = [x in (-1.0, 2.0), y in (-1.0, 2.0)]

After several simplifications and the elimination of most internal variables, the n(x, y) function
was represented as follows:

function n(x, y)
r = hypot(x, y)
if r <= 1
return 1 / (1 + r^2)

else
return 1

end
end

However, the program failed to execute in this configuration. After neural network initialization
(which took about 10 minutes), the program crashed with the error about a non-Boolean value used
in a Boolean context: ERROR: TypeError: non-boolean (Num) used in boolean context.
According to the official documentation, this error is documented and can arise from two primary

causes:
– the hypot function is not available in symbolic form, meaning it is not implemented within the
Symbolics.jl package;

– the if-else-end construct is not supported for symbolic expressions and must be replaced
with the Base.ifelse function from the standard library.
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Figure 12. Wavefronts for the Maxwell lens

After applying these modifications, the refraction function was expressed as follows:

n(x, y) = ifelse(sqrt(x^2+y^2) <= 1, 1 / (1 + (x^2 + y^2))^2, 1)

After these modifications, the program executed successfully.
The processed results are presented in Fig. 12.

6. Discussion
The analysis of the NeuralPDE package revealed several drawbacks:

– The package has a large number of dependencies (over one hundred), including both other Julia
packages and external binary files (utilities and libraries). As a result, it requires significant
disk space and installation time. However, the main issue with the large dependency set is the
reduced reliability and stability of the package.

– The differential equation and boundary conditions are defined in symbolic form, which provides
only limited support for standard language constructs. Even for a simple function 𝑛(𝑥, 𝑦) , the
if-else-end statement and the standard hypot function did not work as expected. It is
particularly unintuitive that if-else-endmust be replaced with Base.ifelse.

– Computation time is significantly greater compared to classical numerical methods. While
traditional numerical schemes complete calculations within tens of seconds, execution time
using NeuralPDE reaches several tens of minutes.

7. Conclusion
A comparative analysis was carried out for solving the Lotka-Volterra system of differential equations,
the epidemiological (SIR) model, and the eikonal equation using both a numerical method and
a physics-informed neural network. The implementation was performed in the Julia programming
language using the DifferentialEquations.jl and NeuralPDE.jl libraries. It was concluded
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that currently neural network-based numerical methods cannot be regarded as a “silver bullet”.
Further research is required to determine the scope and limitations of their applicability.
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Применение NeuralPDE.jl для решения
дифференциальных уравнений
Д. М. Беличева1, Е. А. Демидова1, К. А. Штепа1, М. Н. Геворкян1, А. В. Королькова1,
Д. С. Кулябов1, 2

1 Российский университет дружбы народов им. Патриса Лумумбы, ул. Миклухо-Маклая, д. 6, Москва,
117198, Российская Федерация
2 Объединённый институт ядерных исследований, ул. Жолио-Кюри, д. 6, Дубна, 141980, Российская
Федерация

Аннотация. Работа описывает применение Physics Informed Neural Network (PINN) для решения уравне-
ний в частных производных. Physics Informed Neural Network — это вид глубокого обучения, который
учитывает физические законы для более эффективного решения физических уравнений по сравне-
нию с классическими методам. Наибольший интерес представляет решение уравнений в частных
производных (УЧП), так как численные методы и классические методы глубокого обучения не эффек-
тивны и слишком сложно настраиваемы в случаях, когда необходимо учесть сложную физику процесса.
Преимуществом PINN является то, что при обучении она минимизирует функцию потерь, которая
учитывает ограничения системы и законы предметной области. В работе мы рассматриваем решение
обыкновенных дифференциальных уравнений (ОДУ) и УЧП с помощью PINN, а затем сравниваем эф-
фективность и точность этого метода решения по сравнению с классическими. Решение реализовано
на языке программирования Julia. Мы используем NeuralPDE.jl - пакет, содержащий методы решения
уравнений в частных производный с помощью нейронных сетей, основанных на физике. Классиче-
ский метод решения УЧП реализован посредством библиотеки DifferentialEquations.jl. В результате
был проведен сравнительный анализ рассматриваемых методов решения для ОДУи УЧП, а также по-
лучена оценка их производительности и точности. В этой статье мы продемонстрировали базовые
возможности пакета NeuralPDE.jl и его эффективность по сравнению с численными методами.

Ключевые слова: нейронные сети на основе физики, численные методы, дифференциальные уравнения,
язык программирования Julia, пакет NeuralPDE.jl


