
Discrete& Continuous Models
& Applied Computational Science
ISSN 2658-7149 (Online), 2658-4670 (Print)

2025, 33 (3) 272–283
http://journals.rudn.ru/miph

Research article
UDC 519.7

PACS 07.05.Tp

DOI: 10.22363/2658-4670-2025-33-3-272-283 EDN: HEOQDK

Analysis of the stochastic model
“prey–migration area–predator–superpredator”
Irina I. Vasilyeva1, Olga V. Druzhinina2, Olga N. Masina1, Anastasia V. Demidova3

1 Bunin Yelets State University, 28 Kommunarov St, Yelets, 399770, Russian Federation
2 Federal Research Center “Computer Science and Control” of Russian Academy of Sciences, 44 building 2
Vavilov St, Moscow, 119333, Russian Federation
3 RUDN University, 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation

(received: May 21, 2025; revised: June 15, 2025; accepted: June 20, 2025)

Abstract. Current research areas of dynamic migration and population models include the analysis of trajectory
dynamics and solving parametric optimization problems using computer methods. In this paper we consider the
population model “prey–migration area–predator–superpredator”, which is given by a system of four differential
equations. The model takes into account trophic interactions, intraspecific and interspecific competition, as
well as migration of the prey to the refuge. Using differential evolution parameters are found that ensure
the coexistence of populations of prey, predator and superpredator, respectively, in the main habitat and the
existence of a population of prey in a refuge. The transition to stochastic variants of the model based on additive
noise, multiplicative noise and the method of constructing self-consistent models is performed. To describe
the structure of the stochastic model the Fokker–Planck equations are used and a transition to a system of
equations in the Langevin form is performed. Numerical solution of stochastic systems of differential equations
is implemented by the Euler–Maruyamamethod. Computer experiments are conducted using a Python software
package, and trajectories for deterministic and stochastic cases are constructed. A comparative analysis of
deterministic model and corresponding stochastic models is carried out. The results can be used in solving
problems of mathematical modeling of biological, ecological, physical, chemical and demographic processes.
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1. Introduction
Among the key directions in the study of dynamic population models with migration flows one can
highlight the investigation of trajectory dynamics and the development of computational methods
for analyzing these models. The construction and study of deterministic and stochastic models of
population dynamics taking into account trophic interactions between species and competition or
considering species competition and migration flows are addressed, in particular, in [1–10]. In [1]
amodification of the “predator–prey”model is proposed accounting for competition among predators
for additional food. In [2] a “predator–prey” model is studied where the prey is characterized by an
additive Allee effect and controlled migration flows are considered for the predator. In [6] a four-
dimensional dynamic model with two migration habitats is proposed corresponding to the predator
and prey respectively.

In [3] several types of three-dimensional models are considered, including species competition and
trophic interactions of the “prey–predator–superpredator” type taking into account the possibility
of prey infection by viral diseases. Complex trophic interactions with predator and superpredator
saturation effects according to Holling are studied in [4]. For each considered model equilibrium
states are obtained, trajectory dynamics are investigated and phase portraits are constructed. In
most of the proposed models with trophic interactions, migration flows of populations are not
taken into account, therefore, studying the impact of prey migration to refuges presents scientific
interest. In [5] a distributed three-dimensional system of partial differential equations of the “prey–
predator–superpredator” type is considered based on the reaction-diffusion equation which accounts
for various factors of population growth and mortality as well as migration flows between habitats.
However there arises a need to construct similar models based on systems of ordinary differential
equations.
Stochastic population models represent significant theoretical and applied interest. Models with

trophic interactions in the stochastic case is insufficiently studied. In [7] the impact of environmental
fluctuations on a “prey–predator” model with a stage-structured prey population is investigated,
a stochastic analysis of the model is carried out and conditions for stochastic stability are derived.
In [8] the dynamical behavior of a “prey–predator” system is studied where both the prey and predator
exhibit herd behavior. The stochastization of the model is performed by adding Gaussian white noise
to the prey reproduction rates and the predator extinction rates.
One of the effective methods of stochastization is the method of constructing self-consistent

stochasticmodels proposed in [11–15]. In [16] a stochasticmodel is obtained using an original software
package that includes calculations of the interaction scheme, drift vector and diffusion matrix.
In [9, 10] a “two competitors–two migration areas” model is considered which takes into account
intraspecific and interspecific competition in two populations as well as bidirectional migration of
both populations. The transition to the stochastic case for this model is carried out based on the
method of constructing self-consistent one-step models.
Heuristic methods of parametric optimization inspired by nature are applied to study dynamic

models [17]. In particular, [18] describes the differential evolution algorithm for numerical
optimization. Differential evolution is based on the genetic annealing algorithm and is applied
to real-valued input data. In [19] the results of development a software package for optimizing the
parameters of population dynamicmodels are presented. Themodel “two competitors–onemigration
area” is considered which takes into account interspecific competition and bidirectional uneven
migration of the first population to a refuge. Using differential evolution, a set of parameters satisfying
the specified conditions for the coexistence of two species in the main habitat and the survival of the
migrating specie in the refuge is found.
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Figure 1. Stages of the algorithm for model (1) research

This paper is devoted to the study of a four-dimensional population model of the “prey–migration
area–predator–superpredator” type which takes into account complex trophic interactions as
well as prey migration to a refuge. In Section 2 the construction of the “prey–migration area–
predator–superpredator” model with bidirectional species migration is considered. A search for
model parameters is conducted using an evolutionary algorithm. The deterministic four-dimensional
model is studied and projections of phase portraits are constructed. In Section 3 stochastic models
of the “prey–migration area–predator–superpredator” type are developed taking into account the
addition of additive andmultiplicative noises as well as randommigration coefficients. In this section
stochastization is also performed using the method of constructing self-consistent stochastic models.
The results of computational experiments are presented and an interpretation of these results is
provided including a comparison of the stochasticmodels with the deterministicmodel. As a software
tool for investigating the models a program complex developed in Python using the numpy, sympy,
and scipy libraries is utilized. Section 4 presents a discussion of the results.

2. Description of the deterministic model and search for optimal
parameters

We propose a description of a four-dimensional dynamic model that takes into account trophic
interactions and prey migration based on a system of differential equations of the form

̇𝑥1 = 𝑎1𝑥1 − 𝑝11𝑥21 − 𝑞13𝑥1𝑥3 − 𝑞14𝑥1𝑥4 + 𝛽𝑥2 − 𝛾𝑥1,

̇𝑥2 = 𝑎2𝑥2 − 𝑝22𝑥22 − 𝛽𝑥2 + 𝛾𝑥1,

̇𝑥3 = −𝑐3𝑥3 − 𝑝33𝑥23 − 𝑞34𝑥3𝑥4 + 𝑑13𝑥1𝑥3,

̇𝑥4 = −𝑐4𝑥4 − 𝑝44𝑥24 + 𝑑34𝑥3𝑥4 + 𝑑14𝑥1𝑥4,

(1)

where 𝑥1 is the population density of prey in the main habitat, 𝑥2 is the population density of prey in
the refuge, 𝑥3 is the population density of predator, 𝑥4 is the population density of superpredator; 𝑎𝑖
(𝑖 = 1, 2) are the natural growth rate coefficients of prey in the main habitat (𝑎1) and in the refuge (𝑎2);
𝑞13 is the interaction coefficient between prey in the main habitat and predator, 𝑞14 is the interaction
coefficient between prey in the main habitat and superpredator; 𝑝𝑖𝑖 (𝑖 = 1, 2, 3, 4) are the intraspecific
competition coefficients; 𝑞34 is the interaction coefficient between predator and superpredator; 𝑐𝑖
(𝑖 = 3, 4) are the natural loss rate coefficients of predator (𝑐3) and superpredator (𝑐4); 𝑑13 is the growth
coefficient of predator due to consumption of prey in the main habitat; 𝑑14 is the growth coefficient
of superpredator due to consumption of prey in the main habitat; 𝑑34 is the growth coefficient of
superpredator due to consumption of predator; 𝛽 is the migration coefficient of prey from the main
habitat to the refuge, 𝛾 is the migration coefficient of prey from the refuge to the main habitat.



Vasilyeva, I. I. et al. Analysis of the stochastic model “prey–migration area–predator–superpredator” 275

Figure 2. Stages of applying the differential evolution algorithm for parameters search

Figure 1 presents the stages of the algorithm for model (1) research in the form of a diagram.
For the four-dimensional system (1) an optimization search method is applied to find a parameter

set that ensures the coexistence of prey, predator and superpredator in the main habitat as well
as the survival of the species in the migration area. A computational experiment is conducted to
adjust the parameters of model (1) considering the given initial conditions (𝑥1(0), 𝑥2(0), 𝑥3(0), 𝑥4(0)) =
(3.0, 2.0, 1.0, 0.5). The optimization search for the parameter set is based on differential evolution
taking into account a special choice of quality criterion consistent with ecological sense [19].
The algorithm of the modified differential evolution implements the minimization of a numerical

criterion characterizing the deviation from the specified equilibrium state of differential equations
system (1). The minimization criterion has the form

1
𝑛(𝑠1 − 𝑠0)

𝑠1
∑
𝑖=𝑠0

‖𝑥𝑖 − 𝑆∗‖ → min, (2)

where 𝑛 is the number of trajectories considering different initial conditions, 𝑠1 is the index of the
last step of the ODE trajectory calculation algorithm, 𝑠0 is the index of the initial step of the ODE
trajectory calculation algorithm, 𝑥𝑖 is the phase vector of the system at the 𝑖-th step.
The parameter search algorithm developed with consideration of criterion (2) allows for the

identification of parameter sets under which model (1) exhibits a transition to stationary regimes. In
particular the following set of parameters is obtained: 𝑎1 = 20.00, 𝑎2 = 20.00, 𝑝11 = 4.00, 𝑝22 = 2.00,
𝑞13 = 0.30, 𝑞14 = 0.30, 𝑞34 = 0.38, 𝛽 = 0.50, 𝛾 = 0.10, 𝑐3 = 7.74, 𝑝33 = 0.12, 𝑐4 = 0.10, 𝑝44 = 4.80,
𝑑13 = 4.36, 𝑑14 = 3.06, 𝑑34 = 3.76. Using the identified parameter set a positive equilibrium state is
obtained: 𝑥1 = 3.31, 𝑥2 = 9.77, 𝑥3 = 14.08, 𝑥4 = 13.09. The performed verification of the model based
on the numerical solution of the differential equations system demonstrated that the solutions are
close to the identified positive equilibrium state.
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3. Stochastization of themodel and comparative analysis of the
deterministic model with stochastic variants

Weproceed to the stochasticmodels corresponding to system (1), taking into account the introduction
of additive and multiplicative noises. The stochastic differential equation (SDE) in the form of the
Langevin equation has the following form:

𝑑𝑥 = 𝑎(𝑥, 𝑡)𝑑𝑡 + 𝑏(𝑥, 𝑡)𝑑𝑊, (3)

where 𝑥 ∈ 𝑅4 is the system state function,𝑊 ∈ 𝑅4 is the standard Brownian motion described by
a randomWiener process, and 𝑎(𝑥, 𝑡) is the right-hand side of the differential equations system (1)
presented in vector form. The matrix 𝑏(𝑥, 𝑡) in (3) is defined depending on the type of random noise.
For SDE with additive noise, 𝑏(𝑥, 𝑡) is the identity matrix of size 4 × 4. For SDE with multiplicative
noise in the trivial case we have

𝑏(𝑥, 𝑡) =

⎛
⎜
⎜
⎜
⎜
⎝

𝜎𝑥1 0 0 0

0 𝜎𝑥2 0 0

0 0 𝜎𝑥3 0

0 0 0 𝜎𝑥4

⎞
⎟
⎟
⎟
⎟
⎠

,

where 𝜎 is the noise intensity parameter.
When stochastization is based on additive and multiplicative noise the random processes do not

follow from the internal structure of themodel. Next we consider a stochasticmodel that incorporates
multipliers containing a randomWiener process applied to migration rates

̇𝑥1 = 𝑎1𝑥1 − 𝑝11𝑥21 − 𝑞13𝑥1𝑥3 − 𝑞14𝑥1𝑥4 + 𝜎1𝑊𝑥2 − 𝜎2𝑊𝑥1,

̇𝑥2 = 𝑎2𝑥2 − 𝑝22𝑥22 − 𝜎1𝑊𝑥2 + 𝜎2𝑊𝑥1,

̇𝑥3 = −𝑐3𝑥3 − 𝑝33𝑥23 − 𝑞34𝑥3𝑥4 + 𝑑13𝑥1𝑥3,

̇𝑥4 = −𝑐4𝑥4 − 𝑝44𝑥24 + 𝑑34𝑥3𝑥4 + 𝑑14𝑥1𝑥4,

(4)

where 𝜎1, 𝜎2 are the noise intensities, and𝑊 is theWiener process. Thus, system (4) accounts for the
random nature of the migration parameters.
In the computer program developed in Python within the Jupyter Notebook environment the

solution of the SDE is implemented using the Euler–Maruyama method [14]. The essence of this
method is in the discretization of time and the step-by-step approximate computation of the SDE
solution taking into account both the deterministic and stochastic components.
Figure 3 shows the trajectories of model (1) and the trajectories of the corresponding stochastic

models. The trajectories are obtained using the identified set of parameters and the specified initial
conditions. Each of the four plots depicts the dynamics of the corresponding phase variable.
The results of the analysis of the system (1) trajectories and its stochastic variants presented in

Fig. 3 show the coexistence of prey, predator and superpredator species as well as the survival of
the species in the refuge. The introduction of additive noise has a minor effect on the behavior
of the model. Adding a random process to the migration parameters significantly affects not only
the population density of prey that can migrate to the refuge but also the population densities of
predator and superpredator in themain habitat. The solution trajectories of the stochastic differential
equations system reach a stationary regime. Fig. 4 shows the projections of phase portraits onto the
planes (𝑥1, 𝑥2) and (𝑥1, 𝑥4) respectively.
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Figure 3. Trajectories of model (1) and the corresponding stochastic models

Figure 4. Projections of phase portraits onto the planes (𝑥1, 𝑥2) and (𝑥1, 𝑥4)

Projections of phase portraits are constructed which provide a geometric representation of the
trajectories of the dynamical system for the specified set of parameters. The equilibrium state has
the character of a stable node. The trajectories in the deterministic case and in the stochastic cases
exhibit similar behavior.
We also consider the stochastization of model (1) based on the method of constructing self-

consistent models [11–15]. This method involves deriving a stochastic differential equation with
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consistent stochastic and deterministic parts. The specified stochastic differential equation is
obtained through mathematical transformations from an interaction scheme which is a symbolic
representation of all possible interactions within the system. In this paper the stochastic model is
obtained using a software package developed in Python, the description of which is provided in [16].
As input data the software package uses a description of the interactions occurring in the system.

One of the outputs of the software package is the interaction scheme which is represented using the
Jupyter interactive interface. The following interaction scheme corresponds to system (1)

𝑥1
𝑎1→ 2𝑥1, 𝑥2

𝑎1→ 2𝑥2,

𝑥3
𝑐3→ 0, 𝑥4

𝑐4→ 0,

2𝑥1
𝑝11→ 𝑥1, 2𝑥2

𝑝22→ 𝑥2, 2𝑥3
𝑝33→ 𝑥3, 2𝑥4

𝑝44→ 𝑥4,

𝑥1 + 𝑥3
𝑞13→ 𝑥3, 𝑥1 + 𝑥4

𝑞14→ 𝑞14𝑥4, 𝑥3 + 𝑥4
𝑞34→ 𝑥4,

𝑥1 + 𝑥3
𝑑13→ 𝑥1 + 2𝑥3, 𝑥1 + 𝑥4

𝑑14→ 𝑥1 + 2𝑥4, 𝑥3 + 𝑥4
𝑑34→ 𝑥3 + 2𝑥4,

𝑥1
𝛾
→ 𝑥2, 𝑥2

𝛽
→ 𝑥1.

The coefficients of the Fokker–Planck equation are as follows:

𝐴 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑎1𝑥1 − 𝑝11𝑥21 − 𝑞13𝑥1𝑥3 − 𝑞14𝑥1𝑥4 + 𝛽𝑥2 − 𝛾𝑥1,

𝑎2𝑥2 − 𝑝22𝑥22 − 𝛽𝑥2 + 𝛾𝑥1,

−𝑐3𝑥3 − 𝑝33𝑥23 − 𝑞34𝑥3𝑥4 + 𝑑13𝑥1𝑥3,

−𝑐4𝑥4 − 𝑝44𝑥24 + 𝑑34𝑥3𝑥4 + 𝑑14𝑥1𝑥4,

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

𝐵 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝐵11 −𝛽𝑥2 − 𝛾𝑥1 0 0

−𝛽𝑥2 − 𝛾𝑥1 𝐵22 0 0

0 0 𝐵33 0

0 0 0 𝐵44

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

where 𝐵11 = 𝑎1𝑥1 +𝑝11𝑥21 +𝑞13𝑥1𝑥3 +𝑞14𝑥1𝑥4 +𝛽𝑥2 +𝛾𝑥1, 𝐵22 = 𝑎2𝑥2 +𝑝22𝑥22 +𝛽𝑥2 +𝛾𝑥1, 𝐵33 = 𝑐3𝑥3 +
𝑝33𝑥23 + 𝑞34𝑥3𝑥4 + 𝑑13𝑥1𝑥3, 𝐵44 = 𝑐4𝑥4 + 𝑝44𝑥24 + 𝑑34𝑥3𝑥4 + 𝑑14𝑥1𝑥4.
Thus, using the software package the construction of the “prey–migration area–

predator–superpredator” model is constructed for both stochastic and deterministic cases.
After constructing the models other modules of the software package can be applied for the
numerical investigation of the system based on Runge–Kutta methods [12].
The results of the numerical experiments are presented in Fig. 5. The same parameter values are

used as those for the numerical solution of the SDE with additive and multiplicative noise. The plots
show the dynamics of the phase variables (population densities) 𝑥1, 𝑥2, 𝑥3, 𝑥4, respectively.
Based on the results of the numerical experiments it can be concluded that the self-consistent

stochastic model exhibits a different qualitative behavior. The solutions of the SDE also reach
a stationary regime. However, for this model the introduction of stochasticity in the described
manner leads to the extinction of both predators populations while the prey continues to exist in
both the main habitat and the refuge.
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Figure 5. Visualization of the numerical solution

4. Discussion
In this paper a four-dimensional dynamic population model of the “prey–migration area–
predator–superpredator” type which accounts for complex trophic interactions, intraspecific and
interspecific competition as well as prey migration to a refuge are investigated. For the model with
complex trophic interactions and migration flows, stochastization are performed using various
approaches: the approach with additive and multiplicative noises, the approach involving stochastic
parametric perturbations and the approach based on constructing self-consistent one-step models.
Using the scheme of stages of applying the differential evolution algorithm presented in Fig. 2 for

the study of model (1), a parameter set ensuring the coexistence of populations in the main habitat
and the survival of the prey population in the refuge is obtained. It is worth noting the universal
nature of the developed algorithm which can be applied to various types of dynamic models.
According to Fig. 3 the introduction of additive noise has a minor effect on the behavior of the

model. Adding a random process to the migration parameters significantly affects not only the
population density of prey that can migrate to the refuge but also the population densities of predator
and superpredator in the main habitat. The introduction of multiplicative noise influences the
trajectory dynamics; however, this influence is less significant compared to the stochastization of
migration parameters. The solution trajectories of the system of stochastic differential equations
reach a stationary regime. According to Fig. 5 the introduction of stochasticity using the method of
constructing self-consistent one-step models leads to the extinction of both predator populations
while the prey continues to exist in both the main habitat and the refuge.
Figure 6 shows a diagram illustrating the types of stochastization of a deterministic dynamic

population model with migration flows.
The results of this paper are obtained using two software packages. One of the two software

packages is developed for finding the optimal parameters of the deterministic “prey–migration area–
predator–superpredator” model, constructing and analyzing the trajectory dynamics of stochastic
models based on additive and multiplicative noise, as well as for building a stochastic model with
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Figure 6. Stochastization directions of a deterministic dynamic population model with migration flows

randommigration parameters. The other software package [12, 16] is designed for stochastization
based on the method of constructing self-consistent one-step models. The study results of the
“prey–migration area–predator–superpredator” model obtained using these software tools enabled
a comparative analysis of the trajectory dynamics for the deterministic population system with
migration flows and its corresponding stochastic variants.

5. Conclusion
The paper uses an approach to the study of populationmodels with trophic interactions andmigration
flows which is based on the use of evolutionary algorithms for finding parameters, additive and
multiplicative noises, the method of constructing self-consistent stochastic models and modified
numerical methods for solving systems of stochastic differential equations. Solving the optimization
problem using differential evolution allowed to find the optimal parameters of the “prey–migration
area–predator–superpredator”modelwith species competition in themainhabitat andpreymigration
to a refuge. For this model an approximate positive equilibrium state corresponding to the obtained
set of parameters is found.
In this paper the use of the applied methods made it possible to construct new stochastic models

of population dynamics that take into account trophic interactions, competition and bidirectional
prey migration. The implementation of algorithms for the stochastization of model (1) through the
introduction of additive andmultiplicative noises as well as stochastization based on given interaction
schemes enabled an analysis of the trajectory dynamics for the stochastic variants of the model in
comparison with the deterministic model.
As directions for further research one can consider the construction of new modifications of

multidimensional population models based onmodel (1) and the identification of parameter sets that
lead to significant differences in the dynamics of deterministic and stochastic models. Additionally
future research prospects include modeling complex trophic interactions involving several types of
prey or predator species as well as accounting for the nonlinear nature of migration flows.
Author Contributions: Conceptualization, Druzhinina, Olga V.,Masina, Olga N.; methodology, Druzhinina, Olga V., Masina, Olga
N.,Vasilyeva, Irina I.,Demidova, Anastasia V.; writing—review and editing Druzhinina, Olga V., Masina, Olga N.,Vasilyeva, Irina
I.,Demidova, Anastasia V.; supervision, Druzhinina, Olga V., Masina, Olga N.; project administration, Druzhinina, Olga V.,
Masina, Olga N. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data sharing is not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Declaration on Generative AI:The authors have not employed any Generative AI tools.



Vasilyeva, I. I. et al. Analysis of the stochastic model “prey–migration area–predator–superpredator” 281

References
1. Parshad, R. D., Wickramasooriya, S., Antwi-Fordjour, K. & Banerjee, A. Additional Food Causes

Predators to Explode — Unless the Predators Compete. International Journal of Bifurcation and
Chaos 33, 2350034. doi:10.1142/S0218127423500347 (2023).

2. Huang, X., Chen, L., Xia, Y. & Chen, F. Dynamical Analysis of a Predator–Prey Model with
Additive Allee Effect and Migration. International Journal of Bifurcation and Chaos 33, 2350179.
doi:10.1142/S0218127423501791 (2023).

3. Lagui, T., Traore, S. & Dosso, M. OnModels of Population Evolution of Three Interacting Species.
International Journal of Applied Mathematics, Computational Science and Systems Engineering 6,
193–223. doi:10.37394/232026.2024.6.17 (2024).

4. Almasri, A. & Tsybulin, V. G. A dynamic analysis of a prey–predator–superpredator system:
a family of equilibria and its destruction. Russian. Computer Research andModeling 15. in Russian,
1601–1615. doi:10.37394/232026.2024.6.17 (2023).

5. Al Noufaey, K. S. Stability Analysis of a Diffusive Three-Species Ecological System with Time
Delays. Symmetry 13. doi:10.3390/sym13112217 (2021).

6. Feng,W., Rock, B.&Hinson, J. On anewmodel of two-patchpredator-prey systemwithmigration
of both species. The Journal of Applied Analysis and Computation 1, 193–203. doi:10.11948/2011013
(2011).

7. Saha, T. & Chakrabarti, C. Stochastic analysis of prey-predator model with stage structure for
prey. Journal of Applied Mathematics and Computing 35, 195–209. doi:10.1007/s12190-009-0351-5
(2011).

8. Maiti, A., Sen, P. & Samanta, G. Deterministic and stochastic analysis of a prey–predator model
with herd behaviour in both. Systems Science & Control Engineering 4, 259–269. doi:10.1080/
21642583.2016.1241194 (Oct. 2016).

9. Vasilyeva, I. I., Demidova, A. V., Druzhinina, O. V. & Masina, O. N. Construction, stochastization
and computer study of dynamic population models “two competitors–two migration areas”.
Discrete and Continuous Models and Applied Computational Science 31, 27–45. doi:10.22363/2658-
4670-2023-31-1-27-45 (2023).

10. Vasilyeva, I. I., Demidova, A. V., Druzhinina, O. V. & Masina, O. N. Computer research of
deterministic and stochastic models “two competitors–twomigration areas” taking into account
the variability of parameters. Discrete and Continuous Models and Applied Computational Science
32, 61–73. doi:10.22363/2658-4670-2024-32-1-61-73 (2024).

11. Demidova, A. V. Equations of Population Dynamics in the Form of Stochastic Differential
Equations. Russian. RUDN Journal of Mathematics, Information Sciences and Physics 1. in Russian,
67–76 (2013).

12. Gevorkyan, M. N., Velieva, T. R., Korolkova, A. V., Kulyabov, D. S. & Sevastyanov, L. A. Stochastic
Runge–Kutta Software Package for Stochastic Differential Equations in Dependability Engineering
and Complex Systems (eds Zamojski,W., Mazurkiewicz, J., Sugier, J., Walkowiak, T. & Kacprzyk, J.)
(Springer International Publishing, Cham, 2016), 169–179. doi:10.1007/978-3-319-39639-2_15.

13. Korolkova, A. & Kulyabov, D. One-step Stochastization Methods for Open Systems. EPJ Web of
Conferences 226, 02014. doi:10.1051/epjconf/202022602014 (2020).

14. Gardiner, C.W.Handbook of Stochastic Methods: For Physics, Chemistry and the Natural Sciences
(Springer, Heidelberg, 1985).

15. Van Kampen, N. G. Stochastic Processes in Physics and Chemistry (Elsevier, Amsterdam, 1992).
16. Gevorkyan, M., Demidova, A., Velieva, T., Korolkova, A., Kulyabov, D. & Sevastyanov, L.

Implementing a Method for Stochastization of One-Step Processes in a Computer Algebra

https://doi.org/10.1142/S0218127423500347
https://doi.org/10.1142/S0218127423501791
https://doi.org/10.37394/232026.2024.6.17
https://doi.org/10.37394/232026.2024.6.17
https://doi.org/10.3390/sym13112217
https://doi.org/10.11948/2011013
https://doi.org/10.1007/s12190-009-0351-5
https://doi.org/10.1080/21642583.2016.1241194
https://doi.org/10.1080/21642583.2016.1241194
https://doi.org/10.22363/2658-4670-2023-31-1-27-45
https://doi.org/10.22363/2658-4670-2023-31-1-27-45
https://doi.org/10.22363/2658-4670-2024-32-1-61-73
https://doi.org/10.1007/978-3-319-39639-2_15
https://doi.org/10.1051/epjconf/202022602014


282 Modeling and simulation DCM&ACS. 2025, 33 (3), 272–283

System. Programming and Computer Software 44, 86–93. doi:10.1134/S0361768818020044 (Mar.
2018).

17. Karpenko, A. P. Modern Search Engine Optimization Algorithms. Algorithms Inspired by Nature 2nd
ed. Russian. in Russian (N.E. Bauman MSTU, Moscow, 2016).

18. Price, K. V., Storn, R. & Lampinen, J. Differential evolution: A Practical Approach to Global Opti-
mization (Springer, Berlin, Heidelberg, 2014).

19. Druzhinina, O. V., Masina, O. N. & Vasilyeva, I. I. Differential Evolution in Problems Optimal
Parameters Search for Population-Migration Models. Russian. Modern Information Technologies
and IT-Education 20. in Russian, 58–69. doi:10.25559/SITITO.020.202401.58-69 (2024).

Information about the authors
Vasilyeva, Irina I.—Assistant professor of Department of Mathematical Modeling, Computer Technologies and Information Se-
curity of Bunin Yelets State University (e-mail: irinavsl@yandex.ru, ORCID: 0000-0002-4120-2595)

Druzhinina, Olga V.—Doctor of Physical and Mathematical Sciences, Chief Researcher of Federal Research Center «Computer
Science and Control» of Russian Academy of Sciences (e-mail: ovdruzh@mail.ru, ORCID: 0000-0002-9242-9730)

Masina, Olga N.—Doctor of Physical and Mathematical Sciences, Professor of Department of Mathematical Model-
ing, Computer Technologies and Information Security of Bunin Yelets State University (e-mail: olga121@inbox.ru,
ORCID: 0000-0002-0934-7217)

Demidova, Anastasia V.—Candidate of Physical and Mathematical Sciences, Associate Professor of Department of Probability
Theory and Cyber Security of RUDN University (e-mail: demidova-av@rudn.ru, ORCID: 0000-0003-1000-9650)

https://doi.org/10.1134/S0361768818020044
https://doi.org/10.25559/SITITO.020.202401.58-69
mailto:irinavsl@yandex.ru
https://orcid.org/0000-0002-4120-2595
mailto:ovdruzh@mail.ru
https://orcid.org/0000-0002-9242-9730
mailto:olga121@inbox.ru
https://orcid.org/0000-0002-0934-7217
mailto:demidova-av@rudn.ru
https://orcid.org/0000-0003-1000-9650


Vasilyeva, I. I. et al. Analysis of the stochastic model “prey–migration area–predator–superpredator” 283

УДК 519.7

PACS 07.05.Tp

DOI: 10.22363/2658-4670-2025-33-3-272-283 EDN: HEOQDK

Анализ стохастической модели
“жертва–ареал миграции–хищник–суперхищник”
И. И. Васильева1, О. В. Дружинина2, О. Н. Масина1, А. В. Демидова3

1 Елецкий государственный университет им. И.А. Бунина, ул. Коммунаров, д. 28, Елец, 399770,
Российская Федерация
2Федеральный исследовательский центр «Информатика и управление», Российской академии наук,
ул. Вавилова, д. 44, кор. 2, Москва, 119333, Российская Федерация
3 Российский университет дружбы народов, ул. Миклухо-Маклая, д. 6, Москва, 117198, Российская
Федерация

Аннотация. К актуальным направлениям исследования динамических миграционно-популяционных
моделей относятся анализ траекторной динамики и решение задач параметрической оптимизации
с применением компьютерных методов. В настоящей работе рассматривается популяционная модель
«жертва–ареал миграции–хищник–суперхищник», которая задаётся системой четырёх дифференциаль-
ных уравнений. В модели учитываются трофические взаимодействия, внутривидовая и межвидовая
конкуренция, а также миграция жертвы в убежище. С помощью дифференциальной эволюции най-
дены параметры, обеспечивающие сосуществование популяций жертвы, хищника и суперхищника
соответственно в основном ареале обитания и существование популяции жертвы в убежище. Выполнен
переход к стохастическим вариантам модели на основе аддитивных шумов, мультипликативных шумов
и метода построения самосогласованных моделей. Для описания структуры стохастической модели
использованы уравнения Фоккера–Планка и выполнен переход к системе уравнений в форме Ланжеве-
на. Численное решение стохастических систем дифференциальных уравнений реализовано методом
Эйлера–Маруямы. С помощью программного комплекса на языке Python проведены компьютерные
эксперименты, построены траектории для детерминированного и стохастических случаев. Проведён
сравнительный анализ детерминированной и соответствующих ей стохастических моделей. Резуль-
таты могут найти применение при решении задач математического моделирования биологических,
экологических, физических, химических и демографических процессов.

Ключевые слова: система дифференциальных уравнений; миграционные потоки; стохастизация; метод
построения самосогласованных моделей; дифференциальная эволюция


