
Discrete& Continuous Models
& Applied Computational Science
ISSN 2658-7149 (Online), 2658-4670 (Print)

2025, 33 (3) 242–259
http://journals.rudn.ru/miph

Research article
UDC 004.032.26

PACS 07.05.Mh, 07.05.Kf

DOI: 10.22363/2658-4670-2025-33-3-242-259 EDN: HFFBMV

Construction andmodeling of the operation of elements
of computing technology on fast neurons
Mikhail V. Khachumov1, 2, Yuliya G. Emelyanova3, Vyacheslav M. Khachumov1, 2, 3

1 RUDN University, 6 Miklukho-Maklaya str., Moscow, 117198, Russian Federation
2 Federal Research Center “Computer Science and Control” of Russian Academy of Sciences, 9 60-let Octyabrya
prosp., Moscow, 117312, Russian Federation
3 Ailamazyan Program Systems Institute of RAS, 4a Peter the Great str., Pereslavl-Zalessky, Yaroslavl Region,
152021, Russian Federation

(received: June 29, 2025; revised: July 20, 2025; accepted: July 25, 2025)

Abstract. The article is devoted to the construction of fast neurons and neural networks for the implementation
of two complete logical bases and modeling of computing devices on their basis. The main idea is to form a fast
activation function based on semi-parabolas and its variations that have effective computational support. The
constructed activation functions meet the basic requirements that allow configuring logical circuits using the
backpropagation method. The main result is obtaining complete logical bases that open the way to constructing
arbitrary logical functions. Models of such elements as a trigger, a half adder, and an adder, which form the basis
of various specific computing devices, are presented and tested. It is shown that the new activation functions
allow obtaining fast solutions with a slight decrease in quality compared to reference outputs. To standardize
the outputs, it is proposed to combine the constructed circuits with a unit jump activation function.

Key words and phrases: new activation functions, parabola, full logical basis, element models, performance,
experimental studies

For citation: Khachumov,M.V., Emelyanova, Y. G., Khachumov, V.M. Construction and modeling of the operation of elements
of computing technology on fast neurons. Discrete and Continuous Models and Applied Computational Science 33 (3), 242–259.
doi: 10.22363/2658-4670-2025-33-3-242-259. edn: HFFBMV (2025).

1. Introduction
The need to increase the speed of artificial neural networks (ANN) containing a huge number of
neurons leads to the construction of “fast neurons”, which is achieved by a special implementation
of activation functions [1–3] and their hardware implementation. This has led to the expansion
of research in the field of creating and studying new activation functions and their practical use.
Currently, great efforts are aimed at accelerating the operation of activation functions for the
construction of “fast” neurons and neural networks based on them. A comparison of various typical
activation functions (AFs) in the ANN is performed in the works [4–6]. The issues of searching for
methods to reduce the computational complexity of implementing AFs are discussed in [7–9].

© 2025 Khachumov,M.V., Emelyanova, Y. G., Khachumov,V.M.

This work is licensed under a Creative Commons “Attribution-NonCommercial 4.0 International” license.

http://journals.rudn.ru/miph
https://elibrary.ru/hffbmv
https://elibrary.ru/hffbmv
https://creativecommons.org/licenses/by-nc/4.0/deed.en
https://creativecommons.org/licenses/by-nc/4.0/deed.en

Khachumov,M.V. et al. Construction and modeling of the operation of elements of computing… 243

Of interest is the creation of elements of computer technology (CT) using complete logical bases
(complete systems of logical functions). These are, for example, ∧, ∨, ¬ (conjunction, disjunction,
negation); ∧, ¬ (conjunction, negation); ∨, ¬ (disjunction, negation). The devices are implemented
by covering them with neurons and neural networks. Interest in this approach is not weakening and
is currently growing with the increasing interest in artificial intelligence technologies. It is worth
noting the emergence of a class of specialized processors that serve to accelerate the work of neurons
and the training algorithms of ANNs as a whole [10].
In this paper, we propose to implement typical elements of the VT on “fast” neurons obtained

by replacing known activation functions with new functions that are characterized by a higher
implementation speed. Previously, the authors proposed a new activation function called the s-
parabola, created a complete logical basis and algorithms for setting up such neurons and neural
networks [11, 12].
In this paper, the main focus is on the construction of fast neurons using new activation functions

s-parabola, Sparabola-ReLU and ReLU-Sparabola, which are combinations of parabolas and linear
functions. Based on them, fast VT elements are proposed: “XOR”, trigger, half adder, adder.
Structure of the article
In section 2. Materials and Methods in paragraph 2.1. The basic requirements for activation

functions are presented. Section 2.2. Standard and new activation functions propose new functions
that can be used in ANNs configured using the backpropagation method. The settings and quality
parameters of neurons that form the logical bases “AND”–“OR”–“NOT” and the bases “AND-NOT”,
“OR-NOT” are shown. The settings are linked to the basic neuron schemes (one neuron, two neurons,
constructor) for configuring activation functions.
In section 3. Results in paragraph 3.1. show the settings of the activation functions on the logical

basis “AND”–“OR”–“NOT” by the method of back propagation of the error. In relation to the basic
circuits of neuron connection, comparative estimates of the speed of tuning and implementation
of functions are given. Similar studies are performed in section 3.2. for tuning activation functions
to the logical bases “AND-NOT”, “OR-NOT”. To expand the studies in section 3.3., new activation
functions are additionally tuned to the XOR function. Section 3.4. considers the construction of VT
elements on logical bases. The results of covering the circuits of the RS trigger of the half adder and
adder with logical elements on neurons and the “XOR” function are shown.
In section 4. Discussion discusses the obtained results in comparison with the state of the world

level of development of the subject area. The prospects of the proposed approach are associated with
the use of fast activation functions in multilayer and convolutional ANNs. It is noted that significant
acceleration can be achieved by switching to hardware implementation of activation functions in the
form of bit-parallel circuits and the use of CORDIC family algorithms.
In section 5. Conclusion summarizes the results obtained and provides suggestions for further

research development.

2. Thematerials andmethods

2.1. Basic requirements for activation functions. Complete logical basis on traditional
and fast neurons

The requirements for activation functions are quite contradictory, but at the same time, the following
features can be highlighted.

244 Computer science DCM&ACS. 2025, 33 (3), 242–259

1. If neural networks are trained using the backpropagation method using the gradient descent
process, then the layers in the model and the activation functions must be differentiable. Some
activation functions, for example, linear or hyperbolic tangent, are differentiable over the entire
range of admissible values.

2. The requirements for the activation function of an ANN are determined by a special theorem on
completeness [13], according to which the function must be twice differentiable and continuous.
The derivative of the activation function must be defined on the entire abscissa axis. To be used
in a neuron, the function must be monotonically increasing or decreasing, have parameters
that can be adjusted during the training process.

3. It is desirable that the output of the activation function be symmetrical with respect to zero, so
that the gradients do not shift in a certain direction. Such a case corresponds, for example, to
the sigmoid rational.

4. For logical problems, the excitation values of the output layer neurons must belong to the range
[0, 1]. This corresponds, for example, to the sigmoid function and the unit jump (step function).
However, the unit jump function does not meet the requirements of differentiability. It is not
differentiable at point 0, and its derivative is 0 at all other points. Gradient descent methods
do not work for such a function. This can create problems with training, since the numerical
gradients calculated near the point where the derivative does not exist may be incorrect.

5. Since activation functions must be calculated repeatedly in deep networks, their calculation
must be inexpensive in computational terms. This fact requires a revision of the implementation
methods and, possibly, the creation of new functions, which we will call fast-acting.

2.2. Typical and new activation functions

Table 1 presents activation functions that have found wide application in neural networks.

Table 1
Typical activation functions

Name Formula Schedule

Sigmoid 𝑓(𝑠) = 1
1 + 𝑒−𝛼𝑠

s
6 4 2 0 2 4 6

f s

0,2

0,4

0,6

0,8

1

Sigmoid-rational
function 𝑓(𝑠) = 𝑠

1 + |𝑠| s
6 4 2 0 2 4 6

f s

1

0,5

0,5

1

Khachumov,M.V. et al. Construction and modeling of the operation of elements of computing… 245

Hyperbolic
tangent 𝑓(𝑠) = 𝑒2𝑠 − 1

𝑒2𝑠 + 1 s
6 4 2 0 2 4 6

f s

1

0,5

0,5

1

ReLU 𝑓(𝑠) = 𝑚𝑎𝑥(0, 𝑠)

s
6 4 2 0 2 4 6

f s

1

3

6

SiLu 𝑓(𝑠) = 𝑠
1 + 𝑒−𝑠

s
10 8 6 4 2 0 2 4

f s

0,5

0,5

1

1,5

Single jump 𝑓(𝑠) =
⎧
⎨
⎩

1 if 𝑠 > 0

0 if 𝑠 ≤ 0
s

6 4 2 0 2 4 6

f s

0,2

0,4

0,6

0,8

1

The approach proposed in this paper is based on the idea.

1. Construction of fast neuronmodels based on the activation function of the “s-parabola” type and
their application in individual ANNs and classifier committees. The “s-parabola” function has
a structure in which the upper part (the first quarter) is the upper branch of the parabola, and
the lower part is a mirror image of the lower part of the parabola relative to the ordinate axis
(the third quarter). The graph and formula of the proposed activation function are presented in
Table 2 .

2. Combining different types of activation functions to achieve an effective solution to the problem.

The prospects and advantage of the s-parabola are associated with the simplicity of calculating the
function, which ensures the speed of implementation. The s-parabola can be used as an activation
function of the ANN, since it satisfies the established requirements of twice differentiability. A similar
function can be used in multilayer direct propagation ANNs to solve problems of recognizing rigid
objects and predicting time processes.
Table 2 presents some new neuronal activation functions.

246 Computer science DCM&ACS. 2025, 33 (3), 242–259

Table 2
New activation functions: s-parabola and its variations

Name Formula Parameters Schedule

S-parabola 𝑓(𝑠) = {𝛽 +√2𝑝𝑠 if 𝑠 > 0

𝛽 −√2𝑝𝑠 if 𝑠 ≤ 0

𝑝 = 1
3

𝛽 = 0.0 s
3 2 1 0 1 2 3

f s

2

1

1

2

S-parabola 𝑓(𝑠) = {𝛽 +√2𝑝𝑠 if 𝑠 > 0

𝛽 −√−2𝑝𝑠 if 𝑠 ≤ 0

𝑝 = 0.1
𝛽 = 0.5

s
3 2 1 0 1 2 3

s

1

1

2

ReLU-
Sparabola 𝑓(𝑠) = {𝛽 +√2𝑝𝑠 if 𝑠 > 0

𝑠 + 𝛽 if 𝑠 ≤ 0

𝑝 = 0.5
𝛽 = 0.01 s

3 2 1 1 2 3 4

s

2

1

1

2

Sparabola-
ReLU 𝑓(𝑠) = {𝑠 + 𝛽 if 𝑠 > 0

𝛽 −√−2𝑝𝑠 if 𝑠 ≤ 0

𝑝 = 0.1
𝛽 = −0.3

s
3 2 1 0 1 2 3

s

1

1

2

Let us consider the construction of a complete logical basis on fast neurons. The implementation
of the functions “AND”, “OR”, “NOT”, “AND–NOT”, “OR–NOT” is carried out on the basis of basic
circuits with one and two neurons Table 3 .

2.3. Performance evaluation of activation functions

Let 𝑛 be the bit depth of the numbers being processed, then we can estimate the complexity of
executing the activation functions (Table 3).

Table 3
Activation functions sorted in order of decreasing complexity

Function Computational complexity Rating (for 𝑛 = 8)

SiLu 𝑛2((log𝑛)2 + log𝑛 + 1) + 𝑛 840

Sigmoid 𝑛2(1 + (log𝑛)2 + log𝑛) 832

Hyperbolic tangent 𝑛2((log𝑛)2 + log𝑛) + 2𝑛 + 1 785

Khachumov,M.V. et al. Construction and modeling of the operation of elements of computing… 247

Sigmoid-rational 𝑛(1 + 𝑛 log𝑛) 200

S-parabola 2𝑛2 128

ReLU-Sparabola 𝑛,𝑛 + 2𝑛2 (8, 136), average 72

Sparabola-ReLU 𝑛 + 2𝑛2, 𝑛 (136, 8), average 72

ReLU 𝑛 + 1 9

For ReLU-Sparabola, Sparabola-ReLU the complexity of the implementation depends on which
part of the function is executed (left or right).

2.4. Structural diagrams of neurons and their constructs

Variants of neuron schemes are presented in Fig. 1.

x yw

b
y

w1

b
x1

x2

w2

y

wx1

x2

w21

1 2
w

w w

x1

x2

y

w12

w22

w11

w21
w01 w02

w12
*

1 2

a) b) c) d)

Single neuron circuits Circuits with two neurons

Figure 1. Basic neuron schemes for setting up activation functions

3. Results
The activation functions are configured using the backpropagation method for the logical functions
“OR”, “AND”, “NOT” (Table 4-6).

The calculation of speed characteristics was performed on a personal computer with the following
parameters: processor: Intel Core i5-6600K @ 3.50 GHz; RAM: 32 GB.

3.1. Activation function settings on the logical basis “AND”–“OR”–“NOT”

Table 4
Comparative characteristics of the setting for the “OR” function on one neuron

Characteristics of training S-parabola ReLU-Sparabola Sparabola-ReLU Sigmoid

Starting weights 𝑤1 = 1,𝑤2 = 1, 𝑏 = −0.5

Setup results
𝑤1 = 1.385,
𝑤2 = 1.351,
𝑏 = −0.516

𝑤1 = 4.963,
𝑤2 = 5.071,
𝑏 = 3.812

𝑤1 = 0.475,
𝑤2 = 0.483,
𝑏 = −0.004

𝑤1 = 15.685,
𝑤2 = 15.712,
𝑏 = −6.967

𝑝 0.1 0.1 2.0 —

𝛽 0.5 -0.5 0.25 —

248 Computer science DCM&ACS. 2025, 33 (3), 242–259

𝛼 — — — 0.5

Average deviation 0.124 0.189 0.181 0.009

Training time, ms 648 7307 27072 1483

Time to implement 10000000
data table cycles, ms 621 645 578 1040

Table 5
Comparative characteristics of the setting for the “AND” function on one neuron

Characteristics of training S-parabola ReLU-Sparabola Sparabola-ReLU Sigmoid

Starting weights 𝑤1 = 1,𝑤2 = 1, 𝑏 = −1.5

Setup results
𝑤1 = 1.268,
𝑤2 = 1.359,
𝑏 = −1.756

𝑤1 = 0.516,
𝑤2 = 0.405,
𝑏 = 0.098

𝑤1 = 0.874,
𝑤2 = 0.874,
𝑏 = −0.514

𝑤1 = 16.338,
𝑤2 = 16.338,
𝑏 = −24.899

𝑝 0.1 1.75 0.1 —

𝛽 0.5 -1.0 -0.3 —

𝛼 — — — 0.5

Average deviation 0.123 0.274 0.098 0.010

Training time, ms 5942 602 34332 3159

Time to implement 10000000
data table cycles, ms 621 636 562 1053

Table 6
Comparative characteristics of the setting for the “NOT” function on one neuron

Characteristics of training S-parabola ReLU-Sparabola Sparabola-ReLU Sigmoid

Starting weights 𝑤 = −1, 𝑏 = 0

Setup results 𝑤 = −3.994,
𝑏 = 6.246

𝑤 = −3.993,
𝑏 = 6.246

𝑤 = −0.999,
𝑏 = 0.999

𝑤 = −18.328,
𝑏 = 8.688

𝑝 0.5 0.5 0.5 —

𝛽 -1.5 -1.5 0 —

𝛼 — — — 0.5

Average deviation 0.001 0.001 0.0001 0.010

Training time, ms 219 218 218 2719

Time to implement 10000000
data table cycles, ms 220 219 183 2843

Khachumov,M.V. et al. Construction and modeling of the operation of elements of computing… 249

3.2. Settings of activation functions for logical bases “AND-NOT”, “OR-NOT”

Table 7–12 presents the results of the implementation of the alternative full basis “AND-NOT” and
“OR-NOT” using one and two neurons.

Table 7
Characteristics of the setting for the “AND-NOT” function on one neuron

Characteristics of training S-parabola ReLU-Sparabola Sparabola-ReLU Sigmoid

Starting weights — 𝑤1 = 1,𝑤2 = 1, 𝑏 = −1.5

Setup results
𝑤1 = −1.040,
𝑤2 = −1.035,
𝑏 = 0.515

𝑤1 = −0.585,
𝑤2 = −0.546,
𝑏 = 1.871

𝑤1 = −0.510,
𝑤2 = −0.562,
𝑏 = 3.177

𝑤1 = −16.373,
𝑤2 = −16.405,
𝑏 = 24.852

𝑝 0.9 1 4 —

𝛽 1.75 -0.75 -2 —

𝛼 — — — 0.5

Average deviation 0.286 0.186 0.220 0.010

Training time, ms 1198 5064 8801 3223

Time to implement 10000000
data table cycles, ms 692 655 581 1043

Table 8
Characteristics of setting for the “AND-NOT” function on two neurons (Fig. 1(d))

Characteristics of training S-parabola ReLU-Sparabola Sparabola-ReLU Sigmoid

Starting weights 𝑤11 = −7,𝑤21 = −7,𝑤12 = −7,𝑤22 = −4,𝑤12
∗ = −11 —

𝑤01 = −2.6,𝑤02 = 10

Setup results

𝑤11 = −13.998,
𝑤21 = −12.525,
𝑤12 = −1.530,
𝑤22 = −1.461,
𝑤12

∗ = −0.326,
𝑤01 = 1.289,
𝑤02 = 1.353

𝑤11 = −6.892,
𝑤21 = −6.691,
𝑤12 = 0.364,
𝑤22 = 0.341,
𝑤12

∗ = 0.193,
𝑤01 = 7.415,
𝑤02 = 0.469

𝑤11 = −12.926,
𝑤21 = −12.057,
𝑤12 = −1.470,
𝑤22 = −1.431,
𝑤12

∗ = −0.297,
𝑤01 = 1.583,
𝑤02 = 1.463

𝑤11 = −0.073,
𝑤21 = −0.593,
𝑤12 = −4.991,
𝑤22 = −4.559,
𝑤12

∗ = 3.812,
𝑤01 = 0.559,
𝑤02 = 5.303

𝑝 0.5 0.5 0.5 —

𝛽 0.01 0.01 0.01 —

𝛼 — — — 1.0

Average deviation 0.009 0.006 0.009 0.039

Training time, ms 538 450 506 10311

Time to implement 10000000
data table cycles, ms 39200 32600 36700 4303800

250 Computer science DCM&ACS. 2025, 33 (3), 242–259

Table 9
Results of the implementation of the “AND-NOT” function on two neurons (Fig. 1(c))

𝑦
𝑥1 𝑥2 S-parabola ReLU-Sparabola Sparabola-ReLU Sigmoid

0 0 1.072 1.310 1.621 0.987

1 1 0.107 0.142 0.066 0.010

0 1 0.818 0.722 0.940 0.985

1 0 0.844 0.593 0.940 0.985

Table 10
Comparative characteristics of setting for the “OR-NOT” function on one neuron

Characteristics of training S-parabola ReLU-Sparabola Sparabola-ReLU Sigmoid

Starting weights — 𝑤1 = 1,𝑤2 = 1,
𝑏 = −0.5 — 𝑤1 = 1,𝑤2 = 1,

𝑏 = −0.5

Setup results
𝑤1 = −0.135,
𝑤2 = −0.135,
𝑏 = 0.158

𝑤1 = −0.325,
𝑤2 = −0.420,
𝑏 = 0.870

𝑤1 = −0.448,
𝑤2 = −0.515,
𝑏 = 1.583

𝑤1 = −16.226,
𝑤2 = −16.238,
𝑏 = 7.139

𝑝 4.0 2.0 3.0 —

𝛽 -0.25 -1.0 -0.75 —

𝛼 — — — 0.5

Average deviation 0.296 0.231 0.215 0.010

Training time, ms 5800 2232 6155 1597

Time to implement 10000000
data table cycles, ms 647 677 614 1120

Table 11
Characteristics of setting for the “OR-NOT” function on two neurons (Fig. 1(d))

Characteristics of training S-parabola ReLU-Sparabola Sparabola-ReLU Sigmoid

Starting weights 𝑤11 = −7,𝑤21 = −7,𝑤12 = −7,𝑤22 = −4,𝑤12
∗ = −11 —

𝑤01 = −2.6,𝑤02 = 10

Setup results

𝑤11 = −12.977,
𝑤21 = −12.665,
𝑤12 = 0.511,
𝑤22 = 0.496,
𝑤12

∗ = 0.327,
𝑤01 = 1.307,
𝑤02 = 0.603

𝑤11 = −6.932,
𝑤21 = −6.747,
𝑤12 = −1.395,
𝑤22 = −1.375,
𝑤12

∗ = −0.204,
𝑤01 = 7.709,
𝑤02 = 1.558

𝑤11 = −12.441,
𝑤21 = −12.075,
𝑤12 = 0.466,
𝑤22 = 0.449,
𝑤12

∗ = 0.301,
𝑤01 = 1.530,
𝑤02 = 0.526

𝑤11 = 0.508,
𝑤21 = 0.536,
𝑤12 = −9.564,
𝑤22 = −9.557,
𝑤12

∗ = −0.360,
𝑤01 = −0.464,
𝑤02 = 3.900

𝑝 0.5 0.5 0.5 —

𝛽 0.01 0.01 0.01 —

𝛼 — — — 0.5

Average deviation 0.010 0.007 0.010 0.037

Training time, ms 377 819 279 18819

Time to implement 10000000
data table cycles, ms 1536 1488 1456 2512

Khachumov,M.V. et al. Construction and modeling of the operation of elements of computing… 251

Table 12
Results of the implementation of the “OR-NOT” function on two neurons (Fig. 1(c))

𝑦
𝑥1 𝑥2 S-parabola ReLU-Sparabola Sparabola-ReLU Sigmoid

0 0 0.852 0.681 0.874 0.983

1 1 -0.240 -0.236 -0.452 0.008

0 1 0.178 0.209 0.271 0.009

1 0 0.107 0.218 0.279 0.009

The tables show that when implementing a logical basis on two neurons using parabolic activation
functions, the tuning results exceed the results of implementation on a sigmoid in accuracy and
speed. Sigmoid is worst tuned to the “AND-NOT” function. When implemented on one neuron,
sigmoid works more accurately, although slower.

3.3. Tuning neurons to the “XOR” function

To expand the research, new activation functions were additionally configured using the
backpropagation method on the “XOR” function using the ANN constructed according to the scheme
in Fig. 1(d). The results are shown in Table 13.

Table 13
Characteristics of setting for the “XOR” function on two neurons (Fig. 1(d))

Characteristics of training S-parabola ReLU-Sparabola Sparabola-ReLU Sigmoid

Starting weights 𝑤11 = −7,𝑤21 = −7,𝑤12 = −7,𝑤22 = −4,𝑤12
∗ = −11

𝑤01 = −2.6,𝑤02 = 10

Setup results

𝑤11 = −14.176,
𝑤21 = −13.494,
𝑤12 = −2.025,
𝑤22 = −1.963,
𝑤12

∗ = −0.633,
𝑤01 = 1.375,
𝑤02 = 0.748

𝑤11 = −6.872,
𝑤21 = −6.686,
𝑤12 = 1.733,
𝑤22 = 1.691,
𝑤12

∗ = 0.392,
𝑤01 = 7.547,
𝑤02 = −1.079

𝑤11 = −13.496,
𝑤21 = −12.694,
𝑤12 = −1.946,
𝑤22 = −1.876,
𝑤12

∗ = −0.586,
𝑤01 = 1.557,
𝑤02 = 0.918

𝑤11 = −6.999,
𝑤21 = −6.999,
𝑤12 = −6.275,
𝑤22 = −6.154,
𝑤12

∗ = −14.208,
𝑤01 = 2.613,
𝑤02 = 9.382

𝑝 0.5 0.5 0.5 —

𝛽 0.01 0.01 0.01 —

𝛼 — — — 1.0

Average deviation 0.009 0.010 0.008 0.035

Training time, ms 603 542 550 23681

Time to implement 10000000
data table cycles, ms 1944 1511 1474 2489

252 Computer science DCM&ACS. 2025, 33 (3), 242–259

&

&

R

S

Q

Q

𝑅 𝑆 𝑄 𝑄 Comment

0 0 1 1 Prohibition

0 1 1 0 Record “1”

1 0 0 1 Record “0”

1 1 × × Storage

a) RS trigger on “AND-NOT” logic circuits b) Truth table

Figure 2. Trigger on “AND-NOT” elements

1

1

R

S

Q

Q

𝑅 𝑆 𝑄 𝑄 Comment

0 0 × × Storage

0 1 1 0 Record “1”

1 0 0 1 Record “0”

1 1 0 0 Prohibition

a) RS trigger on “OR-NOT” logic circuits b) Truth table

Figure 3. Trigger on “OR-NOT” elements

It is evident that the main trends identified in the compilation of logical bases are also preserved in
the implementation of a more complex “XOR” function, which is widely used in computer elements.

3.4. Construction of CD elements on logical bases

The CD circuits are implemented by covering them with neurons and neural networks configured
on the logical bases “AND”–“OR”–“NOT”, “AND-NOT”, “OR-NOT” or with the sequential formation of
more complex elements. Fig. 2 and Fig. 3 show the results of such coverage of the RS-trigger circuits
with logical elements on the neurons “AND-NOT” and “OR-NOT”.

Fig. 4a shows the circuit diagrams of some basic elements of the CD, implemented in the logical
basis of “OR-NOT”, and Fig. 4b shows with the addition of the “single jump” element.
Fig. 5a shows the implementation of the RS trigger on two “AND-NOT” neurons, and Fig. 5b adds

a “single jump” type element to the outputs, which allows us to obtain clear values of “1” and “0” at
the outputs.
The results of the RS-trigger simulation are presented in Tables 16-17.
Let us consider the construction of a neural network for the implementation of a half adder.

A single-bit adder (half adder), designated as SM/2, does not have an input carry, since it is the least
significant bit of a multi-bit adder. A half adder can be built on the basis of XOR logic circuits and the
AND circuit (Fig. 6-7). The logic of SM/2 operation is determined by the truth table.

Based on two half adders and an “OR” circuit, a full one-bit adder SM can be constructed as shown
in Fig.8-9.

Khachumov,M.V. et al. Construction and modeling of the operation of elements of computing… 253

y

w1x1

w2

w1 w0

1

y

x 2

w2

w1
w0

2

1

2

a) using the outputs of “AND-NOT” neurons

w1x1

w2

w1 w01

y1

x 2

w2

w1

y2

1

3

22

4

w02

w12

w01 w02

w12

b) adding neurons with the activation function
“single jump”

Figure 4. RS trigger in which the “AND-NOT” element is implemented on one neuron

Table 14
Results of the RS trigger operation, in which the

“AND-NOT” element is implemented on one neuron

𝑥1 𝑥2 𝑦1 𝑦2
0 0 Prohibition

1 1 Storage

0 1 2.713 -0.702

1 0 0.074 2.638

Table 15
Results of the RS trigger operation, in which the

“AND-NOT” element is implemented on one neuron with
the addition of neurons with the “single jump” activation

function

𝑥1 𝑥2 𝑦1 𝑦2
0 0 Prohibition

1 1 Storage

0 1 1 0

1 0 0 1

Table 16
Results of the RS trigger operation, in which the

“AND-NOT” element is implemented on two neurons

𝑥1 𝑥2 𝑦1 𝑦2
0 0 Prohibition

1 1 Storage

0 1 0.999 -0.059

1 0 -0.061 0.992

Table 17
Results of the RS trigger operation, in which the

“AND-NOT” element is implemented on two neurons
with the addition of neurons with the “single jump”

activation function

𝑥1 𝑥2 𝑦1 𝑦2
0 0 Prohibition

1 1 Storage

0 1 1 0

1 0 0 1

254 Computer science DCM&ACS. 2025, 33 (3), 242–259

x11

x12

y

w12

w22

w11

w21
w01 w02

w12
*

1 2

x 21

x 22

y

w12

w22

w11

w21
w01 w02

w12
*

3 4

1

2

x11

x12

w12

w22

w11

w21
w01 w02

w12
*

1 2

x 21

x 22

w12

w22

w11

w21
w01 w02

w12
*

4 5

3 y13

6 y2

w03

w03

w

w23w

w23

a) using “AND-NOT” neuron outputs b) adding neurons with the activation
function “single jump”

Figure 5. RS trigger in which the “AND-NOT” element is implemented on two neurons

XOR

&

x1

x2

y

Pi

𝑥1 𝑥2 𝑦 𝑃𝑖
0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

a) Half adder circuit (SM/2) b) Truth table

Figure 6. Logical diagram of the half adder (SM/2)

x1

x2

y

w12

w22

w11

w21
w01 w02

w12
*

1 2

Pi

w03

3

w13w13

w23

x1

x2

y

w12

w22

w11

w21
w01 w02

w12
*

1 2

Pi

w04

4

w14w1

w24

3

w03

w23

5
w45

w05

a) base model b) model with additional neurons (with
the “single jump” function)

Figure 7. Models of a half-adder (SM/2) on neurons

Khachumov,M.V. et al. Construction and modeling of the operation of elements of computing… 255

SM/2

SM/2
1

Pi-1

x1

x2

y

Pi

𝑥1 𝑥2 𝑃𝑖−1 𝑦 𝑃𝑖
0 0 0 0 0

0 0 1 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

a) Full single-bit adder (SM) b) SM operation logic

Figure 8. Logic diagram of the sub adder (SM)

y

w12

w22

w11

w21
w01 w02

w12
*

6 7

w04

9

w14w1

w24

8

w03

w23

10
w45

w05

x1

x2

w12

w22

w11

w21
w01 w02

w12
*

1 2

w04

4

w14w1

w24

3

w03

w23

5
w45

w05

w5_11 Pi11 12

w0_11 w0_12

w11_12

Pi-1

w10_11

Figure 9. Model of a full adder (SM) on neurons

4. Discussion
Comparison of the obtained results with existing works in the field of implementation of activation
functions shows that of interest is not only the decomposition of a complex activation function,
for example, a sigmoid, into simpler functions in order to speed up its implementation [1, 2], but
also a direct replacement of the function with other functions, for example, an s-parabola and its
variations, which allow amore efficient implementation in time. In this case, the effect of acceleration
is ensured by several times with some loss in the accuracy of the implementation of thresholds [0,1].
Undoubtedly, of interest is also some slight complication of the VT schemes due to the addition of
neurons with the traditional single-jump function to the final cascades, as shown in paragraph 3.4.
Another aspect of acceleration is related to the efficient hardware implementation of activation

functions. The special organization of “fast” neurons and neural networks is the subject of, for
example, the works [14–16].
Great hopes are placed on bit-parallel circuits for calculating functions included in activation

functions. We note a series of works aimed at increasing the speed of solving various problems of
comparison, establishing correspondence between streams and performing arithmetic operations
on bit vectors, including simultaneous processing of matrix columns [17–20].

256 Computer science DCM&ACS. 2025, 33 (3), 242–259

In this case, the expected success is associated with the transition to CORDIC algorithms [21–23],
which allow regulating the speed and accuracy of calculations. This direction will be developed in
subsequent works by the authors.

5. Conclusions
Summing up, we can recapitulate.

1. The composition of activation functions based on the parabola has been expanded, including
S-parabola, ReLU-Sparabola and Sparabola-ReLU.

2. Activation functions have been constructed that implement complete logical bases “OR-AND-
NOT” and “AND-NOT, OR-NOT” on neurons and neural networks with new activation functions.
Compared to implementations based on the “Sigmoid” function, in the general case, the
implementation is accelerated by 1.6-1.8 times with a small possible loss in accuracy and
setup time. Setup time is not a decisive factor here, since after setup, the neurons are further
used without changing the established coefficients, which are fixed.

3. Typical elements of computing equipment have been implemented on them: triggers, half
adders, adders.

4. It is planned to implement the s-parabola activation function in multilayer ANNs, including
convolutional neural networks of the YOLO class. 5. The possibilities and applications of new
activation functions in convolutional neural networks will be investigated.

5. To speed up the calculation of activation functions, bit-parallel calculation schemes will be
proposed using the CORDIC family of algorithms.

Author Contributions: Conceptualization, Khachumov M. and Khachumov V.; methodology, Khachumov M.; software,
Emelyanova Y.; validation, Khachumov M., Emelyanova Y. and Khachumov V; formal analysis, Emelyanova Y.; investigation,
Khachumov M.; resources, Emelyanova Y.; data curation, Emelyanova Y.; writing—original draft preparation, Emelyanova
Y.; writing—review and editing, Khachumov M., Khachumov V; visualization, Emelyanova Y.; supervision, Khachumov M.;
project administration, KhachumovM.; funding acquisition, KhachumovM. All authors have read and agreed to the published
version of the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Russian Science Foundation, grant number 25-21-00222 (https://rscf.ru/en/project/25-21-
00222/).

Data Availability Statement: Data sharing is not applicable.

Conflicts of Interest: Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of
the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish
the results.

Declaration on Generative AI:The authors have not employed any Generative AI tools.

References
1. Limonova, E., Nikolaev, D. & Alfonso, D. Bipolar morphological neural networks: Gate-efficient

architecture for confined environment, 573–580. doi:10.1109/NAECON46414.2019.9058018
(2019).

2. Limonova, E., Nikolaev, D. & Arlazarov, V. Bipolar morphological U-Net for document
binarization, 1–9. doi:10.1117/12.2587174 (2021).

3. Limonova, E., Nikolaev, D., Alfonso, D. & Arlazarov, V. ResNet-like architecture with low
hardware requirements, 6204–6211. doi:10.1109/ICPR48806.2021.9413186 (2021).

https://rscf.ru/en/project/25-21-00222/
https://rscf.ru/en/project/25-21-00222/
https://doi.org/10.1109/NAECON46414.2019.9058018
https://doi.org/10.1117/12.2587174
https://doi.org/10.1109/ICPR48806.2021.9413186

Khachumov,M.V. et al. Construction and modeling of the operation of elements of computing… 257

4. Dubey, S., Singh, S. & Chaudhuri, B. Activation Functions in Deep Learning: A Comprehensive
Survey and Benchmark. Neurocomputing 503, 1–18. doi:10.1016/j.neucom.2022.06.111 (2022).

5. Feng, J. & Lu, S. Performance Analysis of Various Activation Functions in Artificial Neural
Networks. Journal of Physics Conference Series, 1–7. doi:10.1088/1742-6596/1237/2/02203 (2019).

6. Akgül, I. Activation functions used in artificial neural networks. In book: Academic Studies in
Engineering, 41–58 (Oct. 2023).

7. Arce, F., Zamora, E., Humberto, S. & Barrón, R. Differential evolution training algorithm for
dendrite morphological neural networks. Applied Soft Computing 68, 303–313. doi:10.1016/j.asoc.
2018.03.033 (2018).

8. Dimitriadis, N. & Maragos, P. Advances in the training, pruning and enforcement of shape
constraints of morphological neural networks using tropical algebra, 3825–3829. doi:10.48550/
arXiv.2011.07643 (2021).

9. Limonova, E., Nikolaev, D., Alfonso, D. & Arlazarov, V. Bipolar morphological neural networks:
gate-efficient architecture for computer vision. IEEE Access 9, 97569–97581. doi:10.1109/ACCESS.
2021.3094484 (2021).

10. Galushkin, A., Sudarikov,V. & Shabanov, E. Neuromathematics: themethods of solving problems
on neurocomputers. 2, 1179–1188. doi:10.1109/RNNS.1992.268515 (1992).

11. Khachumov, M. & Emelyanova, Y. Parabola as an Activation Function of Artificial Neural
Networks. Scientific and Technical Information Processing 51, 471–477. doi:10 . 3103 /
S0147688224700382 (2024).

12. Khachumov, M., Emelyanova, Y. & Khachumov, V. Parabola-Based Artificial Neural Network
Activation Functions, 249–254. doi:10.1109/RusAutoCon58002.2023.10272855 (Sept. 2023).

13. Hanche-Olsen, H. & Holden, H. The Kolmogorov–Riesz compactness theorem. 28, 385–394.
doi:10.1016/j.exmath.2010.03.001 (June 2009).

14. Nabavinejad, S., Reda, S. & Ebrahimi, M. Coordinated Batching and DVFS for DNN Inference
on GPU Accelerators. 33, 1–12. doi:10.1109/TPDS.2022.3144614 (Oct. 2022).

15. Trusov, A., Limonova, E., Slugin, D., Nikolaev, D. & Arlazarov, V. Fast Implementation of 4-bit
Convolutional Neural Networks for Mobile Devices, 9897–9903. doi:10.1109/ICPR48806.2021.
9412841 (Sept. 2020).

16. Shashev, D. & Shatravin, V. Implementation of the sigmoid activation function using the
reconfigurable computing environments. Russian. Tomsk State University Journal of Control
and Computer Science, 117–127. doi:10.17223/19988605/61/12 (2022).

17. Hyyro, H. &Navarro, G. Bit-Parallel Computation of Local Similarity ScoreMatrices with Unitary
Weights. International Journal of Foundations of Computer Science. doi:10.1142/S0129054106004443.

18. Hyyro, H. Explaining and extending the bit-parallel approximate string matching algorithm of
Myers (2001).

19. Hyyro, H. & Navarro, G. Faster bit-parallel approximate string matching, 203–224 (2002).
20. Hyyro, H. & Navarro, G. Bit-parallel witnesses and their applications to approximate string

matching. Algorithmica 41, 203–231 (2005).
21. Zakharov, A. & Khachumov, V. Bit-parallel Representation of Activation Functions for Fast

Neural Networks. 2, 568–571 (2014).
22. Volder, J. The Birth of Cordic. The Journal of VLSI Signal Processing-Systems for Signal, Image, and

Video Technology 25, 101–105. doi:10.1023/A:1008110704586 (2000).
23. Chetana & Sharmila, K.VLSI Implementation of Coordinate Rotation Based DesignMethodology

using Verilog HDL. doi:10.1109/ICAIS56108.2023.10073928 (2023).

https://doi.org/10.1016/j.neucom.2022.06.111
https://doi.org/10.1088/1742-6596/1237/2/02203
https://doi.org/10.1016/j.asoc.2018.03.033
https://doi.org/10.1016/j.asoc.2018.03.033
https://doi.org/10.48550/arXiv.2011.07643
https://doi.org/10.48550/arXiv.2011.07643
https://doi.org/10.1109/ACCESS.2021.3094484
https://doi.org/10.1109/ACCESS.2021.3094484
https://doi.org/10.1109/RNNS.1992.268515
https://doi.org/10.3103/S0147688224700382
https://doi.org/10.3103/S0147688224700382
https://doi.org/10.1109/RusAutoCon58002.2023.10272855
https://doi.org/10.1016/j.exmath.2010.03.001
https://doi.org/10.1109/TPDS.2022.3144614
https://doi.org/10.1109/ICPR48806.2021.9412841
https://doi.org/10.1109/ICPR48806.2021.9412841
https://doi.org/10.17223/19988605/61/12
https://doi.org/10.1142/S0129054106004443
https://doi.org/10.1023/A:1008110704586
https://doi.org/10.1109/ICAIS56108.2023.10073928

258 Computer science DCM&ACS. 2025, 33 (3), 242–259

Information about the authors
Khachumov, Mihail V.—Candidate of Physical and Mathematical Sciences, Senior Researcher at Federal Research Cen-
ter “Computer Science and Control” of Russian Academy of Sciences (e-mail: khmike@inbox.ru, phone: +7(926)7104291,
ORCID: 0000-0001-5117-384X, Scopus Author ID: 55570238100)

Khachumov, Vyacheslav M.—Doctor of Technical Sciences, Chief Researcher at Federal Research Center “Com-
puter Science and Control” of Russian Academy of Sciences (e-mail: vmh48@mail.ru, ORCID: 0000-0001-9577-1438,
Scopus Author ID: 56042383100)

Emelyanova, Yuliya G.—Candidate of Technical Sciences, Senior Researcher at Ailamazyan Program Systems Institute of RAS
(e-mail: yuliya.emelyanowa2015@yandex.ru, ORCID: 0000-0001-7735-6820, Scopus Author ID: 57202835704)

mailto:khmike@inbox.ru
https://orcid.org/0000-0001-5117-384X
https://www.scopus.com/authid/detail.uri?authorId=55570238100
mailto:vmh48@mail.ru
https://orcid.org/0000-0001-9577-1438
https://www.scopus.com/authid/detail.uri?authorId=56042383100
mailto:yuliya.emelyanowa2015@yandex.ru
https://orcid.org/0000-0001-7735-6820
https://www.scopus.com/authid/detail.uri?authorId=57202835704

Khachumov,M.V. et al. Construction and modeling of the operation of elements of computing… 259

УДК 004.032.26

PACS 07.05.Mh, 07.05.Kf

DOI: 10.22363/2658-4670-2025-33-3-242-259 EDN: HFFBMV

Построение и моделирование работы элементов
вычислительной техники на быстрых нейронах
М. В. Хачумов1, 2, Ю. Г. Емельянова3, В. М. Хачумов1, 2, 3

1 Российский университет дружбы народов, ул. Миклухо-Маклая, д.6, Москва, Россия, 117198
2Федеральный исследовательский центр «Информатика и управление» Российской академии наук, ул.
Вавилова, д.44, кор.2, Москва, Россия, 119333
3 ИПС им. А. К. Айламазяна РАН, ул. Петра Первого, д.4а, Переславль-Залесский, Ярославская область,
Россия, 152021

Аннотация. Статья посвящена построению быстрых нейронов и нейронных сетей для реализации двух
полных логических базисов и моделирования на их основе устройств вычислительной техники. Ос-
новная идея заключается в формировании быстрой функции активации на основе полупарабол и её
вариаций, имеющих эффективную вычислительную поддержку. Построенные функции активации
отвечают основным требованиям, позволяющим настраивать логические схемы методом обратного
распространения ошибки. Основным результатом является получение полных логических базисов, от-
крывающих путь к построению произвольных логических функций. Представлены и протестированы
модели таких элементов как триггер, полусумматор, сумматор, составляющих основу различных кон-
кретных вычислительных устройств. Показано, что новые функции активации позволяют получать
быстрые решения при небольшом снижении качества по сравнению с эталонными выходами. Для стан-
дартизации выходов предлагается комбинировать построенные схемы с функцией активации типа
единичный скачок.

Ключевые слова: новые функции активации, парабола, полный логический базис, модели элементов,
быстродействие, экспериментальные исследования

