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Abstract. Various approaches to calculating normal modes of a closed waveguide are considered. A review of the
literature was given, a comparison of the two formulations of this problem was made. It is shown that using
a self-adjoint formulation of the problem of normal waveguide modes eliminates the occurrence of artifacts
associated with the appearance of a small imaginary additive to the eigenvalues. The implementation of this
approach for a rectangular waveguide with rectangular inserts in the Sage computer algebra system is presented
and tested on hybridmodes of layeredwaveguides. The tests showed that our program copeswell with calculating
the points of the dispersion curve corresponding to the hybrid modes of the waveguide.
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1. Introduction
In classical electrodynamics there are two related spectral problems, the problem of normal modes
of a waveguide and the problem of eigenmodes of a resonator [1, 2]. The first of these problems in
the vector case turned out to be surprisingly difficult, its solution requiring the use of very subtle
theorems from the field of functional analysis.

2. Scalar model

Let 𝑆 be regular domain in ℝ2, the cylinder 𝑆 × ℝ will be called a waveguide, and the 𝑂𝑧 axis of the
Cartesian coordinate system used is directed along the axis of the cylinder. A nontrivial solution

𝑢 = 𝑢(𝑥, 𝑦)𝑒𝑖𝜔𝑡−𝑖𝛾𝑧

of the oscillation equation
1
𝑐2
𝜕2𝑢
𝜕𝑡2 = 𝛥𝑢
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in the cylinder 𝑆 × ℝ, satisfying the Dirichlet boundary condition

𝑢|𝜕𝑆×ℝ = 0

or Neumann boundary condition
𝜕𝑢
𝜕𝑛
|||𝜕𝑆×ℝ

= 0

is called the normal mode of the scalar waveguide, and the corresponding value of the positive
parameter 𝜔 is called the natural frequency. The parameter 𝛾/𝑐 is called the propagation constant. If
𝛾 > 0, then the normal mode runs along the 𝑧 axis, if 𝛾 < 0, then against it. These modes are called
guided modes. If 𝛾 contains an imaginary part, then the normal modes either increase exponentially
or decrease exponentially with increasing 𝑧. Such modes are called evanescent.

The problem of finding normal modes of a scalar waveguide is reduced to a 2D spectral problem of
finding a nontrivial solution 𝑢 of the equation

𝛥2𝑢 + (𝑘2 − 𝛾2)𝑢 = 0

with Dirichlet or Neumann boundary conditions.
Let the eigenvalues of the problem

𝛥2𝜙 + 𝛼2𝜙 = 0, 𝜙|𝜕𝑆 = 0

be numbered in ascending order taking into account the multiplicity as 𝛼21, 𝛼22,… , and the
corresponding eigenfunctions be denoted as 𝜙𝑛. In this case, functions

𝜙𝑛(𝑥, 𝑦)𝑒𝑖𝛼𝑛𝑡

describe the natural oscillations of the membrane 𝑆. For a given domain 𝑆, the numbers 𝛼21, 𝛼22,…
are uniquely determined. For some domains, they can be calculated analytically, for all others they
are found using the Galerkin method.
For this reason, the parameters 𝜔 and 𝛾 of the normal modes of a scalar waveguide are related as

𝑘2 − 𝛾2 = 𝛼2𝑛.

Therefore, for a fixed frequency𝜔, there are atmost a finite number of positive values of the parameter
𝛾, for which normal modes exist. These modes describe waves traveling along the waveguide and,
as already said, are called guided modes. All other normal modes have an imaginary 𝛾 and for this
reason they exponentially increase or decrease along the waveguide axis.
By Steklov’s theorem, a monochromatic scalar field in a waveguide can always be represented as

a sum
∑(𝑎𝑛𝑒𝑖𝜔𝑡−𝑖𝛾𝑛𝑧 + 𝑏𝑛𝑒𝑖𝜔𝑡+𝑖𝛾𝑛𝑧) 𝜙𝑛(𝑥, 𝑦),

where 𝑎𝑛, 𝑏𝑛 are the complex amplitudes. Therefore, the field, say, at large 𝑧 is a superposition of
a finite number of running normal modes, a sum of exponentially decreasing evanescent modes, and
a sum of exponentially growing modes. The partial radiation conditions are such that there should
be no exponentially growing terms [1].
It should also be noted that normal modes in the framework of the scalar model with Dirichlet

conditions exist only for those values of 𝑘, 𝛾 that lie on hyperboles

𝑘2 − 𝛾2 = 𝛼2𝑛, 𝑛 = 1, 2,… .
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The set of such points (𝑘, 𝛾), which correspond to normal modes, is called the dispersion curve of the
waveguide. The dispersion curve of a scalar waveguide consists of a countable number of hyperbolas.

The case of Neumann boundary conditions does not present any fundamental difficulties. Let us
agree that the eigenvalues of the problem

𝛥2𝜓 + 𝛽2𝜓 = 0,
𝜕𝜓
𝜕𝑛 |𝜕𝑆 = 0

are numbered in ascending order and taking into account the multiplicity as 𝛽21 , 𝛽22 ,… , and the
corresponding eigenfunctions are denoted as 𝜓𝑛. Let us add to them the zero eigenvalue 𝛽0 = 0 and
the corresponding eigenfunction 𝜓0 = 1. The system of functions 𝜓𝑛 is again complete, and normal
modes within the framework of the scalar model with Neumann conditions exist only for those values
of 𝑘, 𝛾 that lie on the hyperbolas

𝑘2 − 𝛾2 = 𝛽2𝑛, 𝑛 = 0, 1, 2,… .

Thus, in the scalar case, classical theorems of mathematical physics are sufficient to construct the
theory of waveguides [1].

3. Vector model
Let us now turn to the vector model of an electromagnetic waveguide. A nontrivial field of the form

⃗𝐸 = ⃗𝐸(𝑥, 𝑦)𝑒𝑖𝜔𝑡−𝑖𝛾𝑧, 𝐻⃗ = 𝐻⃗(𝑥, 𝑦)𝑒𝑖𝜔𝑡−𝑖𝛾𝑧,

satisfying the system of homogeneous Maxwell’s equations and the boundary conditions

⃗𝑛 × ⃗𝐸 = 0, ⃗𝑛 ⋅ 𝐻⃗ = 0,

is called an eigenmode, and the corresponding value of the positive parameter 𝜔 is called
an eigenfrequency. The parameter 𝛽 = 𝛾/𝑐 is called the propagation constant. To find the
eigenfrequencies, it is necessary to solve the eigenvalue problem

rot ⃗𝐸 = −𝑖𝑘𝜇𝐻⃗, rot𝐻⃗ = 𝑖𝑘𝜖 ⃗𝐸 (1)

with the boundary conditions
⃗𝑛 × ⃗𝐸 = 0, ⃗𝑛 ⋅ 𝐻⃗ = 0.

Here rot is a differential operator in which differentiation with respect to 𝑧 is replaced with
multiplication by −𝑖𝛾. As in the scalar case, the points of the 𝑘𝛾 plane at which this problem has
a nontrivial solution form a certain curve called the dispersion curve of the waveguide.
In the case where the waveguide filling is uniform, Tikhonov A.N. and Samarskii A.A. [3] proved

a field decomposition theorem, from which it follows that the complete system of waveguide modes
can be composed of two types of modes: transverse magnetic (TM, 𝐻𝑧 = 0) and transverse electric
(TE, 𝐸𝑧 = 0). For a TE mode, from the equation

div 𝜖 ⃗𝐸 = 0

it follows that there is such a function 𝑢 that

𝐸𝑥 =
𝜕𝑢
𝜕𝑦 , 𝐸𝑦 = −𝜕𝑢𝜕𝑥 , 𝐸𝑧 = 0.
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Figure 1. Waveguide filled with layers

This function is called the Borgnis function [1]. By direct substitution of these expressions into
Maxwell’s equations, it is possible to express all the components of the field through the derivatives
of the Borgnis function, and for the Borgnis function itself to obtain a scalar eigenvalue problem
with the Dirichlet condition. Similarly, the TMmode can be expressed through the derivatives of the
Borgnis function, for which it is possible to obtain a scalar eigenvalue problem with the Neumann
condition. It is only necessary to discard the zero eigenvalue, which will correspond to the trivial
electromagnetic field.
Thus, the theory of Borgnis functions allows reducing the study of the modes of a waveguide filled

with an optically homogeneous substance to the study of the spectrum of the Laplace operator. In
this case, the dispersion curve turns out to be the union of a countable number of hyperbolas, which
are dispersion curves for a scalar waveguide with the Dirichlet and Neumann conditions.
However, in practice, waveguides with optically inhomogeneous filling are quite common. Such

waveguides include waveguides with a core, which are obtained by coating a dielectric cylinder with
another dielectric and then with a conducting layer, and multicore waveguides, which are obtained
by adding several dielectric cylinders into a bundle covered with a conducting layer on the outside.
In this case, it is impossible to decompose the field into TE and TMmodes.

4. Rectangular waveguide with two layers
As an example, consider a waveguide with rectangular cross-section 𝐿𝑥 × 𝐿𝑦 (see Fig. 1), the filling of
which is piecewise constant and depends only on 𝑦. In other words, the waveguide consists of several
layers, Fig. 1 shows two such layers of equal thickness 𝐿𝑦/2. When one of the layers is air, we say that
the waveguide is considered half-filled.
There are two families of normal modes in such a waveguide, the SLE and SLHmodes, the former

have 𝐸𝑦 = 0, and the latter have 𝐻𝑦 = 0 [4]. The theory of these modes is in many ways similar to the
theory of TM and TE modes developed by Tikhonov and Samarskii [5].
We will search for SLE modes using the method of separation of variables:

⃗𝐸 =
⎛
⎜
⎜
⎜
⎝

𝐴𝑥(𝑦) cos 𝑘𝑥𝑥

0

𝐴𝑧(𝑦) sin 𝑘𝑥𝑥

⎞
⎟
⎟
⎟
⎠

𝑒𝑖𝑘𝑧𝑧−𝑖𝜔𝑡 (2)



Kroytor, O. K. et al. On the problem of normal modes of a waveguide 399

and

𝐻⃗ =
⎛
⎜
⎜
⎜
⎝

𝐵𝑥(𝑦) sin 𝑘𝑥𝑥

𝐵𝑦(𝑦) cos 𝑘𝑥𝑥

𝐵𝑧(𝑦) cos 𝑘𝑥𝑥

⎞
⎟
⎟
⎟
⎠

𝑒𝑖𝑘𝑧𝑧−𝑖𝜔𝑡.

Here the choice of sines and cosines is determined in such a way as to satisfy the boundary conditions.
First of all, let us consider what Maxwell’s equations lead to in a layer, where 𝜖 and 𝜇 are constant.

FromMaxwell’s equations we have:

⎧
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎩

𝑖𝑘𝜇𝐵𝑥 +
𝑑𝐴𝑧
𝑑𝑦 = 0,

𝑖𝑘𝜇𝐵𝑦 + 𝑖𝑘𝑧𝐴𝑥 − 𝑘𝑥𝐴𝑧 = 0,

− 𝑖𝑘𝜇𝐵𝑧 +
𝑑𝐴𝑥
𝑑𝑦 = 0,

− 𝑖𝜖𝑘𝐴𝑥 − 𝑖𝑘𝑧𝐵𝑦 +
𝑑𝐵𝑧
𝑑𝑦 = 0,

𝑖𝑘𝑧𝐵𝑥 + 𝑘𝑥𝐵𝑧 = 0,

𝑖𝜖𝑘𝐴𝑧 + 𝑘𝑥𝐵𝑦 +
𝑑𝐵𝑥
𝑑𝑦 = 0.

(3)

Three equations from this system allow us to express ⃗𝐵 in terms of 𝐴𝑥 and 𝐴𝑧 and their derivatives.
After this substitution, out of 6 equations, 3 non-trivial ones remain:

⎧
⎪
⎪

⎨
⎪
⎪
⎩

− 𝑖𝜖𝑘𝐴𝑥 + 𝑖(𝑘𝑧𝐴𝑥 + 𝑖𝑘𝑥𝐴𝑧)
𝑘𝑧
𝑘𝜇 − 𝑖

𝑑2𝐴𝑥
𝑑𝑦2

1
𝑘𝜇 = 0,

− 𝑖𝑘𝑥
𝑑𝐴𝑥
𝑑𝑦

1
𝑘𝜇 − 𝑘𝑧

𝑑𝐴𝑧
𝑑𝑦

1
𝑘𝜇 = 0,

𝑖𝜖𝑘𝐴𝑧 − (𝑘𝑧𝐴𝑥 + 𝑖𝑘𝑥𝐴𝑧)
𝑘𝑥
𝑘𝜇 + 𝑖𝑑

2𝐴𝑧
𝑑𝑦2

1
𝑘𝜇 = 0.

The second equation, up to an insignificant constant, allows finding a linear relationship between 𝐴𝑥
and 𝐴𝑧:

𝐴𝑧 = −
𝑖𝑘𝑥
𝑘𝑧

𝐴𝑥. (4)

As a result, two equations that differ only by a constant factor turn out to be nontrivial. Therefore, in
the layer, Maxwell’s equations are reduced to the equation

𝑑2𝐴𝑥
𝑑𝑦2 + (𝜀𝜇𝑘2 − 𝑘2𝑥 − 𝑘2𝑧)𝐴𝑥 = 0 (5)

and equations that allow calculating 𝐴𝑧 and ⃗𝐵 from the known 𝐴𝑥.
At the waveguide boundary, the modes must satisfy the condition of a wall with ideal conductivity:
⃗𝑛 × ⃗𝐸 = 0.
At the boundary 𝑥 = 0, 𝐿𝑥, these conditions yield:

𝐸𝑦 = 𝐸𝑧 = 0.

For SLE modes, the component 𝐸𝑦 is identically zero, so the condition 𝐸𝑧 = 0 remains valid. We
took the sine in (2) for 𝐸𝑧 so that this condition is always satisfied at 𝑥 = 0. At 𝑥 = 𝐿𝑥, we obtain the
condition sin(𝑘𝑥𝐿𝑥) = 0, from which suitable values of 𝑘𝑥 are determined as

𝑘𝑥 =
𝜋𝑛
𝐿𝑥

, 𝑛 ∈ ℕ. (6)
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Figure 2. Dispersion curve for a test waveguide with two layers (𝜖0 = 1, 𝜖2 = 1, 𝜇 = 1, 𝐿𝑥 = 1, 𝐿𝑦 = 2).

At the boundary 𝑦 = 0, 𝐿𝑦, the conditions of ideal conductivity yield:

𝐸𝑥 = 𝐸𝑧 = 0.

Since 𝐴𝑥 and 𝐴𝑦 are linearly related in layers, this condition reduces to the Dirichlet condition on 𝐴𝑥:

𝐴𝑥(0) = 𝐴𝑥(𝐿𝑦) = 0.

At the boundary of two layers 𝑦 = 𝑀, the requirement of continuity of 𝐸𝑥, 𝐸𝑧 and 𝐻𝑥, 𝐻𝑧 is to be
satisfied.
The continuity of 𝐸𝑥 indicates the continuity of 𝐴𝑥. The coefficient in Eq. (4), relating 𝐴𝑧 and 𝐴𝑥,

does not depend on the filling, so the continuity of 𝐴𝑥 implies the continuity of 𝐴𝑧, and, consequently,
of 𝐸𝑧.
Maxwell’s equations (3) yield

𝑖𝑘𝜇𝐵𝑥 = −𝑑𝐴𝑧
𝑑𝑦 , 𝑖𝑘𝜇𝐵𝑧 =

𝑑𝐴𝑥
𝑑𝑦 .

From this it is clear that the continuity of 𝐻𝑥, 𝐻𝑧 is equivalent to the continuity of 1

𝜇
𝐴′𝑥.

As a test example, we consider a waveguide of rectangular cross-section 𝐿𝑥 × 𝐿𝑦 with two layers:
for 𝑦 < 𝐿𝑦/2 let 𝜖 = 𝜖1, and for 𝑦 > 𝐿𝑦/2 let 𝜖 = 𝜖0 (see Fig. 1). We consider 𝜇 to have a constant value.
According to the discussed above, such a waveguide has a family of SLE modes (2), the parameters

of which at a given frequency 𝜔 are determined as follows. The number 𝑘𝑥 is given by Eq. (6). The
number 𝑘𝑧 is the eigenvalue of the problem:

⎧
⎪⎪

⎨
⎪⎪
⎩

𝑑2𝐴𝑥
𝑑𝑦2 + (𝜀𝜇𝑘2 − 𝑘2𝑥 − 𝑘2𝑧)𝐴𝑥 = 0,

[𝐴𝑥] = [
𝑑𝐴𝑥
𝑑𝑦 ] = 0, 𝑦 =

𝐿𝑦
2 ,

𝐴𝑥(0) = 𝐴𝑥(𝐿𝑦) = 0.

(7)
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This problem comprises Eq. (5), the boundary conditions and the matching conditions found above.
From the eigenfunction 𝐴𝑥 we can calculate 𝐴𝑧 using Eq. (4), from them we determine ⃗𝐵, and thus
determine all the quantities involved in Eq. (2).
For further tests, we are interested in the dependence of the eigenvalues 𝑘𝑧 of the problem (7) on

𝑘 = 𝜔/𝑐.
The solution of (7) for 𝑦 < 𝐿𝑦/2 is

𝐴𝑥 = 𝑎 sin(√𝜀1𝜇𝑘2 − 𝑘2𝑥 − 𝑘2𝑧𝑦).

The solution of (7) for 𝑦 > 𝐿𝑦/2 is

𝐴𝑥 = 𝑏 sin(√𝜀0𝜇𝑘2 − 𝑘2𝑥 − 𝑘2𝑧(𝐿𝑦 − 𝑦)). (8)

The choice of sines ensures that the boundary conditions are satisfied. For 𝑦 = 𝐿𝑦/2 we have

𝑎 sin(√𝜀1𝜇𝑘2 − 𝑘2𝑥 − 𝑘2𝑧𝐿𝑦/2) = 𝑏 sin(√𝜀0𝜇𝑘2 − 𝑘2𝑥 − 𝑘2𝑧𝐿𝑦/2)

and
𝑎√𝜀1𝜇𝑘2 − 𝑘2𝑥 − 𝑘2𝑧 cos(√𝜀1𝜇𝑘2 − 𝑘2𝑥 − 𝑘2𝑧𝐿𝑦/2) =

− 𝑏√𝜀0𝜇𝑘2 − 𝑘2𝑥 − 𝑘2𝑧 cos(√𝜀0𝜇𝑘2 − 𝑘2𝑥 − 𝑘2𝑧𝐿𝑦/2).

Thus, 𝑘𝑧 is the root of the determinant of this homogeneous system of linear equations.

5. Results
The calculation result is shown in Fig. 2 as solid lines. Their unexpected discontinuity occurs because
in Eq. (8) the sine transforms into the hyperbolic sine. We added the second piece of the program,
in which the sine is replaced with the hyperbolic sine. The resulting continuation of the dispersion
curves is shown in Fig. 2 with dotted line.
Thus, the conjugation method allows finding a family of normal modes of the test waveguide.

These modes are neither TE nor TMmodes, so they are often called hybrid modes. The considered
example proves that hybrid modes exist. This circumstance makes it a very important test for all
kinds of calculations of dispersion curves of waveguides, since it is the hybridization of modes that
introduces non-self-conjugation into the known approaches to calculating modes.

6. Discussion
Without the decomposition theorem, the normal waveguide mode problem (1) does not decompose
into two scalar problems and, thus, does not reduce to any type of problem studied above. It should
be noted that the problem (1) contains two parameters, 𝑘 = 𝜔/𝑐 and 𝛾, and we must choose one of
them as the spectral parameter.
In the early 1990s, in the first works on calculating normal waveguide modes [6], the frequency

was used as the spectral parameter. This resulted in a self-adjoint spectral problem with respect to
𝑘, which could be solved relatively successfully using the software that was available in the early
1990s. The key difficulty at that time was constructing a basis for the Galerkin method that satisfies
the condition div 𝐻⃗ = 0.
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This approach was soon abandoned in favor of an approach in which 𝛾 is considered as a spectral
parameter, and the frequency 𝜔 is considered given [7–11]. With this approach, the problem (1) is
reduced to the study of the spectrum of a non-self-adjoint operator pencil that is quadratic with
respect to the spectral parameter 𝛾. By analogy with the scalar case, it is necessary to prove the
completeness of the system of normal modes. However, the conditions under which Keldysh [12–15]
proved the completeness of the root vectors of the quadratic operator pencil are not satisfied in all
possible notations of the problem of waveguide normal modes. For the first time, the completeness
of the system of root vectors of a waveguide with piecewise constant filling was substantiated in the
papers by Yu.G. Smirnov [16–19], for an arbitrary filling in [9, 20–22]. This in turn made it possible to
substantiate the formulation of partial radiation conditions. The basis property of the system of root
vectors of a waveguide could be substantiated only for the axially symmetric case [23, 24].

Even greater difficulties are offered by the numerical calculation of normal modes. The application
of the Galerkinmethod, as well as any other truncationmethod, leads to the study of a non-self-adjoint
matrix pencil. Numerical methods for calculating its spectrum are very whimsical. In a number of
works [8, 10, 11], algorithms built into, for example, MatLab were used according to the “black box”
principle. In such computer experiments, the dispersion curve turned out to be non-monotonic, real
eigenvalues suddenly went into the complex domain, etc. Generally speaking, all these phenomena
are inherent in the spectral theory of non-self-adjoint matrices. However, the physical meaning of
these phenomena raises many questions.
Over the past 30 years since the publication [6], the situation has changed radically. It seemed

then that new methods for approximate calculation of the spectrum of non-self-adjoint matrices
would appear in the near future, which would solve the difficulties noted above. However, instead,
computer algebra methods came into use, which allow constructing Galerkin method bases that
satisfy certain properties. This renewed the interest in the idea of Ref. [6]. The choice of frequency
as a spectral parameter has a simple physical background. There is an obvious connection between
the modes travelling along the waveguide axis and the standing modes of a cylindrical resonator.
Having studied it, we obtained a method for constructing a dispersion curve, which requires solving
the spectral problem in a cylindrical resonator, i.e., a classical self-adjoint problem. This approach
was implemented as a program for the Sage computer algebra system and presented in Ref. [25].

To test this program, we considered a waveguide in which the insert occupies the lower half (see
Fig. 1, 𝜖0 = 1, 𝜖1 = 0.1, 𝐿𝑥 = 1, 𝐿𝑦 = 2). It turned out that for the lower modes, the points found in our
program lie on the analytical curve with graphical accuracy even with a very small number of basis
elements taken into account (three for each direction).

7. Conclusion
Using a self-adjoint formulation of the problemof normalwaveguidemodes eliminates the occurrence
of artifacts associated with the appearance of a small imaginary additive to the eigenvalues. We
implemented this approach for a rectangular waveguidewith rectangular inserts in the Sage computer
algebra system. Tests on SLE modes of layered waveguides showed that our program copes well with
calculating the points of the dispersion curve corresponding to the hybrid modes of the waveguide.
On the other hand, the approach based on a non-self-adjoint formulation gives important results

from a theoretical point of view on the completeness of the system of normal modes and, therefore,
allows us to justify the partial conditions of Sveshnikov radiation. At themoment, only a combination
of two approaches allows us to bring our knowledge of the vector model of the waveguide closer to
the well-studied scalar one.
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Задача о нормальных модах волновода
О. К. Кройтор1, М. Д. Малых1, 2, Л. А. Севастьянов1, 2

1 Российский университет дружбы народов, ул. Миклухо-Маклая, д. 6, Москва, 117198, Российская
Федерация
2 Объединённый институт ядерных исследований, ул. Жолио-Кюри, д. 6, Дубна, 141980, Российская
Федерация

Аннотация. Рассмотрены различные подходы к вычислению нормальных мод закрытого волновода. Дан
обзор литературы, проведено сравнение двух формулировок этой задачи. Показано, что использова-
ние самосопряжённой постановки задачи о нормальных модах волновода исключает возникновение
артефактов, связанных с появлением малой мнимой добавки у собственных значений. Представлена
реализация этого подхода для волновода прямоугольного сечения с прямоугольными вставками в систе-
ме компьютерной алгебры Sage и протестирована на гибридных модах слоистых волноводов. Тесты
показали, что наша программа прекрасно справляется с вычислением точек дисперсионной кривой,
отвечающих гибридным модам волновода.

Ключевые слова: поляризованное электромагнитное излучение, нормальные моды волновода,
спектральная задача теории волновода, дисперсионная кривая волновода


