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Abstract. In this paper, we examine difference approximations for dynamic systems characterized by polynomial
Hamiltonians, specifically focusing on cases where these approximations establish birational correspondences
between the initial and final states of the system. Difference approximations are commonly used numerical
methods for simulating the evolution of complex systems, and when applied to Hamiltonian dynamics, they
present unique algebraic properties due to the polynomial structure of the Hamiltonian. Our approach involves
analyzing the conditions under which these approximations preserve key features of the Hamiltonian system,
such as energy conservation and phase-space volume preservation. By investigating the algebraic structure
of the birational mappings induced by these approximations, we aim to provide insights into the stability
and accuracy of numerical simulations in identifying the true behavior of Hamiltonian systems. The results
offer a framework for designing efficient and accurate numerical schemes that retain essential properties of
polynomial Hamiltonian systems over time.
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1. Introduction

In the realm of computational mathematics, the precise simulation of complex dynamical systems
is paramount for enhancing scientists’ understanding of both natural and engineered phenomena.
Hamiltonian described systems have many applications across diverse fields, including astrophysics,
quantum mechanics, and both mechanical and electrical engineering.

One of the most fundamental models in celestial mechanics and theoretical physics is Hamiltonian
equations of motion system. These systems delineate the evolution of mechanical and physical
phenomena over time and are essential for comprehending the behavior of a wide range of
physical systems: from simple pendulums to intricate planetary orbits. In numerous instances,
the Hamiltonian of these systems is represented as a polynomial or algebraic function of canonical
variables (qy, ..., ) and momenta (p, ..., p,). The way these equations are structured helps to keep
important quantities like energy and momentum constant, it ensures that the obtained solutions are
consistent with physical principles and empirical data [1].
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One of the main numerical study problem lies in the development of difference approximations
that accurately capture the qualitative behavior of the system. Traditional methods, such as the
widely utilized Runge-Kutta schemes, provide high accuracy but may fail to conserve certain
geometric properties intrinsic to Hamiltonian systems, including phase-space volume and symplectic
structure[2]. Over extended timescales, these numerical methods can lead to significant deviations
in the system’s trajectory from its true path, particularly in chaotic or highly sensitive regimes [3].
The concept of “ordered chaos” finds profound resonance in both natural systems and technological
applications, often analyzed through the lens of Hamiltonian mechanics. In nature, Hamiltonian
systems describe the evolution of dynamic systems like planetary motion or fluid dynamics, where
apparent chaos emerges from deterministic laws. Similarly, in technology, Hamiltonian principles
underlie optimization in quantum computing and energy conservation in algorithms, demonstrating
structured complexity. Whether modeling weather patterns or designing artificial intelligence
systems, ordered chaos reveals how intricate behaviors can arise from foundational rules, bridging
the gap between unpredictability and order in both realms. Consequently, alternative approaches
that preserve the qualitative integrity of Hamiltonian dynamics are worth developing [4, 5].

2. Numerical approaches

Inrecent years, researchers have turned their attention to symplectic integration methods, specifically
designed to preserve the symplectic structure of Hamiltonian flows [6]. These methods aim to
conserve quantities such as energy and phase-space volume, providing a more faithful representation
of the true motion of the system [7]. However, symplectic methods are often insufficient to fully
capture the complexity of polynomial Hamiltonian systems, which may exhibit rich and diverse
behaviors, including chaotic trajectories and resonance phenomena [8, 9]. Chaotic dynamics are
utilized in optimization algorithms, particularly in exploring large, complex solution spaces. The
unpredictable yet deterministic nature of chaotic trajectories helps avoid becoming stuck in local
minima, improving the efficiency of finding global solutions in systems like neural networks, genetic
algorithms, and quantum computation.

The study presented here focuses on difference approximations for Hamiltonian systems with
polynomial Hamiltonians, a subset that includes many physically significant cases. We explore the
idea of birational correspondences, wherein each step of the approximation represents a rational
transformation between the initial and final states of the system [10]. This approach allows for exact
preservation of certain structural properties and often leads to more accurate long-term simulations
than traditional methods.

The finite difference method proposes replacing the system of differential equations

dx; .
d_tl =ﬁ(xl,...,xn), 1= 1,-~~ana

or, for short,

de _

=i, M
with a system of algebraic equations

gi(x. 840 =0, i=1,..,n, )

relating the value ¢ of the solution at some moment in time ¢ with the value £ of the solution at the
moment in time ¢t + At.
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The system of the algebraic equation (2) itself will be called a difference scheme for a system of
the differential equation (1).

Discrete models are essential in connecting analytical solutions with numerical simulations
in dynamical systems, particularly for Hamiltonian systems with polynomial Hamiltonians.
Kahan’s method is notable for preserving energy integrals and approximating elliptic oscillators,
while symplectic schemes, like the midpoint method, ensure energy conservation in quadratic
Hamiltonians, facilitating closed trajectories. Appelroth’s quadratization technique simplifies
complex systems by transforming polynomial right-hand sides into quadratic forms [11, 12].
Geometric integrators are designed to maintain the analytical properties of the original systems,
ensuring qualitative behaviors are preserved. Additionally, combining Appelroth’s quadratization
with Kahan’s method enhances the analytic properties of difference approximations for higher-genus
curves. Together, these discrete models provide effective tools for simulating dynamical systems and
deepen the understanding of the interplay between algebraic structures and physical phenomena.

In mechanics the quantity dt has often been treated as a finite increment, and it was implied that
Newton’s equations were actually difference equations [13].

For example, the explicit Euler scheme

X—X=f@dt

for linear oscillator preserves the energy H = x? + y? only at dt — 0.

The problem is that classical difference schemes (explicit Runge-Kutta schemes) are not rich in
algebraic properties. We do describe properties of discrete models by looking back at continuous
models.

Kahan’s method is intrinsically linked to the development of discrete models for dynamical
systems, particularly in the context of Hamiltonian mechanics. Discrete models serve as numerical
approximations of continuous systems, allowing for the simulation of complex dynamics over time.
Kahan'’s discretization specifically addresses the challenges associated with preserving the geometric
and analytical properties of Hamiltonian systems when transitioning from continuous to discrete
representations [14, 15]. The method is designed to preserve the energy integral, which is crucial for
maintaining the qualitative behavior of the system over time. In the context of a Hamiltonian system,
the energy integral can be expressed as:

H(p,q) =C,

where C is a constant representing the total energy of the system. Kahan’s method allows for the
discretization of the Hamiltonian equations, leading to a difference scheme that can be written in the

form of a quadrature:
Xn+1
Au = / vdgq,
X,

n
where vdq represents an elliptic integral of the first kind. This formulation ensures that the points
of the approximate solution lie on an elliptic curve, thus inheriting the geometric properties of the
original Hamiltonian system.

Moreover, Kahan’s discretization approximates the solution by defining a birational transformation
on the integral curve H(p, q) = C, which does not extend to a birational transformation of the entire
phase space pg. This method allows for the correction of the integral curve while preserving its
genus, enabling the simulation of an elliptic oscillator. Although the symplectic structure is not
preserved exactly in case of the methods or conditions of the system fail to respect the intrinsic
geometric properties of Hamiltonian dynamic, it is inherited to a significant extent, making Kahan’s
method a powerful tool for imitating the dynamics of systems governed by cubic Hamiltonians [16].
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In 1990s, the concept of geometric integrators was introduced, marking a significant advancement
in the numerical analysis of differential equations. These integrators are designed to construct
numerical schemes that preserve specific algebraic and geometric properties intrinsic to the original
continuous model. It leads to maintaining the qualitative features of the dynamical system, such as
symplectic structure, conservation laws, and invariants, which are often lost in traditional numerical
methods. This approach enhances the fidelity of simulations and ensures that the long-term behavior
of the system is accurately represented, thereby providing a robust framework for the analysis of
complex dynamical phenomena.

Due to the following expression

t-r=i(5 a @

we can outline that it is -symmetric and symplectic. Also, (3) preserves quadratic integrals (Cooper’s
theorem).

The midpoint scheme is a numerical method used for solving ordinary differential equations
(ODEs), particularly in the context of Hamiltonian systems. It is a type of symplectic integrator, which
means it is designed to preserve the geometric properties of the original continuous system, such as
energy conservation and symplectic structure.

3. Quadratic Hamiltonian

A quadratic Hamiltonian refers to a Hamiltonian function that is a quadratic polynomial in the phase
space variables, typically the coordinates g and momenta p. In mathematical terms, a quadratic
Hamiltonian can be expressed in the form:

1 1
H(p,q) = %Pz + Equ’

where m is the mass of the particle, k is a constant related to the spring constant in the case of
harmonic oscillators, p is the momentum, and q is the position.

Quadratic Hamiltonians are significant in classical mechanics because they describe simple
harmonic motion, such as that of a mass on a spring or a pendulum for small angles. The dynamics of
systems with quadratic Hamiltonians can be analyzed using symplectic integrators, which preserve
the structure of Hamiltonian mechanics, ensuring that energy is conserved over time. This makes
them particularly useful in numerical simulations, as they provide accurate representations of the
system’s behavior [17].

The midpoint scheme perfectly imitates a Hamiltonian system

ax_on dy __on “
dt ~ dy’ dt~ dx

with a quadratic Hamiltonian H, for example, a harmonic oscillator with Hamiltonian H = x? + y?.

- According to Cooper’s theorem, the energy integral is preserved exactly on the scheme, and the
approximate solution itself is a sequence of points g, = (x,,, ,,) of the circle x* + y*> = C.
- Each step of the approximate solution is a rotation by an angle

En+1

Au = dx

\/C—xz,

En

which does not depend on n.
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4, Cubic Hamiltonian

Cubic Hamiltonians extend Hamiltonian mechanics beyond quadratic forms, expressed as:
1 5,10
H(p,q) = 394 + sz +c,

with constants a, b, and c. The cubic term introduces nonlinear dynamics, potentially leading to
chaotic behavior. It provides insight into complex transitions, enhances the realism of models, and
enables the study of phenomena that cannot be explained by linear systems. Traditional symplectic
integrators may struggle with these complexities, but methods like Kahan’s discretization effectively
approximate these systems, preserving integral properties and simulating relationships between
initial and final states. This enhances numerical accuracy and provides greater insight into cubic
Hamiltonian systems in both theoretical and applied contexts.

In the 1990s, it was anticipated that preserving a symplectic structure would enable the imitation
of a continuous model in the nonlinear case. The midpoint scheme is a symplectic Runge-Kutta
scheme, i.e.

dx Ady =dx Ady.

However, now the energy integral is not conserved, but is inherited in a very tricky formulation.

Theorem 1 (J. M. Sanz-Serna and M.P. Calvo, 1994). For any k € N, there exists a polynomial
H,(x, ydt) such that

Hj goes to H at dt to 0,
Hi(%,9,dt) = He(x, y, dt) + O(dtX).
Thus, in computer experiments, it seems that approximate solution lies on closed curve Hy(x,y) = c

at sufficiently large k.
Let’s get back to Kahan’s method. Kahan’s method for Hamiltonian systems:

1. Geometric properties of Kahan’s method restricted to quadratic vector fields.
2. For the systems with cubic hamiltonian, Kahan’s method conserved the modified Hamiltonian

>y —1
H+%VHT<E—QQ> f.
X

3. For the systems with cubic Hamiltonian, Kahan’s method preserves the measure

dx; Adxy - Adx,
det(E— %6—5)

ox

Kahan’s scheme perfectly imitates a Hamiltonian system with a cubic Hamiltonian H, for example,
an elliptic g-oscillator.

1. According to 1st Celledoni’s theorem, the symplectic structure is inherited, i.e.
dt Ady = (1+ 0(dt))dx A dy.

2. According to 2nd Celledoni’s theorem, the energy integral is inherited, thus the approximate
solution itself is a sequence of points &, = (x,,, y,) of an elliptic curve f(x,y,dt) = c.
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Consider more closely the narrowing of Cremona map to the invariant curve f(x, y, dt) = c. Using
constructions from Picard’s theorem, it follows that the difference scheme can be again represented
using quadrature

x
fv(x, y,dt)dx = Au(dt),
P
where vdx; is an elliptic integral of the 1st kind on invariant curve and, of course,

dx
vdx — ITy (atdt — 0).

5. Polinomial Hamiltonian

If the Hamiltonian is a polynomial of degree r > 3, then the exact solution to the continuous model
lies on an algebraic curve
H(x,y) =c¢,

whose genus is greater than 1. Thus the quadrature

dx
——=t+C
ny(x’Y)

on the curve H is Abelian integral of the 1st kind.

The integral cannot be inverted, and the functions x(t), y(t) Jacobi problem). Formally, our method
is suitable only for dynamical systems with quadratic right-hand sides, as the nonlinearity introduced
by higher-order terms complicates the inversion process and the analytic behavior of the solutions.
For more general systems, alternative methods, such as perturbation techniques or numerical
approaches, are required to obtain meaningful results.

Theorem 2 (Appelroth, 1902). Any dynamical system with polynomial right-side can be rewritten as
dynamical systems with quadratic right-side in new variables.

In the 21st century, the process of reducing a dynamical system characterized by a greater
number of new variables than initial variables n to one with a quadratic right-hand side is termed
quadratization. The method developed by Appelroth in the early 20th century facilitates this
transformation specifically for systems with polynomial right-hand sides, thereby enabling the
application of symplectic Runge-Kutta schemes, which preserve integrals of the system, though not
all properties of the original formulation may be retained. Consequently, any polynomial Hamiltonian
system can be effectively integrated using a reversible scheme that consists of two key steps: first,
the quadratization as proposed by Appelroth, followed by the discretization method established by
Kahan [18].

Although Newton’s equations must define a one-to-one correspondence between the initial and final
positions of a dynamical system, these equations do not actually define a one-to-one correspondence
between the initial and final states of the system [10]. We can impose violently this property on the
difference scheme. Currently, there are several implementations of quadratization algorythm [19]:
Qbee by A. Bychkov and BioCham by M. Hemery et al. The example was produced via Sage using Qbee
library made by Bychkov [20]. For more information, visit the https://github.com/AndreyBychkov/
QBee repository on GitHub.
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Example 1. Let’s figure out how the following system can be solved:

Consider the system with Hamiltonian of this system is

3 5

X1 X2
H=2L 22
3 5
The solution is described by the quadrature
f _dn e
84 zxg +3C

The particular solution of the system (4) with the initial conditions x; = x, = 1 att = 0 has a branching
point ¢t =~ 0.52.

In the process of solving the given system of equations, we utilized Sage along with the Qbee library
made by Bychkov. We started by defining the system, where the first equation is %, = x? and the
second equation is x, = x*.

x1l, x2 functions("x1, x2")
system = [
(x1, eval("x2*x*x4")),
(x2, eval("x1*x*x2"))
1

res = quadratize(system)

Using the capabilities of the Qbee library, we proceeded to perform the necessary calculations.
The main problem we faced with was the Qbee output difference in comparison with Cremona in
Sage which, in turn, is used to find the approximate solution of the system.

After quadratization implemented by Bychkov and restructured by us we've got the following
system:

Wy =3 - w2,
which can be rewritten into the following form to be solved using Cremona in Sage:
['x1', 'x2', 'wO0', 'wl', 'w2']
['wO*x2"', "x1**x2', '"3xwlxx1l', 'wO*x*2 + 2*xw2*xx2', '3*wl**x2']
The following problem is solved in the field of real numbers:
al,a2,a3,a4,a5=1
pr2 = Initial_problem([eval(dn) for dn in derivative_names],
[eval(ed) for ed in equations_derivatives],

[al,a2,a3,a4,a5], 0.6)
sol2=cremona_scheme(pr2, N=100, field=RR)
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The approximate solution passes through the branch point as a pole. Before the branch point the
exact and approximate solutions coincide. After this point the exact solution in imaginary, but the
approximate is real.
The integral that connect old and additional variables is not preserved by reversible schemes.
Before the branch point the expression

w0=x%

is equal to 0 on exact solution and is small on approximate solution, but its value at the branch point
is very large (about 10%°).

—Ty +wp

25000
20000
15000
10000 4

5000 4

—5000 1

—10000

Figure 1. Approximate solution —x,3 + wy on t dependency

The appropriateness of applying the combined Appelroth-Kahan approach to natural phenomena
depends on which properties of these phenomena are important for research and which can be
sacrificed [21].

This approach is good if the one-to-one correspondence between the initial and final positions of
the system is most important [22].

6. Discussion

The design of difference schemes that accurately replicate systems with polynomial Hamiltonians
involves a complex interplay between algebraic properties and physical principles. A critical question
arises regarding whether the correspondence between initial and final positions should be one-to-
one, particularly in Hamiltonian dynamics, where preserving certain properties is vital for model
integrity [23].

Historically, the quadrature (f IU_qu = t) has been fundamental in understanding Hamiltonian

dynamics. However, it is known that Lt)his representation fails to express (q) as a single-valued analytic
function of () when the genus of the curve defined by (H(p,q) = C) exceeds 1, underscoring the
complexities of nonlinear systems and the challenges in simulating their behavior.

Our exploration reveals that while traditional symplectic methods, such as the midpoint scheme,
effectively preserve energy in quadratic Hamiltonians, they may not extend this preservation to
systems with cubic or higher-order Hamiltonians. This raises questions about whether preserving
symplecticity guarantees that numerical solutions accurately reflect the system’s dynamics [24].
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Introducing additional variables, as seen in the many-body problem, presents a potential solution.
Reformulating the system to include distances and reciprocal distances allows for a new set of
differential equations that, despite losing Hamiltonian structure, preserve classical integrals of
motion [25]. This approach highlights the importance of integrals in governing dynamical behavior
and suggests that focusing on these may yield more accurate numerical approximations.

Furthermore, combining methods from Appelroth and Kahan offers a promising avenue for
approximating solutions to polynomial Hamiltonian systems. Utilizing Cremona transformations can
simplify the analytic properties of difference approximations compared to the original Hamiltonian
model, raising the question of whether these simplified models are superior to their continuous
counterparts [26].

Ultimately, the design of difference schemes transcends technical challenges, raising important
questions about the nature of dynamical systems. The delicate balance between preserving essential
properties and achieving computational feasibility significantly impacts the fidelity of numerical
solutions.

7. Conclusion

In conclusion, investigating difference approximations for Hamiltonian systems necessitates further
exploration of the governing principles. As we refine our understanding, we must consider both
algebraic and physical implications of our numerical methods. The pursuit of accurate simulations
of dynamical systems continues, with insights from this research contributing to advancements in
theoretical and applied mathematics.

Author Contributions: Conceptualization, Mikhail D. Malykh; Methodology, Mikhail D. Malykh and Lyubov O. Lapshenkova, and
Elena N. Matyukhina; Software, Mikhail D. Malykh and Lyubov O. Lapshenkova; Validation, Mikhail D. Malykh; Formal analysis,
Elena N. Matyukhina; Investigation, Mikhail D. Malykh, Lyubov O. Lapshenkova, and Elena N. Matyukhina; Resources, Mikhail
D. Malykh and Lyubov O. Lapshenkova; Data curation, Mikhail D. Malykh and Lyubov O. Lapshenkova; Writing—original
draft preparation, Lyubov O. Lapshenkova; Writing—review and editing, Mikhail D. Malykh and Lyubov O. Lapshenkova;
Visualization, Mikhail D. Malykh and Lyubov O. Lapshenkova; Supervision, Mikhail D. Malykh and Elena N. Matyukhina;
Project administration, Mikhail D. Malykh and Elena N. Matyukhina; Funding acquisition, Mikhail D. Malykh. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by RSF, project number 20-11-20257, https://rscf.ru/en/project/20-11-20257/.
Data Availability Statement: Data sharing is not applicable.
Acknowledgments: The authors are grateful to Prof. L.A. Sevastianov for valuable discussions.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study; in the

collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Declaration on Generative Al: The authors have not employed any Generative Al tools.

References

1. Butcher, J. C. Numerical Methods for Ordinary Differential Equations (Wiley, 2008).

2. Sanz-Serna, J. & Abia, L. Order conditions for canonical Runge-Kutta schemes. SIAM Journal on
Numerical Analysis 28, 1081-1096 (1991).

3. Wisdom, J. & Holman, M. Symplectic maps for the N-body problem. The Astronomical Journal
102, 152-164. doi:10.1086/117903 (1996).


https://rscf.ru/en/project/20-11-20257/
https://doi.org/10.1086/117903

Lapshenkova, L. O. et al. On the algebraic properties of difference approximations ... 269

10.
11.
12.
13.
14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Leimkubhler, B. & Reich, S. Simulating Hamiltonian dynamics 14th ed. (Cambridge University
Press, 2004).

Hairer, E., Lubich, C. & Wanner, G. Geometric Numerical Integration: Structure-Preserving Algo-
rithms for Ordinary Differential Equations (Springer, 2006).

Berzins, M. Symplectic Time Integration Methods for the Material Point Method, Experiments,
Analysis and Order Reduction. 14th WCCM-ECCOMAS Congress (2021).

Hairer, E., Lubich, C. & Wanner, G. Symplectic Runge-Kutta methods. Acta Numerica, 211-266.
do0i:10.1017/S096249290500008X (2006).

Neishtadt, A. I. On the behavior of Hamiltonian systems under small perturbations.
English. Russian Academy of Sciences. Izvestiya Mathematics 40, 547-556. doi:10 . 1070 /
IM1991v040n03ABEH002018 (1991).

Candy, J. & Cary, J. R. Symplectic Particle-in-Cell Algorithms. Journal of Computational Physics
174, 118-143. d0i:10.1006/jcph.2001.6771 (2001).

Severi, F. Lezioni di geometria algebrica (Angelo Graghi, Padova, 1908).

Dattani, N. Quadratization in discrete optimization and quantum mechanics 2019. ArXiv: 1901.04405.
Malykh, M., Gambaryan, M., Kroytor, O. & Zorin, A. Finite Difference Models of Dynamical
Systems with Quadratic Right-Hand Side. Mathematics 12, 167 (2024).

Feynman, R. P. Feynman lectures on computation Expanded edition (ed Hey, A. J.) trans. by Hey, T.
(CRC Press, Boca Raton, FL, 2018).

Quispel, G. R. W., McLaren, D. & Evripidou, C. Deducing properties of ODEs from their discretization
2021. ArXiv: 2104.05951.

Petrera, M. & Suris, Y. New results on integrability of the Kahan-Hirota-Kimura discretizations 2018.
Bogfjellmo, G., Celledoni, E., Robert, I. M., O., B. & Reinout, Q. Using aromas to search for
preserved measures and integrals in Kahan’s method. Math. Comput. 93, 1633-1653 (2022).
Petrera, M., Smirin, J. & Suris, Y. Geometry of the Kahan discretizations of planar quadratic
Hamiltonian systems. Proceedings of the Royal Society A 475 (2018).

Kahan, W. Pracniques: further remarks on reducing truncation errors. Communications of the
ACM 8, 40 (1965).

Bychkov, A. & Pogudin, G. Optimal Monomial Quadratization for ODE Systems in Combinatorial
Algorithms (eds Flocchini, P. & Moura, L.) 122-136 (Springer International Publishing, Cham,
2021). doi:10.1007/978-3-030-85550-5_8.

Bychkov, A. Qbee https://github.com/AndreyBychkov/QBee. 2021.

Celledoni, E., D I McLaren, D., Owren, B. & Quispel, G. R. W. Integrability properties of Kahans
method. Journal of Physics A: Mathematical and Theoretical 47 (2014).

Malykh, M., Ayryan, E., Lapshenkova, L. & Sevastianov, L. Difference Schemes for Differential
Equations with a Polynomial Right-Hand Side, Defining Birational Correspondences. Mathemat-
ics 12, 2725. do0i:10.3390/math12172725 (2024).

McLachlan, R. & Quispel, G. R. W. A Survey of Symplectic Integrators. Acta Numerica 11, 341~
387. d0i:10.1017/S0962492902000075 (2002).

Iserles, A. & Norsett, S. P. Symplectic Integrators for Hamiltonian Systems. SIAM Journal on
Numerical Analysis 39, 1-20. doi:10.1137/S0036142900366583 (2001).

Leimkuhler, D. & Reich, S. Numerical Methods for Hamiltonian Systems. Acta Numerica 13, 1-
50. doi:10.1017/S0962492904000010 (2004).

Rerikh, K. V. General Approach to Integrating Invertible Dynamical Systems Defined by
Transformations from the Cremona group Cr (P kn) of Birational Transformations. Mathe-
matical Notes 68, 594-601 (2000).


https://doi.org/10.1017/S096249290500008X
https://doi.org/10.1070/IM1991v040n03ABEH002018
https://doi.org/10.1070/IM1991v040n03ABEH002018
https://doi.org/10.1006/jcph.2001.6771
1901.04405
2104.05951
https://doi.org/10.1007/978-3-030-85550-5_8
https://github.com/AndreyBychkov/QBee
https://doi.org/10.3390/math12172725
https://doi.org/10.1017/S0962492902000075
https://doi.org/10.1137/S0036142900366583
https://doi.org/10.1017/S0962492904000010

270 Modeling and simulation DCM&ACS. 2025, 33 (3), 260-271

Information about the authors

Lapshenkova, Lyubov 0.—PhD student of the chair of Mathematical Modeling and Artificial Intelligence of RUDN University
(e-mail: lapshenkova_lo@pfur.ru, ORCID: 0000-0002-1053-4925)

Malykh, Mikhail D.—Doctor of Physical and Mathematical Sciences, Head of the department of Mathematical Mod-
eling and Artificial Intelligence of RUDN University and research fellow of LIT JINR (e-mail: malykh_md@pfur.ru,
ORCID: 0000-0001-6541-6603, ResearcherID: P-8123-2016, Scopus Author ID: 6602318510)

Matyukhina, Elena N.—Senior lecturer of the chair of Mathematical Modeling and Artificial Intelligence of RUDN University
(e-mail: matykhina_en@pfur.ru)


mailto:lapshenkova_lo@pfur.ru
https://orcid.org/0000-0002-1053-4925
mailto:malykh_md@pfur.ru
https://orcid.org/0000-0001-6541-6603
https://www.webofscience.com/wos/author/record/P-8123-2016
https://www.scopus.com/authid/detail.uri?authorId=6602318510
mailto:matykhina_en@pfur.ru

Lapshenkova, L. O. et al. On the algebraic properties of difference approximations ... 271

VAK 519.872, 519.217
PACS 07.05.Tp, 02.60.Pn, 02.70.Bf
DOI: 10.22363/2658-4670-2025-33-3-260-271 EDN: HGYTWX

06 anre6panyecKMx CBOMCTBAX Pa3HOCTHbIX NPUGANIKEHUN
raMubTOHOBbBIX CUCTEM

N. 0. Nanwexkosal, M. . Manbix"2, E. H. MaTtoxuHa'

L Poccuiicknii YHUBEPCUTET APYxObl HAPOAOB, yA. Muknyxo-Maknas, a. 6, Mockea, 117198, Poccuinckas
depepauns

2 06beAVNHEHHbIN WHCTUTYT SIAEPHbIX UccnegoBaHuin, yn. Xonno-Kiopu, a. 6, iy6Ha, 141980, Poccuitckas
depepaymsa

AHHoTauus. B 3Toii paGoTe Mbl pACCMOTPHUM Pa3HOCTHBIE allIIPOKCUMALINK AUHAMUYECKUX CUCTEM C IOIMHOMHU-
aJIbHBIMU FaMUJIBTOHUAHAMHY, B YACTHOCTH, COCPEJ0TOYMB BHIMAHUeE Ha CJIy4asx, KOrZa 3T allllpOKCUMaluu
yCTaHaBIMBAIOT OUpAIMOHATbHBIE COOTBETCTBUS MEXAY HAYaJIbHBIM 1 KOHEYHBIM COCTOSIHUSIMU CHCTEMBI.
Pa3HOCTHBIE AIIIIPOKCUMAIIUU O6BIYHO UCIIOIb3YIOTCS YUCI€HHBIMY METOAAMHU 151 MO/,e/IMPOBAHMUS 3BOTIOLIUH
CJIOKHBIX CHICTEM, U IIPYU IPUMEHEHNUN K aMIJIBTOHOBOM IMHAMUKe OHU 06/1aZ1al0T YHUKQJIBHBIMU aJIrebpau-
4YeCKHMU CBOMCTBaMU, 06CY/I0IBIEHHBIMY IIOJMHOMUATBHON CTPYKTYPHI FraMIIbTOHA. Halll moxo; BKI04aeT
aHaJINU3 YCJIOBUH, IPU KOTOPBIX 3TU alllIPOKCUMAIIAY COXPAHSAIOT KII0UeBble YePTHl IAMIJIBTOHOBOY CUCTEMEL,
TaKMe KaK COXpaHeHNe SHepTUM U CoXpaHeHHe (a30Bo-IIPOCTPaHCTBEHHOro 06béMa. Mcenenys anrebpande-
CKYIO CTPYKTYPY GHpaIiOHaIbHEIX OTOOPaXKeHUH, BBISBAHHBIX 9TUMU NPUOIIKEHUSMU, MBI CTPEMUMCS AaTh
IpeficTaBleHue 00 yCTONYMBOCTH U TOYHOCTH YHUCI€HHOTO MO/IeIPOBAHUS B CPAaBHEHUH C TI0BeZ€HIEM HC-
XOJIHBIX TaMIJIBTOHOBBIX cHcTeM. [IpeficTaBeHHEIE pe3y/IbTaThl HAIPaBIeHbI Ha pa3paboTKy 3bdeKTUBHBIX
U TOYHBIX YHCJIOBBIX CXeM, KOTOPBIE COXPAHSIOT CYIeCTBEeHHbIE CBOMCTBA ITOJTMHOMUATBHBIX TAMUTBTOHOBBIX
CHCTEeM C TedeHeM BpeMeHHU.

KnioueBble cnioBa: ['aMUIBTOHOBA CHCTeMa, MeTog KaraHa, bupanoHaapHOe 0ToOpakeHIe, KBaJpaTHU3aIisl
Annenspora



