Discrete & Continuous Models
& Applied Computational Science

ISSN 2658-7149 (Online), 2658-4670 (Print)

2025, 33 (1) 46-56
http://journals.rudn.ru/miph

Research article
UDC 519.872, 519.217
PACS 07.05.Tp, 02.60.Pn, 02.70.Bf
DOI: 10.22363/2658-4670-2025-33-1-46-56 EDN: BLFUDE

Symbolic algorithm for solving SLAEs with multi-diagonal
coefficient matrices

Milena Veneval>?

! Joint Institute for Nuclear Research, 6 Joliot-Curie St, Dubna, Moscow Region, 141980, Russian Federation

2 RIKEN Center for Computational Science, R-CCS, 7-1-26 Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo
650-0047, Japan

(received: November 8, 2024; revised: November 30, 2024; accepted: December 12, 2024)

Abstract. Systems of linear algebraic equations with multi-diagonal coefficient matrices may arise after many
different scientific and engineering problems, as well as problems of the computational linear algebra where
finding the solution of such a system of linear algebraic equations is considered to be one of the most important
problems. This paper presents a generalised symbolic algorithm for solving systems of linear algebraic equations
with multi-diagonal coefficient matrices. The algorithm is given in a pseudocode. A theorem which gives the
condition for correctness of the algorithm is formulated and proven. Formula for the complexity of the multi-
diagonal numerical algorithm is obtained.
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1. Introduction

Systems of linear algebraic equations (SLAEs) with multi-diagonal coefficient matrices may arise
after many different scientific and engineering problems, as well as problems of the computational
linear algebra where finding the solution of a SLAE is considered to be one of the most important
problems. For instance, the resultant SLAE after discretization of partial differential equations (PDEs),
using finite difference methods (FDM) or finite element methods (FEM) has a banded coefficient
matrix. The methods for solving such SLAEs known in the literature usually require the matrix to
possess special characteristics so as the method to be numerically correct and stable, e. g. diagonal
dominance, positive definiteness, etc. Another possible approach which ensures numerically correct
formulae without adding special additional requirements or using pivoting is the symbolic algorithms.
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By definition, a band SLAE is a SLAE with band coefficient matrix. The lower band width p is the
number of sub-diagonals, the upper band width q is the number of super-diagonals, and the band
width of the matrix is defined as p + q + 1 (we should add 1 because of the main diagonal), that is,
the total number of non-zero diagonals in the matrix [1]. Here, we are going to focus on SLAEs with
matrices for which p = ¢ = M. The author of [2] presents a generalised numerical algorithm for
solving multi-diagonal SLAEs with pivoting (implemented in Fortran) in the case p # g, and has
applied it for solving boundary value problems discretized by finite difference approximations.

A whole branch of symbolic algorithms for solving systems of linear algebraic equations with
different coefficient matrices exists in the literature. For instance, in [3] the author considers
a tridiagonal matrix and a symbolic version of the Thomas method [4-7] is formulated. The authors
of [8] build an algorithm in the case of a general bordered tridiagonal SLAE, while in [9] the coefficient
matrix taken into consideration is a general opposite-bordered tridiagonal one.

A pentadiagonal coefficient matrix is of interest in [10], while a cyclic pentadiagonal coefficient
matrix is considered in [11]. The latter algorithm can be applied to periodic tridiagonal and periodic
pentadiagonal SLAE either by setting the corresponding matrix terms to be zero.

In [12] a symbolic method for the case of a cyclic heptadiagonal SLAEs is presented.

What is common for all these symbolic algorithms, is that they are implemented using Computer
Algebra Systems (CASs) such as Maple [13], Mathematica [14], and Matlab [15].

Finally, [16] presents a symbolic method for the case of a pure heptadiagonal SLAE.

A performance analysis of symbolic methods (and numerical as well) for solving band matrix SLAEs
(with three and five diagonals) being implemented in C++ and run on modern (as of 2018) computer
systems is made in [17]. Different strategies (symbolic included) for solving band matrix SLAEs (with
three and five diagonals) are explored in [18]. A performance analysis of effective symbolic algorithms
for solving band matrix SLAEs with coefficient matrices with three, five and seven diagonals being
implemented in both C++ and Python and run on modern (as of 2018) computer systems is made
in [19].

Having in mind all these introductory notes, it is clear that a generalised multi-diagonal symbolic
algorithm is the novelty that addresses the need of a direct method which solves multi-diagonal
systems of linear algebraic equations without putting any requirements for the characteristics of the
coefficient matrix. Thus, the aim of this paper, which is a logical continuation of [16-19], is to present
such a generalised symbolic algorithm for solving SLAEs with multi-diagonal coefficient matrices.
The symbolic algorithms investigated in [16-19] are actually particular cases of the generalised
multi-diagonal symbolic method when p =q=M = 1,2, and 3.

The layout of the paper is as follows: in the next section, we outline the multi-diagonal numerical
algorithm, and introduce the multi-diagonal symbolic algorithm in pseudocode. Afterwards, we
make some correctness remarks for the symbolic method, and present a generalised formula for the
complexity of the multi-diagonal numerical algorithm. Finally, some conclusions are drawn.

The novelties of this work are as follows: suggested multi-diagonal symbolic algorithm for solving
SLAEs, formulation and proof of a correctness theorem, and an additionally obtained formula for the
complexity of the multi-diagonal numerical method.

2. Multi-diagonal symbolic algorithm

Let us consider a SLAE Ax = y, where A = diag(b?, b, b2, ..., bM,bM+1 pM+2 pM+3 | Hh2XM)_ 4 jg
areal N X N multi-diagonal matrix with M sub-diagonals, and M super-diagonals, and2 X M +1 < N,
that is, the number of diagonals should be smaller than the number of equations within the SLAE; x
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and y are real column vectors with N elements:

M pyi+l  pM+2 pM+3 . M 0 0 Xo Yo
pM-1 pM pM+1 pM+2 pM-1 M 0 0 X1 »
py-2  py-t Y py+t p3M-2  pM-1 M 0 0 Xy V2
pYy—3  py-2  pM-1 2 M3 pM-2  pIM-1 M 0 0 X3 V3
pY-4  pM-3  pM-2 pM-1 = pIM-4  pIM-3 pIM-2 paM-l bM 0 Xo | _| v

0 0 bl_s  bi_s oo e by; O P U\ Ar i ar S A | BV YN-4
0 0 blov—s b}\l—3 e e b%—_sl b%_3 b%fsl b%[zz XN-3 YN-3
0 0 bON—z b}\l—z e e bI\I\I/I—_z1 bAN/I_z bAN/Ile XN-2 YN-2
0 0 b, bh_: b=t M I lxn ) Lynoyd

The multi-diagonal numerical solver which we are going to formulate below is a generalization of
the Thomas method for multi-diagonal SLAEs. The algorithm is based on LU decomposition, and
requires forward reduction for reducing the initial matrix into a lower triangular one:

Uy = b al =0, i=1,2..,M—-1
M+1 M _ pM—1
oM+ — by ar =by
il = 2
_ M M+1 M
Ho pp=by" —ag T X
boMJr2 M+1 M+2 M
M+2 _
Ay = M _ bl —ag Xy
Ho a =
1251
pM+2 _ (M43 o oM
p2M a11\4+2 _a 0 1
oM =2 M
Mo
Zg = y_O bZM
Mo OCZM _ 9
M- L
M1
M
_ N —ZogXay
Zl -
M1
Fori=2,3,..., M —1:
counter =M —i
qlmcounter — pk=1 = M,M —1,...,1, k— counter > 1
aic—counter — aif—counter _ OCIO\/I+k—counter—1 % O(il _ all\/1+k—counter—2 X aiz _
M+1 k—counter—1 —
— X_counter—2 X &j , k=23,...M
=M — g™ xa} — ™ o — e — ol X of
M+1 M+i+1 1 +i 2 M+2 i
aM+1=bi ~— % xaf —a* x o} — - — a2 x of

1

Mi
num_sub = min(i,M — 2) number of subtractions for oc?’r +2

1 i—
?4+2 — (b?/[-u _ aM+2+num_sub % a; num_sub+1

a " i—num_sub

L



Veneva, M. Symbolic algorithm for solving SLAEs with multi-diagonal coefficient matrices

49

M+2+num_sub—1

i—num_sub+2 M+3
i—num_sub+1 - X a; )

X

— i

num_sub = min(i,M — 1 — (k — 1)) number of subtractions for a’i\“k

bM
aM = L
Hi
VimZo X =2 X = =2 X

Mi

zZ; =

Fori=M,M+1,...,N—1:
o =b7 j=12..,M-1

k _ k +k-1 1 M+k 2 M+k—1—iter 1+1ter
af =af —afif T xal —a oML X O = = 0 e X 0

k=2,3,..,M, iter=0,1,....,k—2, i=M,M+1...,N—1

_ pM _ 2M 2M—1 M+1

i=bM —a?M xal — oMl xal - x aM

i=M,M+1,..,N—1

M+1 _ M+2 oM+3 M-1 _  M+4 o (M—2 oM 2

aM+1=b' xai! —ai’3® X af iz XA " XM X
' Hi

i=M,M+1,...,N—-2

M+2 +3 M +4 o M-1 +5 . M-2 oM 3

aM+2_bi —at P xaM — It x o -t a2 — e — M X A
i - )
! Mi

i=M,M+1,..,N—3

bM
aM =L i=M,M+1,..,N-1-M
HMi
1 2 M

._Z._ Xa —Z._ Xa —..._Z._ Xa )

Zi=yl i-M i i—-M+1 i i—1 1, l=M,M+1,...,N—1

Hi

and a backward substitution for finding the unknowns x in a reverse order:

XN-1 = ZN-1

_ +1 M+1+k—2 —
xN_k—zN_k—ocJI\v’I K X XN—k+1 — " — ON_k X Xn_1, k=2,3,....M
_ M+1 M 2M
Xi =z — o X oxpg — o) X xp, - PX Xy = — M X X,

1:N—(M+1),N—(M+2),...,

In order to cope with the stability issue of the Thomas method in the case of non-diagonally
dominant matrices, in the case of a zero (or numerically zero) quotient of two subsequent leading
principal minors within the symbolic method a symbolic variable is assigned instead and the
calculations are continued. At the end of the algorithm, this symbolic variable is substituted with

zero. The same approach is suggested in [3].

The full multi-diagonal symbolic method in pseudocode is given in Algorithm 1. There, ¢ plays the

role of a numerical zero, and was set to 1.0e—20 in our code.
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Input: N,b% bl, ..., bM bM+! |

Algorithm 1: Multi-diagonal symbolic algorithm for solving a SLAE Ax = y.

L bMy e

Output: x

10:

11:
12:

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:

27:
28:
29:

30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:

: if det(A) == 0 then

exit

1
2
3: end if

4: bool flag = False
5:
6
7
8
9

Ho = by [> Step 1.(0)

. if |uy| < € then

Ho = symb; flag = True

: end if
cfork=M+1,...,2M do

0 Mo
end for
Yo

Mo
fork=1,2,...,Mdo
af = pk-t
end for
= b —ag™t xa!
if !flag then
if |u,| < € then
H, = symb; flag = True
end if
end if
fork=M+1,...,2M do
ok = bk
if M > 1 and k < 2M then
ok = ok — ak+l x oM
end if
= o
M1
end for
n—zoxat
M1
fori=2,...,N—1do
counter = 0 [> number of non-zero helping ak,
[>wherek=1,2,....M

Zg =

> (1)

zZ; =

ifi < M then
counter =M —i
end if
fork=1,..,Mdo
if k — counter > 1 then
aé{—coumer — b;(_l
end if
end for )
[> above we shift the non-zero aj, j < M in order
[> to have them in the interval j € [0;...]
fork=M+1,...,2M do
od‘ = blk

45:
46:
47:
48:

50:
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63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:

84:
85:
86:
87:
88:

90:
91:

end for
Hi= bﬁw
Zi =i
iter =0
> number of iterations for a¥, where k < M
coeff =0

: [> the biggest distance between the lower coeff of
D Ol{-( and af:\g:ff-;iter
ifi >= M then
coeff=i—M
end if
fork=2,...,Mdo
iter =0
forl = m’ do
ai_{—counter — a{_{—counter
_alc\g:ffli—itle:counter—iter X ai1+iter
iter = 1 + iter
end for
end for
iter =0
[> number of iterations for y; and z;
ifi < M then
mu_max_iter =i—1
else
mu_max_iter =M — 1
end if

for iter = 0,1, ..., mu_max_iter do > ui, z;
— 2M —counter—iter 1+iter
HMi = Mi — Xoeftriter X a;
— 1+iter
Zi = Zj — Zcoeff+iter X &}
end for
if !flag then
if |i;| < € then
u; = symb; flag = True
end if
end if
Zi
Zi = —
Hi
iter =0 [> number of iterations for a

> particular o/, m > M + 1
alpha_counter = 0 [> number of
al'm>M+1

form=0,1,..,M—1do
num_sub[m] = 0
[> number of subtractions in a"
end for
form=M+1,..,2M—1do
m_index=m—-M -1
[> shift the index from 0 to M — 2
ifi <M — 1 then
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92: num_sub[m_index] = 115: end for

93: min(i, M — 1 — alpha_counter) 116: alpha_counter = alpha_counter + 1

94: else 117: fork=M+1,...,2M do

95: num_sub[m_index] = 118: ok = 06_{-(

96: M — 1 — alpha_counter : i

97: end if 119: end for

98: iter = 0 120: end for

99: fork =0,1,..., num_sub[m_index] —1do 12V end for

100: coeff = i — num_sub[m_index] +iter 2% XN-1 = ZN-1 [> Step 2. Solution
101: coeff 1=0 123: fori=N—2,...0do

102: ifi > M then 124 X =2z

103: coeff_1 = (M — num_sub[m_index] 125 iter=0

104: Fiter)%M + 1 126: fork=0,..M —1do

105: else 127: if i + iter > n — 2 then

106: coeff_1 = i — num_sub[m_index] 128: break

107: +iter + 1 129: end if

108: end if 130: X=X — O X

109: D> the helping a{°®™ are with upper index 13V iter = iter + 1

110: [> up to M, therefore we need to find the 132 end for

111: [> module(m) 133 end for

112: o = o 134: Cancel. the common fact.ors in the num.erators an<.i
113: _atr:r;:f}lum,sub[m,index]—iter X aoef1 denominators of x, making them coprime. Substi-
114: iter = iter + 1 tute symb := 0in x and simplify.

Remark: If any u; expression has been evaluated to be zero or numerically zero, then it is assigned
to be a symbolic variable. We cannot compare any of the next u; expressions with ¢, because any
further y; is going to be a symbolic expression. To that reason, we use a boolean flag which tells us if
any previous y; is a symbolic expression. In that case, comparison with ¢ is not conducted as being
not needed.

3. Justification of the algorithm

Let us make some observations on the correctness of the proposed algorithm. In case the algorithm
assigns y; for any i = 0, N — 1 to be equal to a symbolic variable (in case u; is zero or numerically zero),
this ensures correctness of the formulae for computing the solution of the considered SLAE (because
we are not dividing by (numerical) zero). However, this does not add any additional requirements to
the coefficient matrix so as to keep the algorithm stable.

Theorem 2. The only requirement to the coefficient matrix of a multi-diagonal SLAE so as the multi-
diagonal symbolic algorithm to be correct is nonsingularity.

Proof. As a direct consequence of the transformations done so as the matrix A to be factorized
and then the downwards sweep to be conducted, it follows that the determinant of the matrix A in
the terms of the introduced notation is:

N-1
det(4) = H /"i|symb:07
i=0

because the determinant of an upper triangular matrix is equal to the product of all its diagonal
elements [20]. (This formula could be used so as the nonsingularity of the coefficient matrix to be
checked.) If u; for any i is assigned to be equal to a symbolic variable, then it is going to appear in both
the numerator and the denominator of the expression for the determinant and so it can be cancelled:
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M, M, My_, My_,
det(A) = po 1 My - UIN—2 HN—1 = Mo — =
Ho MHoH1  HoMi..-MN—3 MoHM1 .- UN—2
N-1 N-1
- i Mi - ITi, Mi =
N-1,N-2 ,N-3 2 1 - N-2 N-3 2 1 -
Fo "B "H2 " BN-sHEN-2 Mév_l M;] 2 NMs2 N-=3 2 ]\;IN_az 1 AIIN_Zl
Ho ™" Mo M1 HMOHT---MN_4 MoMy---MN—3
N-1 N-1
_ Hi:o M; _ Hi:o M; = My
= = - = — = -1
(I)V—l my-2 My-3 M} s My_, HI_VOZ ;
— =3 1 1=
w2 Mm(ﬁ)” : M(ﬁ)z__(MN_‘t)z #1<ﬂ)lm<MN—3)
0 Ho 0\ ko HMN-3 O\ ko HN-4

where M; is the i-th leading principal minor, and py = M,. This means that the only constraint on the
coefficient matrix is My_; # 0. O

Remark: above, we have used the following recurrent formula M; = Hi:o Ui-

Remark: this theorem coincides with the theorem we have proven in [16], because no matter what
the number of diagonals (2 X M + 1) within the coefficient matrix is, the logic remains.

The requirement on the coefficient matrix to be nonsingular is not limiting at all since this is
a standard requirement so as the SLAE to have only one solution.

3.1. Number of computational steps

The calculation of ¥, w;, !, aM*2, ..., a?™, and z; depends on the results of the calculation of

oc?f}'k, and z;_j. On the other hand, the calculation of x; depends on the results of the calculation
of Mt aM*2 | a?M z;, and Xj,1, Xj1 .- » Xiypr- This makes the multi-diagonal numerical method
inherently serial. It takes 2 X N steps overall, where N is the number of equations in the initial SLAE.

3.2. Complexity

The amount of operations per expression are summarized in Table 1. Thus, the overall complexity of
the multi-diagonal numerical algorithms is:
4M*  TM*  13M
2NM? 4+ 5NM +N - — — — — —,
3 2 6

where N is the number of rows in the initial coefficient matrix. Hence, the multi-diagonal numerical
method requires only O(N) operations (provided that M << N) for finding the solution, and beats the
Gaussian elimination which requires O(N?) operations.

4. Results

Within this paper we formulated the multi-diagonal numerical solver which is a generalization of the
Thomas method for multi-diagonal SLAEs. In Algorithm 1, we introduced the pseudocode of the the
generalised symbolic algorithm for solving SLAEs with multi-diagonal coefficient matrices.

It was proven that the only requirement to the coefficient matrix of a multi-diagonal SLAE so as the
multi-diagonal symbolic algorithm to be correct is nonsingularity.

The multi-diagonal numerical method takes 2 X N steps overall, where N is the number of equations
in the initial SLAE.
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Table 1
Complexity per expression for the multi-diagonal numerical algorithm
expression # operations simplified form of # ops examples
M=2 M=3 M=4
ak,i<M, Zf:(z><(1+2+...k—1))= (M_I)XNéX(ZM_I) o N s
_ Mol (k=Dxk (M-1)xM
k=2,...,.M Ykt <2xf> -
k i —1-
@iz M, (N-1 1\]4\“1) (N—=M)X(M2—M) | 2(0N-2) | 6(N—3) | 12(0N—4)
k=2,....M xzk=1((k—l)x2)
Ui <M S 2k M2-M | 2 6 12
i >M (N=1-M+1)x2M 2MN —2M? | 4N-38 6N —18 SN — 32
M M-k,. 3
aM+k i < M, L=t (Zi:o (ix2+1) M ] o »
k=1,2...,M +(k=1) x (M = k) x 24 1)) —MX(M“gx(ZM“)
+M><(M+1)
2
al+k i > M, M (N = (M +K) NM? - 2M? — M?
k=12 ..M X(M—K)x2+1)) +M><(M+1;><(2M+1) AN —13 9N — 41 16N — 94
_MxM+1)
2
zni<M a2k +1) M2 | 4 9 16
z;,i>M (N-1-M+1)X(2M +1) JNM+N-M-2M? | 5N -10 7N - 21 9N — 36
Nk T ((k=1)x2) M>-M | 2 6 12
k=1,....M
- - +1)+1) X2 2 -2 4N -8 6N — 18 8N —32
XN—les (N=(M+1)+1)x2M NM —2M? | 4N N N
k=M+1,...,N
3 2
Total 2NM? +5NM + N — % - % - % 19N - 29 34N - 74 53N — 150

The complexity of the multi-diagonal numerical algorithms was found to be:

2NM? + 5NM + N — wic S @,
3 2 6
where N is the number of rows in the initial coefficient matrix. Hence, the multi-diagonal numerical
method requires O(N) operations (provided that M << N) for finding the solution. The amount of
operations per expression were summarized in Table 1. In the Table 1 one can also find the complexity
per expression in the cases when M =2, M = 3, and M = 4.

5. Discussion

Within this paper we formulated the multi-diagonal numerical solver which is a generalization of the
Thomas method for multi-diagonal SLAEs. Next, we introduced the pseudocode of the generalised
symbolic algorithm for solving SLAEs with multi-diagonal coefficient matrices. There, as a remedy of
the stability issue which arises within the Thomas method in the case of non-diagonally dominant
matrices, if we obtain a zero (or numerically zero) quotient of two subsequent leading principal
minors, a symbolic variable is assigned instead and the calculations are continued. At the end of the
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algorithm, this symbolic variable is substituted with zero. The generalised multi-diagonal symbolic
algorithm is the novelty that addresses the need of a direct method which solves multi-diagonal SLAEs
without putting any requirements for the characteristics of the coefficient matrix. This algorithm is
a generalization of the algorithms presented in [3, 10, 16].

It was proven that the only requirement to the coefficient matrix of a multi-diagonal SLAE so as the
multi-diagonal symbolic algorithm to be correct is nonsingularity. Asking for nonsingularity of the
coefficient matrix is a standard requirement so as the SLAE to have only one solution. Hence, this
does not limit the significance of the formulated symbolic algorithm.

The multi-diagonal numerical method takes 2 X N steps overall, where N is the number of equations
in the initial SLAE.

The multi-diagonal numerical method requires O(N) operations (provided that M << N) for finding
the solution, and beats the Gaussian elimination which requires O(N3) operations.

6. Conclusion

A generalised symbolic algorithm for solving systems of linear algebraic equations with multi-diagonal
coefficient matrices was formulated and presented in pseudocode. Some notes on the correctness of
the algorithm were made. Formula for the complexity of the multi-diagonal numerical algorithm
was obtained.
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CUMBOJIbHbIN aNropuTm peweHus C/1IAY
C MHOroimaroHasibHbIM1U MaTpuLlamu Ko3(pPULMeHToB

MuneHa BeHeBal>?

L O6beanHEHHBI MHCTUTYT SAEPHBIX UCCNeoBaHMIA, yi. Xonuo-Kiopu, a. 6, ly6Ha, 141980, Poccuiickas
depepauns

2 LleHTp BblYMCANTENBHOI Hayku RIKEN (R-CCS), MuHaToa3uMa-MuHaMu-maun 7-1-26, paiioH Tioo-ky, Kobe,
npecdekTypa Xnoro, 650-0047, AnoHus

AHHoTaums. CrCTEeMbI INHEMHBIX anrebpandecKux ypaBHEHUH ¢ MHOTOJUATOHAIBHBIMU MaTpULiaMu Koadhdu-
I[MEeHTOB BOSHUKAIOT BO MHOTHX IIPUKJIAIHBIX U TEOPeTUYECKUX 3a/ja9axX HayKU U TeXHUKH, a TAKKe B 3ajladax
BBIYHCIUTEIbHON JIMHENHON alrebpsl, I7je UX pellleHHe IIPe/ICTaBIsIeT COO0M OJHY U3 KJIIOUEBbIX IPo6IeM.
B nanHO paboTe mpencTaBieH 0600MEHHBIN CMBOIBHBII AJITOPUTM PEIIeHUs CUCTEM JIMHENHEIX anrebpa-
M9eCKHUX YpaBHEHHUH ¢ MHOTOAMArOHAJIBHBIMU MaTPHUIIaMU K03(QUINEeHTOB. AJITOPUTM NIPUBE/IEH B BUZE
ncepziokona. ChopMyIupoBaHa U JOKa3aHa TeopeMa, OIpe/iesISiolas yCIoBre KOPPeKTHOCTH anroprurMa. Ilo-
sydeHa GpopMyJia, OIHCHIBAIOLIAS BBIYUCIUTENbHYIO CI0KHOCTb COOTBETCTBYIOLEr0 YUCIEHHOTO aIlOPUTMA
[JI1 MHOTO/IJAaTOHAIbHBIX CHCTEM.

KnioueBble cnoBa: YNCJIEeHHBIE METOAbl, BHIYUCIUTEIbHbIE METOABI IJId Pa3peXEeHHbIX MaTpul,, MeTOJbl
YHMCJIEHHOI'0 MaTeMaTHU4IeCKOr'0o IIPporpaMMIUPOBaHUA, BBIYNUCINUTEJIbHAA CJIOXXHOCTD YHUCJIE€HHBIX aJITOPUTMOB



