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Abstract. Systems of linear algebraic equations with multi-diagonal coefficient matrices may arise after many
different scientific and engineering problems, as well as problems of the computational linear algebra where
finding the solution of such a system of linear algebraic equations is considered to be one of the most important
problems. This paper presents a generalised symbolic algorithm for solving systems of linear algebraic equations
with multi-diagonal coefficient matrices. The algorithm is given in a pseudocode. A theorem which gives the
condition for correctness of the algorithm is formulated and proven. Formula for the complexity of the multi-
diagonal numerical algorithm is obtained.

Keywords andphrases: numerical analysis, computationalmethods for sparsematrices, numericalmathematical
programming methods, complexity of numerical algorithms

For citation: Veneva,M. Symbolic algorithm for solving SLAEs with multi-diagonal coefficient matrices. Discrete and Continuous
Models and Applied Computational Science 33 (1), 46–56. doi: 10.22363/2658-4670-2025-33-1-46-56. edn: BLFUDE (2025).

1. Introduction
Systems of linear algebraic equations (SLAEs) with multi-diagonal coefficient matrices may arise
after many different scientific and engineering problems, as well as problems of the computational
linear algebra where finding the solution of a SLAE is considered to be one of the most important
problems. For instance, the resultant SLAE after discretization of partial differential equations (PDEs),
using finite difference methods (FDM) or finite element methods (FEM) has a banded coefficient
matrix. The methods for solving such SLAEs known in the literature usually require the matrix to
possess special characteristics so as the method to be numerically correct and stable, e. g. diagonal
dominance, positive definiteness, etc. Another possible approach which ensures numerically correct
formulae without adding special additional requirements or using pivoting is the symbolic algorithms.
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By definition, a band SLAE is a SLAE with band coefficient matrix. The lower band width 𝑝 is the
number of sub-diagonals, the upper band width 𝑞 is the number of super-diagonals, and the band
width of the matrix is defined as 𝑝 + 𝑞 + 1 (we should add 1 because of the main diagonal), that is,
the total number of non-zero diagonals in the matrix [1]. Here, we are going to focus on SLAEs with
matrices for which 𝑝 = 𝑞 = 𝑀. The author of [2] presents a generalised numerical algorithm for
solving multi-diagonal SLAEs with pivoting (implemented in Fortran) in the case 𝑝 ≠ 𝑞, and has
applied it for solving boundary value problems discretized by finite difference approximations.
A whole branch of symbolic algorithms for solving systems of linear algebraic equations with

different coefficient matrices exists in the literature. For instance, in [3] the author considers
a tridiagonal matrix and a symbolic version of the Thomas method [4–7] is formulated. The authors
of [8] build an algorithm in the case of a general bordered tridiagonal SLAE, while in [9] the coefficient
matrix taken into consideration is a general opposite-bordered tridiagonal one.
A pentadiagonal coefficient matrix is of interest in [10], while a cyclic pentadiagonal coefficient

matrix is considered in [11]. The latter algorithm can be applied to periodic tridiagonal and periodic
pentadiagonal SLAE either by setting the corresponding matrix terms to be zero.
In [12] a symbolic method for the case of a cyclic heptadiagonal SLAEs is presented.
What is common for all these symbolic algorithms, is that they are implemented using Computer

Algebra Systems (CASs) such as Maple [13], Mathematica [14], and Matlab [15].
Finally, [16] presents a symbolic method for the case of a pure heptadiagonal SLAE.
A performance analysis of symbolicmethods (and numerical as well) for solving bandmatrix SLAEs

(with three and five diagonals) being implemented in C++ and run on modern (as of 2018) computer
systems is made in [17]. Different strategies (symbolic included) for solving band matrix SLAEs (with
three and five diagonals) are explored in [18]. A performance analysis of effective symbolic algorithms
for solving band matrix SLAEs with coefficient matrices with three, five and seven diagonals being
implemented in both C++ and Python and run on modern (as of 2018) computer systems is made
in [19].
Having in mind all these introductory notes, it is clear that a generalised multi-diagonal symbolic

algorithm is the novelty that addresses the need of a direct method which solves multi-diagonal
systems of linear algebraic equations without putting any requirements for the characteristics of the
coefficient matrix. Thus, the aim of this paper, which is a logical continuation of [16–19], is to present
such a generalised symbolic algorithm for solving SLAEs with multi-diagonal coefficient matrices.
The symbolic algorithms investigated in [16–19] are actually particular cases of the generalised
multi-diagonal symbolic method when 𝑝 = 𝑞 = 𝑀 = 1, 2, and 3.
The layout of the paper is as follows: in the next section, we outline the multi-diagonal numerical

algorithm, and introduce the multi-diagonal symbolic algorithm in pseudocode. Afterwards, we
make some correctness remarks for the symbolic method, and present a generalised formula for the
complexity of the multi-diagonal numerical algorithm. Finally, some conclusions are drawn.
The novelties of this work are as follows: suggested multi-diagonal symbolic algorithm for solving

SLAEs, formulation and proof of a correctness theorem, and an additionally obtained formula for the
complexity of the multi-diagonal numerical method.

2. Multi-diagonal symbolic algorithm
Let us consider a SLAE 𝐴𝑥 = 𝑦, where 𝐴 = diag(b0,b1,b2,… ,bM,bM+1,bM+2,bM+3,… ,b2×M), 𝐴 is
a real 𝑁 × 𝑁multi-diagonal matrix with𝑀 sub-diagonals, and𝑀 super-diagonals, and 2 ×𝑀 + 1 < 𝑁,
that is, the number of diagonals should be smaller than the number of equations within the SLAE; 𝑥
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and 𝑦 are real column vectors with 𝑁 elements:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑏𝑀0 𝑏𝑀+1
0 𝑏𝑀+2

0 𝑏𝑀+3
0 … 𝑏2𝑀0 0 … … … … 0

𝑏𝑀−1
1 𝑏𝑀1 𝑏𝑀+1

1 𝑏𝑀+2
1 … 𝑏2𝑀−1

1 𝑏2𝑀1 0 … … … 0

𝑏𝑀−2
2 𝑏𝑀−1

2 𝑏𝑀2 𝑏𝑀+1
2 … 𝑏2𝑀−2

2 𝑏2𝑀−1
2 𝑏2𝑀2 0 … … 0

𝑏𝑀−3
3 𝑏𝑀−2

3 𝑏𝑀−1
3 𝑏𝑀3 … 𝑏2𝑀−3

3 𝑏2𝑀−2
3 𝑏2𝑀−1

3 𝑏2𝑀3 0 … 0

𝑏𝑀−4
4 𝑏𝑀−3

4 𝑏𝑀−2
4 𝑏𝑀−1

4 … 𝑏2𝑀−4
4 𝑏2𝑀−3

4 𝑏2𝑀−2
4 𝑏2𝑀−1

4 𝑏2𝑀4 … 0

⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮

0 … 0 𝑏0𝑁−4 𝑏1𝑁−4 … … 𝑏𝑀−1
𝑁−4 𝑏𝑀𝑁−4 𝑏𝑀+1

𝑁−4 𝑏𝑀+2
𝑁−4 𝑏𝑀+3

𝑁−4

0 … … 0 𝑏0𝑁−3 𝑏1𝑁−3 … … 𝑏𝑀−1
𝑁−3 𝑏𝑀𝑁−3 𝑏𝑀+1

𝑁−3 𝑏𝑀+2
𝑁−3

0 … … … 0 𝑏0𝑁−2 𝑏1𝑁−2 … … 𝑏𝑀−1
𝑁−2 𝑏𝑀𝑁−2 𝑏𝑀+1

𝑁−2

0 … … … … 0 𝑏0𝑁−1 𝑏1𝑁−1 … … 𝑏𝑀−1
𝑁−1 𝑏𝑀𝑁−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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𝑥0
𝑥1
𝑥2
𝑥3
𝑥4
⋮

𝑥𝑁−4

𝑥𝑁−3

𝑥𝑁−2

𝑥𝑁−1
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⎥
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𝑦0
𝑦1
𝑦2
𝑦3
𝑦4
⋮

𝑦𝑁−4

𝑦𝑁−3

𝑦𝑁−2

𝑦𝑁−1
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.

The multi-diagonal numerical solver which we are going to formulate below is a generalization of
the Thomas method for multi-diagonal SLAEs. The algorithm is based on LU decomposition, and
requires forward reduction for reducing the initial matrix into a lower triangular one:

𝜇0 = 𝑏𝑀0

𝛼𝑀+1
0 =

𝑏𝑀+1
0
𝜇0

𝛼𝑀+2
0 =

𝑏𝑀+2
0
𝜇0

…

𝛼2𝑀0 =
𝑏2𝑀0
𝜇0

𝑧0 =
𝑦0
𝜇0

𝛼𝑗1 = 0, 𝑖 = 1, 2… ,𝑀 − 1

𝛼𝑀1 = 𝑏𝑀−1
1

𝜇1 = 𝑏𝑀1 − 𝛼𝑀+1
0 × 𝛼𝑀1

𝛼𝑀+1
1 =

𝑏𝑀+1
1 − 𝛼𝑀+2

0 × 𝛼𝑀1
𝜇1

𝛼𝑀+2
1 =

𝑏𝑀+2
1 − 𝛼𝑀+3

0 × 𝛼𝑀1
𝜇1

…

𝛼2𝑀1 =
𝑏2𝑀1
𝜇1

𝑧1 =
𝑦1 − 𝑧0 × 𝛼𝑀1

𝜇1

For 𝑖 = 2, 3,… ,𝑀 − 1 ∶

counter = 𝑀 − 𝑖

𝛼𝑘−counter𝑖 = 𝑏𝑘−1𝑖 , 𝑘 = 𝑀,𝑀 − 1,… , 1, 𝑘 − counter ≥ 1

𝛼𝑘−counter𝑖 = 𝛼𝑘−counter𝑖 − 𝛼𝑀+𝑘−counter−1
0 × 𝛼1𝑖 − 𝛼𝑀+𝑘−counter−2

1 × 𝛼2𝑖 −…

− 𝛼𝑀+1
𝑘−counter−2 × 𝛼𝑘−counter−1𝑖 , 𝑘 = 2, 3,… ,𝑀

𝜇𝑖 = 𝑏𝑀𝑖 − 𝛼𝑀+𝑖
0 × 𝛼1𝑖 − 𝛼𝑀+𝑖−1

1 × 𝛼2𝑖 −⋯− 𝛼𝑀+1
𝑖−1 × 𝛼𝑖𝑖

𝛼𝑀+1
𝑖 =

𝑏𝑀+1
𝑖 − 𝛼𝑀+𝑖+1

0 × 𝛼1𝑖 − 𝛼𝑀+𝑖
1 × 𝛼2𝑖 −⋯− 𝛼𝑀+2

𝑖−1 × 𝛼𝑖𝑖
𝜇𝑖

num_sub = 𝑚𝑖𝑛(𝑖,𝑀 − 2) number of subtractions for 𝛼𝑀+2
𝑖

𝛼𝑀+2
𝑖 = 1

𝜇𝑖
(𝑏𝑀+2

𝑖 − 𝛼𝑀+2+num_sub
𝑖−num_sub × 𝛼𝑖−num_sub+1

𝑖
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−𝛼𝑀+2+num_sub−1
𝑖−num_sub+1 × 𝛼𝑖−num_sub+2

𝑖 −…𝛼𝑀+3
𝑖−1 × 𝛼𝑖𝑖)

…

num_sub = 𝑚𝑖𝑛(𝑖,𝑀 − 1 − (𝑘 − 1)) number of subtractions for 𝛼𝑀+𝑘
𝑖

…

𝛼2𝑀𝑖 =
𝑏2𝑀𝑖
𝜇𝑖

𝑧𝑖 =
𝑦𝑖 − 𝑧0 × 𝛼1𝑖 − 𝑧1 × 𝛼2𝑖 −⋯− 𝑧𝑖−1 × 𝛼𝑖𝑖

𝜇𝑖

For 𝑖 = 𝑀,𝑀 + 1,… ,𝑁 − 1 ∶

𝛼𝑗𝑖 = 𝑏𝑗−1𝑖 , 𝑗 = 1, 2… ,𝑀 − 1

𝛼𝑘𝑖 = 𝛼𝑘𝑖 − 𝛼𝑀+𝑘−1
𝑖−𝑀 × 𝛼1𝑖 − 𝛼𝑀+𝑘−2

𝑖−𝑀+1 × 𝛼2𝑖 −⋯− 𝛼𝑀+𝑘−1−iter
𝑖−𝑀+iter × 𝛼1+iter𝑖 ,

𝑘 = 2, 3,… ,𝑀, iter = 0, 1,… , 𝑘 − 2, 𝑖 = 𝑀,𝑀 + 1… ,𝑁 − 1

𝜇𝑖 = 𝑏𝑀𝑖 − 𝛼2𝑀𝑖−𝑀 × 𝛼1𝑖 − 𝛼2𝑀−1
𝑖−𝑀+1 × 𝛼2𝑖 −⋯− 𝛼𝑀+1

𝑖−1 × 𝛼𝑀𝑖 ,

𝑖 = 𝑀,𝑀 + 1,… ,𝑁 − 1

𝛼𝑀+1
𝑖 =

𝑏𝑀+1
𝑖 − 𝛼𝑀+2

𝑖−1 × 𝛼𝑀𝑖 − 𝛼𝑀+3
𝑖−2 × 𝛼𝑀−1

𝑖 − 𝛼𝑀+4
𝑖−3 × 𝛼𝑀−2

𝑖 −⋯− 𝛼2𝑀𝑖−𝑀+1 × 𝛼2𝑖
𝜇𝑖

,

𝑖 = 𝑀,𝑀 + 1,… ,𝑁 − 2

𝛼𝑀+2
𝑖 =

𝑏𝑀+2
𝑖 − 𝛼𝑀+3

𝑖−1 × 𝛼𝑀𝑖 − 𝛼𝑀+4
𝑖−2 × 𝛼𝑀−1

𝑖 − 𝛼𝑀+5
𝑖−3 × 𝛼𝑀−2

𝑖 −⋯− 𝛼2𝑀𝑖−𝑀+2 × 𝛼3𝑖
𝜇𝑖

,

𝑖 = 𝑀,𝑀 + 1,… ,𝑁 − 3

…

𝛼2𝑀𝑖 =
𝑏2𝑀𝑖
𝜇𝑖

, 𝑖 = 𝑀,𝑀 + 1,… ,𝑁 − 1 −𝑀

𝑧𝑖 =
𝑦𝑖 − 𝑧𝑖−𝑀 × 𝛼1𝑖 − 𝑧𝑖−𝑀+1 × 𝛼2𝑖 −⋯− 𝑧𝑖−1 × 𝛼𝑀𝑖

𝜇𝑖
, 𝑖 = 𝑀,𝑀 + 1,… ,𝑁 − 1

and a backward substitution for finding the unknowns 𝑥 in a reverse order:

𝑥𝑁−1 = 𝑧𝑁−1

𝑥𝑁−𝑘 = 𝑧𝑁−𝑘 − 𝛼𝑀+1
𝑁−𝑘 × 𝑥𝑁−𝑘+1 −⋯− 𝛼𝑀+1+𝑘−2

𝑁−𝑘 × 𝑥𝑁−1, 𝑘 = 2, 3,… ,𝑀

𝑥𝑖 = 𝑧𝑖 − 𝛼𝑀+1
𝑖 × 𝑥𝑖+1 − 𝛼𝑀+2

𝑖 × 𝑥𝑖+2 − 𝛼𝑀+3
𝑖 × 𝑥𝑖+3 −⋯− 𝛼2𝑀𝑖 × 𝑥𝑖+𝑀,

𝑖 = 𝑁 − (𝑀 + 1), 𝑁 − (𝑀 + 2),… , 0.

In order to cope with the stability issue of the Thomas method in the case of non-diagonally
dominant matrices, in the case of a zero (or numerically zero) quotient of two subsequent leading
principal minors within the symbolic method a symbolic variable is assigned instead and the
calculations are continued. At the end of the algorithm, this symbolic variable is substituted with
zero. The same approach is suggested in [3].
The full multi-diagonal symbolic method in pseudocode is given in Algorithm 1. There, 𝜀 plays the

role of a numerical zero, and was set to 1.0e−20 in our code.
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Algorithm 1: Multi-diagonal symbolic algorithm for solving a SLAE𝐴𝑥 = 𝑦.

Input: 𝑁,b0,b1,… ,bM,bM+1,… ,b2M, y, 𝜀
Output: x
1: if 𝑑𝑒𝑡(𝐴) == 0 then
2: exit
3: end if
4: bool flag = False
5: 𝜇0 = 𝑏𝑀0 ▷ Step 1.(0)
6: if |𝜇0| < 𝜀 then
7: 𝜇0 = symb; flag = True
8: end if
9: for 𝑘 = 𝑀 + 1,… , 2𝑀 do

10: 𝛼𝑘0 =
𝑏𝑘0
𝜇0

11: end for
12: 𝑧0 =

𝑦0
𝜇0

13: for 𝑘 = 1, 2,… ,𝑀 do
14: 𝛼𝑘1 = 𝑏𝑘−11
15: end for ▷ (1)
16: 𝜇1 = 𝑏𝑀1 − 𝛼𝑀+1

0 × 𝛼𝑀1
17: if !flag then
18: if |𝜇1| < 𝜀 then
19: 𝜇1 = symb; flag = True
20: end if
21: end if
22: for 𝑘 = 𝑀 + 1,… , 2𝑀 do
23: 𝛼𝑘1 = 𝑏𝑘1
24: if𝑀 > 1 and 𝑘 < 2𝑀 then
25: 𝛼𝑘1 = 𝛼𝑘1 − 𝛼𝑘+10 × 𝛼𝑀1
26: end if

27: 𝛼𝑘1 =
𝛼𝑘1
𝜇1

28: end for

29: 𝑧1 =
𝑦1 − 𝑧0 × 𝛼𝑀1

𝜇1
30: for 𝑖 = 2,… ,𝑁 − 1 do
31: counter = 0▷ number of non-zero helping 𝛼𝑘1 ,
32: ▷ where 𝑘 = 1, 2,… ,𝑀
33: if 𝑖 < 𝑀 then
34: counter = 𝑀 − 𝑖
35: end if
36: for 𝑘 = 1,… ,𝑀 do
37: if 𝑘 − counter ≥ 1 then
38: 𝛼𝑘−counter

𝑖 = 𝑏𝑘−1𝑖
39: end if
40: end for
41: ▷ above we shift the non-zero 𝛼𝑗𝑖 , 𝑗 ≤ 𝑀 in order
42: ▷ to have them in the interval 𝑗 ∈ [0; ...]
43: for 𝑘 = 𝑀 + 1,… , 2𝑀 do
44: 𝛼𝑘𝑖 = 𝑏𝑘𝑖

45: end for
46: 𝜇𝑖 = 𝑏𝑀𝑖
47: 𝑧𝑖 = 𝑦𝑖
48: iter = 0
49: ▷ number of iterations for 𝛼𝑘𝑖 , where 𝑘 ≤ 𝑀
50: coeff = 0
51: ▷ the biggest distance between the lower coeff of
52: ▷𝛼𝑘𝑖 and 𝛼

𝑀+...
coeff+iter

53: if 𝑖 >= 𝑀 then
54: coeff = 𝑖 − 𝑀
55: end if
56: for 𝑘 = 2,… ,𝑀 do
57: iter = 0
58: for 𝑙 = 2,… , 𝑘 − counter do
59: 𝛼𝑘−counter

𝑖 = 𝛼𝑘−counter
𝑖

60: −𝛼𝑀+𝑘−1−counter−iter
coeff+iter × 𝛼1+iter

𝑖
61: iter = 1 + iter
62: end for
63: end for
64: iter = 0
65: ▷ number of iterations for 𝜇𝑖 and 𝑧𝑖
66: if 𝑖 < 𝑀 then
67: mu_max_iter = 𝑖 − 1
68: else
69: mu_max_iter = 𝑀 − 1
70: end if
71: for iter = 0, 1,… ,mu_max_iter do ▷𝜇𝑖, 𝑧𝑖
72: 𝜇𝑖 = 𝜇𝑖 − 𝛼2𝑀−counter−iter

coeff+iter × 𝛼1+iter
𝑖

73: 𝑧𝑖 = 𝑧𝑖 − 𝑧coeff+iter × 𝛼1+iter
𝑖

74: end for
75: if !flag then
76: if |𝜇𝑖| < 𝜀 then
77: 𝜇𝑖 = symb; flag = True
78: end if
79: end if
80: 𝑧𝑖 =

𝑧𝑖
𝜇𝑖

81: iter = 0 ▷ number of iterations for a
82: ▷ particular 𝛼𝑚𝑖 , 𝑚 ≥ 𝑀 + 1
83: alpha_counter = 0 ▷ number of

𝛼𝑚𝑖 , 𝑚 ≥ 𝑀 + 1
84: for𝑚 = 0, 1,… ,𝑀 − 1 do
85: num_sub[𝑚] = 0
86: ▷ number of subtractions in 𝛼𝑚𝑖
87: end for
88: for𝑚 = 𝑀 + 1,… , 2𝑀 − 1 do
89: m_index = 𝑚−𝑀 − 1
90: ▷ shift the index from 0 to𝑀 − 2
91: if 𝑖 ≤ 𝑀 − 1 then
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92: num_sub[m_index] =
93: 𝑚𝑖𝑛(𝑖,𝑀 − 1 − alpha_counter)
94: else
95: num_sub[m_index] =
96: 𝑀 − 1 − alpha_counter
97: end if
98: iter = 0
99: for 𝑘 = 0, 1,… ,num_sub[m_index] − 1 do
100: coeff = 𝑖 − num_sub[m_index] + iter
101: coeff_1 = 0
102: if 𝑖 ≥ 𝑀 then
103: coeff_1 = (𝑀 − num_sub[m_index]
104: +iter)%𝑀 + 1
105: else
106: coeff_1 = 𝑖 − num_sub[m_index]
107: +iter + 1
108: end if
109: ▷ the helping 𝛼coeff_1

𝑖 are with upper index
110: ▷ up to𝑀, therefore we need to find the
111: ▷module(𝑀)
112: 𝛼𝑚𝑖 = 𝛼𝑚𝑖
113: −𝛼𝑚+num_sub[m_index]−iter

coeff × 𝛼coeff_1
𝑖

114: iter = iter + 1

115: end for
116: alpha_counter = alpha_counter + 1
117: for 𝑘 = 𝑀 + 1,… , 2𝑀 do

118: 𝛼𝑘𝑖 =
𝛼𝑘𝑖
𝜇𝑖

119: end for
120: end for
121: end for
122: 𝑥𝑁−1 = 𝑧𝑁−1 ▷ Step 2. Solution
123: for 𝑖 = 𝑁 − 2,…0 do
124: 𝑥𝑖 = 𝑧𝑖
125: iter = 0
126: for 𝑘 = 0,…𝑀 − 1 do
127: if 𝑖 + iter > 𝑛 − 2 then
128: break
129: end if
130: 𝑥𝑖 = 𝑥𝑖 − 𝛼𝑀+1+𝑘

𝑖 × 𝑥𝑖+1+𝑘
131: iter = iter + 1
132: end for
133: end for
134: Cancel the common factors in the numerators and

denominators of x, making them coprime. Substi-
tute symb ∶= 0 in x and simplify.

Remark: If any 𝜇𝑖 expression has been evaluated to be zero or numerically zero, then it is assigned
to be a symbolic variable. We cannot compare any of the next 𝜇𝑖 expressions with 𝜀, because any
further 𝜇𝑖 is going to be a symbolic expression. To that reason, we use a boolean flag which tells us if
any previous 𝜇𝑖 is a symbolic expression. In that case, comparison with 𝜀 is not conducted as being
not needed.

3. Justification of the algorithm
Let us make some observations on the correctness of the proposed algorithm. In case the algorithm
assigns 𝜇𝑖 for any 𝑖 = 0, 𝑁 − 1 to be equal to a symbolic variable (in case 𝜇𝑖 is zero or numerically zero),
this ensures correctness of the formulae for computing the solution of the considered SLAE (because
we are not dividing by (numerical) zero). However, this does not add any additional requirements to
the coefficient matrix so as to keep the algorithm stable.

Theorem 2. The only requirement to the coefficient matrix of a multi-diagonal SLAE so as the multi-
diagonal symbolic algorithm to be correct is nonsingularity.

Proof. As a direct consequence of the transformations done so as the matrix 𝐴 to be factorized
and then the downwards sweep to be conducted, it follows that the determinant of the matrix 𝐴 in
the terms of the introduced notation is:

det(𝐴) =
𝑁−1
∏
𝑖=0

𝜇𝑖|symb=0,

because the determinant of an upper triangular matrix is equal to the product of all its diagonal
elements [20]. (This formula could be used so as the nonsingularity of the coefficient matrix to be
checked.) If 𝜇𝑖 for any 𝑖 is assigned to be equal to a symbolic variable, then it is going to appear in both
the numerator and the denominator of the expression for the determinant and so it can be cancelled:
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det(𝐴) = 𝜇0 𝜇1 𝜇2…𝜇𝑁−2 𝜇𝑁−1 = 𝑀0
𝑀1
𝜇0

𝑀2
𝜇0 𝜇1

… 𝑀𝑁−2
𝜇0 𝜇1…𝜇𝑁−3

𝑀𝑁−1
𝜇0 𝜇1…𝜇𝑁−2

=

=
∏𝑁−1

𝑖=0 𝑀𝑖

𝜇𝑁−1
0 𝜇𝑁−2

1 𝜇𝑁−3
2 …𝜇2𝑁−3 𝜇1𝑁−2

=
∏𝑁−1

𝑖=0 𝑀𝑖

𝑀𝑁−1
0

𝑀𝑁−2
1

𝜇𝑁−2
0

𝑀𝑁−3
2

𝜇𝑁−3
0 𝜇𝑁−3

1
… 𝑀2

𝑁−3
𝜇20 𝜇21…𝜇2𝑁−4

𝑀1
𝑁−2

𝜇10 𝜇11…𝜇1𝑁−3

=

=
∏𝑁−1

𝑖=0 𝑀𝑖

𝑀𝑁−1
0

𝑀𝑁−2
1

𝜇𝑁−2
0

𝑀𝑁−3
2

𝜇𝑁−3
0 (𝑀1

𝜇0
)
𝑁−3 …

𝑀2
𝑁−3

𝜇20 (
𝑀1
𝜇0

)
2
…(𝑀𝑁−4

𝜇𝑁−3
)
2

𝑀1
𝑁−2

𝜇10 (
𝑀1
𝜇0

)
1
…(𝑀𝑁−3

𝜇𝑁−4
)
1

=
∏𝑁−1

𝑖=0 𝑀𝑖

∏𝑁−2
𝑖=0 𝑀𝑖

= 𝑀𝑁−1

where𝑀𝑖 is the 𝑖-th leading principal minor, and 𝜇0 = 𝑀0. This means that the only constraint on the
coefficient matrix is𝑀𝑁−1 ≠ 0. �

Remark: above, we have used the following recurrent formula𝑀𝑖 =∏𝑖
𝑖=0 𝜇𝑖.

Remark: this theorem coincides with the theorem we have proven in [16], because no matter what
the number of diagonals (2 × 𝑀 + 1) within the coefficient matrix is, the logic remains.
The requirement on the coefficient matrix to be nonsingular is not limiting at all since this is

a standard requirement so as the SLAE to have only one solution.

3.1. Number of computational steps

The calculation of 𝛼𝑘𝑖 , 𝜇𝑖, 𝛼
𝑀+1
𝑖 , 𝛼𝑀+2

𝑖 ,… , 𝛼2𝑀𝑖 , and 𝑧𝑖 depends on the results of the calculation of
𝛼𝑀+𝑘
𝑖−𝑗 , and 𝑧𝑖−𝑗. On the other hand, the calculation of 𝑥𝑖 depends on the results of the calculation

of 𝛼𝑀+1
𝑖 , 𝛼𝑀+2

𝑖 ,… , 𝛼2𝑀𝑖 , 𝑧𝑖, and 𝑥𝑖+1, 𝑥𝑖+2,… , 𝑥𝑖+𝑀. This makes the multi-diagonal numerical method
inherently serial. It takes 2 × 𝑁 steps overall, where 𝑁 is the number of equations in the initial SLAE.

3.2. Complexity

The amount of operations per expression are summarized in Table 1. Thus, the overall complexity of
the multi-diagonal numerical algorithms is:

2𝑁𝑀2 + 5𝑁𝑀 + 𝑁 − 4𝑀3

3 − 7𝑀2

2 − 13𝑀
6 ,

where 𝑁 is the number of rows in the initial coefficient matrix. Hence, the multi-diagonal numerical
method requires only 𝑂(𝑁) operations (provided that𝑀 << 𝑁) for finding the solution, and beats the
Gaussian elimination which requires 𝑂(𝑁3) operations.

4. Results
Within this paper we formulated the multi-diagonal numerical solver which is a generalization of the
Thomas method for multi-diagonal SLAEs. In Algorithm 1, we introduced the pseudocode of the the
generalised symbolic algorithm for solving SLAEs with multi-diagonal coefficient matrices.

It was proven that the only requirement to the coefficient matrix of a multi-diagonal SLAE so as the
multi-diagonal symbolic algorithm to be correct is nonsingularity.

Themulti-diagonal numerical method takes 2×𝑁 steps overall, where𝑁 is the number of equations
in the initial SLAE.
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Table 1
Complexity per expression for the multi-diagonal numerical algorithm

expression # operations simplified form of # ops examples

𝑀 = 2 𝑀 = 3 𝑀 = 4

𝛼𝑘
𝑖 , 𝑖 < 𝑀, ∑𝑀−1

𝑘=1 (2 × (1 + 2 +…𝑘− 1)) = (𝑀 − 1) ×𝑀 × (2𝑀 − 1)
6 0 2 8

𝑘 = 2,… ,𝑀 ∑𝑀−1
𝑘=1 (2 × (𝑘 − 1) × 𝑘

2 ) − (𝑀 − 1) ×𝑀
2

𝛼𝑘
𝑖 , 𝑖 ≥ 𝑀, (𝑁 − 1 −𝑀 + 1) (𝑁 −𝑀) × (𝑀2 −𝑀) 2(𝑁 − 2) 6(𝑁 − 3) 12(𝑁 − 4)

𝑘 = 2,… ,𝑀 ×∑𝑀
𝑘=1((𝑘 − 1) × 2)

𝜇𝑖, 𝑖 < 𝑀 ∑𝑀−1
𝑘=0 (2𝑘) 𝑀2 −𝑀 2 6 12

𝜇𝑖, 𝑖 ≥ 𝑀 (𝑁 − 1 −𝑀 + 1) × 2𝑀 2𝑀𝑁 − 2𝑀2 4𝑁 − 8 6𝑁 − 18 8𝑁 − 32

𝛼𝑀+𝑘
𝑖 , 𝑖 < 𝑀, ∑𝑀

𝑘=1 (∑
𝑀−𝑘
𝑖=0 (𝑖 × 2 + 1) 𝑀3

6 19 44
𝑘 = 1, 2,… ,𝑀 +(𝑘 − 1) × ((𝑀 − 𝑘) × 2 + 1)) −𝑀 × (𝑀 + 1) × (2𝑀 + 1)

6
+𝑀 × (𝑀 + 1)

2

𝛼𝑀+𝑘
𝑖 , 𝑖 ≥ 𝑀, ∑𝑀

𝑘=1 ((𝑁 − (𝑀 + 𝑘)) 𝑁𝑀2 − 2𝑀3 −𝑀2

4𝑁 − 13 9𝑁 − 41 16𝑁 − 94𝑘 = 1, 2,… ,𝑀 ×((𝑀 − 𝑘) × 2 + 1)) +𝑀 × (𝑀 + 1) × (2𝑀 + 1)
3

−𝑀 × (𝑀 + 1)
2

𝑧𝑖, 𝑖 < 𝑀 ∑𝑀−1
𝑘=0 (2𝑘 + 1) 𝑀2 4 9 16

𝑧𝑖, 𝑖 ≥ 𝑀 (𝑁 − 1 −𝑀 + 1) × (2𝑀 + 1) 2𝑁𝑀 +𝑁 −𝑀 − 2𝑀2 5𝑁 − 10 7𝑁 − 21 9𝑁 − 36

𝑥𝑁−𝑘, ∑𝑀
𝑘=1((𝑘 − 1) × 2) 𝑀2 −𝑀 2 6 12

𝑘 = 1,… ,𝑀

𝑥𝑁−𝑘, (𝑁 − (𝑀 + 1) + 1) × 2𝑀 2𝑁𝑀 − 2𝑀2 4𝑁 − 8 6𝑁 − 18 8𝑁 − 32
𝑘 = 𝑀 + 1,… ,𝑁

Total 2𝑁𝑀2 + 5𝑁𝑀 +𝑁 − 4𝑀3

3 − 7𝑀2

2 − 13𝑀
6 19𝑁 − 29 34𝑁 − 74 53𝑁 − 150

The complexity of the multi-diagonal numerical algorithms was found to be:

2𝑁𝑀2 + 5𝑁𝑀 + 𝑁 − 4𝑀3

3 − 7𝑀2

2 − 13𝑀
6 ,

where 𝑁 is the number of rows in the initial coefficient matrix. Hence, the multi-diagonal numerical
method requires 𝑂(𝑁) operations (provided that𝑀 << 𝑁) for finding the solution. The amount of
operations per expressionwere summarized inTable 1. In theTable 1 one can also find the complexity
per expression in the cases when𝑀 = 2,𝑀 = 3, and𝑀 = 4.

5. Discussion
Within this paper we formulated the multi-diagonal numerical solver which is a generalization of the
Thomas method for multi-diagonal SLAEs. Next, we introduced the pseudocode of the generalised
symbolic algorithm for solving SLAEs with multi-diagonal coefficient matrices. There, as a remedy of
the stability issue which arises within the Thomas method in the case of non-diagonally dominant
matrices, if we obtain a zero (or numerically zero) quotient of two subsequent leading principal
minors, a symbolic variable is assigned instead and the calculations are continued. At the end of the
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algorithm, this symbolic variable is substituted with zero. The generalised multi-diagonal symbolic
algorithm is the novelty that addresses the need of a direct method which solvesmulti-diagonal SLAEs
without putting any requirements for the characteristics of the coefficient matrix. This algorithm is
a generalization of the algorithms presented in [3, 10, 16].

It was proven that the only requirement to the coefficient matrix of a multi-diagonal SLAE so as the
multi-diagonal symbolic algorithm to be correct is nonsingularity. Asking for nonsingularity of the
coefficient matrix is a standard requirement so as the SLAE to have only one solution. Hence, this
does not limit the significance of the formulated symbolic algorithm.

Themulti-diagonal numerical method takes 2×𝑁 steps overall, where𝑁 is the number of equations
in the initial SLAE.

Themulti-diagonal numericalmethod requires𝑂(𝑁) operations (provided that𝑀 << 𝑁) for finding
the solution, and beats the Gaussian elimination which requires 𝑂(𝑁3) operations.

6. Conclusion
Ageneralised symbolic algorithm for solving systemsof linear algebraic equationswithmulti-diagonal
coefficient matrices was formulated and presented in pseudocode. Some notes on the correctness of
the algorithm were made. Formula for the complexity of the multi-diagonal numerical algorithm
was obtained.
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Символьный алгоритм решения СЛАУ
с многодиагональными матрицами коэффициентов
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Аннотация. Системы линейных алгебраических уравнений с многодиагональными матрицами коэффи-
циентов возникают во многих прикладных и теоретических задачах науки и техники, а также в задачах
вычислительной линейной алгебры, где их решение представляет собой одну из ключевых проблем.
В данной работе представлен обобщённый символьный алгоритм решения систем линейных алгебра-
ических уравнений с многодиагональными матрицами коэффициентов. Алгоритм приведён в виде
псевдокода. Сформулирована и доказана теорема, определяющая условие корректности алгоритма. По-
лучена формула, описывающая вычислительную сложность соответствующего численного алгоритма
для многодиагональных систем.

Ключевые слова: численные методы, вычислительные методы для разреженных матриц, методы
численного математического программирования, вычислительная сложность численных алгоритмов


