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Abstract. The filtration process is studied for a popular class of filters with radial cartridges that proved their high
effectiveness in purification of water. The mass balance equation for radial flows in porous media is obtained by
using the lattice approximation method, the transverse diffusion process being taken into account. The Euler
dynamical equations are modified by including the Darcy force proportional to the velocity of the filtration flow.
The system of equations is written for the stationary axially symmetric radial flow and solved by the perturbation
method, if the vertical velocity is supposed to be small.
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1. Introduction. The mass balance equation in porous media

The hydrodynamics of liquid flow in a porous medium modeling the grain filling in filters is studied [1-
11]. The main concept behind this research appears to be the necessity to modify the fundamental
equations of hydrodynamics to meet the requirements of mass and momentum balance under
specific conditions of liquid flows through porous media. As can be shown later, bearing on the
lattice approximation, the structure of the fluid current and the transverse diffusion coefficient D are
derived, the latter proving to be proportional to the diameter d of the grains as constituents of the
medium [12-16].

Our study concerns radial filtration process, where the purification proves to be more effective
than that for cylindrical geometry. First, let us apply the lattice approximation to the mass balance
equation and use the cylindrical coordinates p, ¢, z, with ¢ being the azimuth angle. Let us number
the lattice vertices by the indices i, j (transverse to the flow) and k (along the flow), the corresponding
cylindrical coordinates being ¢, z and p, respectively. Let us denote the local radial stream of the
fluid by

Gijic = ASy Ujjie, 1

where u; . stands for the radial velocity of the flow and A4Sy is the area of the gap between the grains.
It means that
ASy = p AP Az Sy, )
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where S), denotes the porosity of the medium, with the fluid density being taken unity. Therefore,
the local mass conservation law reads

Gijk = l—1Giji-1 + Pr-1(Gi—1jk-1 + Gipjr—1) + Qe-1(Gij—1k—1 + Gijr1k—1)s (3)

where the branching coefficients r, p, q are introduced. Thus, the mass conservation equation reads
> Giji =Y. Gijk-1»
ij ij

and implies the constraint on the branching coefficients:

e+ 2(pr +qi) = 1. 4
In view of (1), (2) and the constraint (4) one can represent the equation (3) in the form:
k k—1 k—1 k—1
TPk Sk u;i} — He—1Pk—1 Sk—1 uf;ij ) = pro1Pk-1Sk (u,(oi_1; + u;m;) +
k-1 k-1 k
+ Qk-1Pk-15k-1 (uf(aij—i + u,E)ij+i> = 201 Si(Pk + qi) u;(;i;-

Identifying now the lattice spacing with the diameter d of the grain, one can prove through the latter
relation that in the continuous limit the following differential equation is valid:

8,[pS(u— D, 8, w)| + 3,(r Spw) + 34(Sv) — 8;[D¢S w/p] =0, (5)

where the transverse diffusion coefficients are introduced: D, = qd, Dy = pd and the following
denotations for the components of the fluid velocity are used: u, = w, ug = v, u, = u. However, in
virtue of the axial symmetry of the flow it is necessary to put p; = 0. Therefore, the equation (5) takes
the form of the stationary mass conservation law:

divj =0, (6)
with the components of the current j reading:
Jo =r@)S(EW, j; = S(E)[u—D(p)s, w], @)
where the local transverse diffusion coefficient is introduced:
D(p) = q(p)d(p). ®)

It is worth while to stress that the effect of the transverse diffusion in porous media is widely discussed
in literature [13, 14].

2. The hydrodynamics of the radial flow in porous media: Darcy’s law

To find the profiles of the velocity u and the pressure P, it is necessary to solve the Euler equation,
with the force density f including the gravity acceleration g and the Darcy force f, = —kpu. In the
first approximation, the Darcy coefficient kp appears to be constant: kp = ky = const, but in general
it should be some function of the velocity and the pressure [7, 15-21]. In particular, recently some
deviations from the standard Darcy’s law appear to be evident [22, 23]. Let us now add to the mass
balance equation also the stationary Euler equation:

(uV)u+ VP =g — kyu. 9)



Rybakov, Y. P., Semenova, N. V., Liquid radial flows with a vortex through porous media 321

Let us now rewrite the equations (6) and (9) in cylindrical coordinates:
d,(reSw) + 9,[pS(u— D, w)| =0,
(wo, +ud)u+0,P+g+kou=0,

2
(wap+uaz)w—%+app+kow=o,

(wap+uaz)v+%+kov=0.

3. Perturbation method

Let us suppose that the radial part of our filter has the external diameter 2b, the internal one 2a and
several plates (layers or cartridges) of the height 2] « a. Therefore,a < p < b, -1 <z <l < aand
the boundary condition for the fluid vertical velocity reads:

u(p,z=%l) =0.

In view of the condition I < a, the vertical velocity u is supposed to be small: u < v, w. Therefore,
in the first approximation one can put in equations (2), (2), (2), (2) u =0, 3, w = 3, v = 0 and obtain
the following structure of the velocities wy(p), vy(p) and the pressure P = —gz + po(p):

P
_Ga _ [ dr
=8 o | ),
a

I
w? v2
Po(p) = C, — 70 +f (—0 — ko wo) dp,
Je
a
where wy(p) = Cy(rpS)~! and C,, C;, C, denote some constants.
In the second approximation, in view of the boundary condition (3), one can put:

u=az(l’-z%), w=uwy+pz% v=uvy+7yz?
where the functions a(p), B(p), y(p) take the form:

o
_20,D 6D |\
) = rpS 2 exp(f riz dp),

a

I
G 6D . \.
=& o [ 2.5)

I’
k
(p) = C(p)g eXp<— f %j’@dp).

Finally, inserting functions (3), (3), (3) into the equations (2) and (2), one can obtain the modified
pressure:

P =—gz+ py— (kga+wyd,a)z(I> — z2/2)/2—

_zz[woﬁ—f<2‘j707—koﬁ)dp],
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where
o o

Wy a

0 Wo
a a

and C;, C, denote some constants.

4. Conclusion

Several important effects were revealed in our study of radial flows with a vortex through porous
media. First, the unusual structure of the mass balance equation (2), having the form of the transverse
diffusion law, was found. In this equation the transverse diffusion coefficient D(p) appears to be
proportional to the diameter d(p) of the grain filling modeling a porous medium.

Second, the simplest Darcy’s force with constant Darcy coefficient kp, = k, was used, the important
dependence of the vortex velocity (3) on k, being established. This fact supports the necessity of
generalizing the Darcy’s law, in accordance with the effects mentioned in [22, 23].

Third, the important influence of the vortex velocity v(p, z) on the purification efficiency becomes
evident from the structure of the pressure (3) and (3). It is worth while to stress the connection of
this effect with the fluidization process discussed in [24, 25].
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PaguanbHble NOTOKU XXUAKOCTHU C BUXpeM Yyepe3 nopucTtbie
cpenbi
0. M. PbibakoB, H. B. CeméHoBa

Poccuitckuii yHuBepcunTeT gpyx6bl HapoAoB, yi. Muknyxo-Maknas, a. 6, Mocksa, 117198, Poccuiickas
depepaymsa

AHHoTauus. MzydaeTcs mporecc QUIbTpanuy AJIs IOIy/ISPHOTo Kaacca GUIBTPOB ¢ pafiaabHBIMU KapTPH-
IDKaMHU, I0Ka3aBIINX CBOIO BBICOKYIO 3(bEKTHUBHOCTD IIPU OYUCTKE BOABI. YpaBHeHMe GaaHca MacChl st
pajuanbHbIX IIOTOKOB B IOPUCTBIX CPeiax MOJIyIeHO C UCIIOIb30BaHHEeM MeTO/A PeLIETOYHOrO IPUOIKEeHUS
¢ yu4éToM IIpoliecca nornepedHoi guddysuu. JluHaMudecKre ypaBHeHUS Dilyiepa MOAUDUIIUPOBAHBI IIyTEM
BKJIFOUEHUS CUJIBI JIapcy, MPONOPIIMIOHATBHOMN CKOPOCTH DIIIBTPAIOHHOrO IOTOKA. CHCTeMa ypaBHEHUH
3arycaHa /iJisi CTallMOHAPHOI0 0CECUMMETPHUYHOTO PafiaJbHOTO IIOTOKA 1 pellleHa MeTOI0M BO3MYIeHUH,
€CJIV BePTUKAJIbHAsI CKOPOCTbD IIPE/II0IaTaeTCs MalIOH.

Kniouesble cnosa: (i)I/IJIpraLII/IFI, IIopucTad cpefia, Cujaa l[apcn



