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Abstract. The motivation of this paper was the development of computer geometry course for students of
mathematical specialties. The term “computer geometry” hereafter refers to the mathematical foundations of
machine graphics. It is important to emphasize separately that this course should be designed for second-year
students and, therefore, they can only be required to have prior knowledge of a standard course in algebra
and mathematical analysis. This imposes certain restrictions on the material presented. When studying the
thematic literature, it was found out that the de facto standard in modern computer graphics is the use of
projective space and homogeneous coordinates. However, the authors faced a methodological problem—the
almost complete lack of suitable educational literature in both Russian and English. This paper was written to
present the information collected by the authors on this issue.
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1. Introduction
Here are the main reasons that motivated us to write this paper.

1.1. Synthetic and analytical approaches to geometry

Historically, therehavebeen two approaches to thepresentation of geometry inmathematics, synthetic
and analytical. In the synthetic presentation of geometry, sets of geometric elements of various kinds
are initially introduced, such as points, lines and planes. Then the relationship between them is
defined, formulated in the form of axioms that correspond to visual geometric representations. This
approach is used in a simplified form when presenting Euclidean geometry in a school geometry
course, therefore it is intuitively understandable to most students.
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An alternative approach emerged later, with the development of algebra. Despite the fact that the
name analytical geometry has been assigned to it, it would be more correct to call it linear-algebraic,
“since linear algebra forms the basis and provides its own methods, not analysis” [1, p. 12]. The
linear-algebraic approach is much more general, much more powerful, and therefore much simpler
in describing complex structures than the synthetic approach. He received a particularly strong
impetus for his development within the framework of the ideas formulated by Felix Klein in his
Erlangen program [2].
It is quite natural for computer graphics algorithms to use a linear-algebraic approach, since

it allows you to write down and use algebraic formulas to calculate the necessary quantities.
Consequently, projective geometry in the framework of this subject should be presented in this
style. Note that we are talking about the projective space model ℝP3.

1.2. Lack of educational literature

The literature on projective geometry in Russian is extensive, not to mention English and other
foreign languages. Most textbooks, where the presentation is conducted at a level accessible to
undergraduates of physics andmathematics faculties, are essentially basedona synthetic approach [3–
7]. This technique is justified, since the task of these authors is to provide an understanding of the
essence of projective geometry, and the analytical approach “requires more ink and less thought” [8,
p. 89]. However, when presenting the basics of projective geometry in a computer geometry course,
this approach is questionable because it is too far from the final software implementation.
There are also a large number of monographs where projective geometry is presented in a linear-

algebraic style, for example [9–11] and a list of sources in [1]. However, the style of presentation in
them is rather abstract and most of them are textbooks for undergraduates, graduate students and
researchers working in the framework of theoretical mathematics.
Looking at textbooks on computer graphics, machine vision and robotics, then a different

problem arises. In many textbooks, projective geometry begins and ends with an exposition of the
concept of homogeneous coordinates, which are introduced exclusively in the context of projective
transformations. For example, let’s list the sources with the pages: [12, pp. 101, 115][13, p. 18][14,
pp. 192, 220][15, p. 146] [16, p. 85] [17, p. 20] [18, p. 176] [19, p. 211] [20, p. 438] [21, p. 56]. In all these
books, homogeneous coordinates are introduced ad hoc and used to represent affine transformations
as a linear transformation (3×3matrices on the plane and 4×4matrices in space). The representation
of a straight line and a plane using homogeneous coordinates is not considered, and projective
geometry is not applied to standard problems of analytical geometry.
The list of textbooks in Russian concerning the mathematical foundations of computer graphics

is extremely limited [12–14, 17, 19, 20, 22, 23]. None of these manuals consistently use projective
geometry as a tool for solving computer geometry problems. Some information, mainly about
homogeneous coordinates, is available in books [12–14, 17, 19, 24], however, they do not consistently
describe how to represent straight lines and planes in a homogeneous form, and homogeneous
coordinates are also used only to represent affine transformations as linear.
As an exception, the textbook should be noted [25], which adopted a non-standard approach to the

presentation of analytic geometry using Grassmann algebra using non-standard notation. We will
also mention several sources on the theory of screws [26–28], in which, in particular, the moment
of a sliding vector is introduced, which is directly related to the representation of straight lines in
Plucker coordinates (in a homogeneous form).
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The situation with books in English is only slightly better. You can specify the book [29], where the
presentation is not limited to the introduction of homogeneous coordinates only for points, on the
contrary, homogeneous coordinates for straight lines and planes are considered, as well as solutions
to some standard problems [29, pp. 25, 65]. As a disadvantage, we note that all formulas are written
mainly in component rather than vector form, and we also note the focus on the field of computer
vision rather than computer graphics. These are different areas, despite their proximity.

Of particular note is the extremely capacious but extremely informative book [30] by Eric Lengyel,
which stands out in several ways.

– The presentation is conducted at a good mathematical level, but with an emphasis on practical
application. For almost every formula, an example of its implementation is given in the form of
programs in C-like pseudocode.

– Due attention is paid to the application of the principles of projective geometry in computer
graphics problems. In the third chapter, the author provides an extremely useful table 3.1 with
a summary of basic formulas using homogeneous coordinates for points, lines and planes.

– The fourth chapter is devoted to Grassmann algebra, which is the basis of geometric algebra.
The author gives a description of projective spaces in terms of 𝑛–vectors.

This concludes the list of textbooks found by the authors, where analytical projective geometry is
somehow touched upon.

1.3. Paper structure

In this article and its continuation, we attempt to eliminate this drawback and provide a detailed
description of analytic projective geometry, or rather the model of the projective space ℝP3. At the
same time, we focus on practical applications in the field of computer graphics and implement all
proven formulas programmatically in the language Asymptote [31–33]. The article contains a large
number of drawings and all of them are created programmatically using Asymptote. Writing points,
lines, and planes in a projective form allows you to associate each of these geometric entities with
a certain algebraic entity.
In the first article, we describe the theory in detail, based on the notation from the book [30].

To prove the formulas, we use both projective space and three-dimensional Euclidean space with
a Cartesian coordinate system. For the sake of completeness, we repeat some things from classical
analytic geometry, but they are also interpreted within the framework of projective space. We write
down all the proven formulas in the table, which is an expanded and supplemented version of the
above-mentioned Table 3.1. This table allows you to solve any problem about the relative position of
points, lines and planes.
In the second article, the proven formulas will be translated into the Asymptote programming

language. This language is designed to create two-dimensional and three-dimensional vector
illustrations, has a C-like syntax, and allows you to set custom data structures by attaching member
functions (methods) to them and overloading existing functions for these structures. This made it
possible to create structures for a projective point, a straight line, and a plane and to implement
standard tasks for studying their relative positions. The results are immediately visualized.

2. Projective space and homogeneous coordinates
In art, the concept of perspective (Latin perspicere - to look through) has emerged since ancient times
as a technique for depicting spatial objects in accordance with the distortion of proportions and
shapes of depicted bodies during their visual perception. Visual means for conveying perspective
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Figure 1. Real projective lineℝP1. The points on the projective line correspond to the lines of the spaceℝ2 passing through
the origin𝑂. An irregular (ideal) point corresponds to a parallel line 𝑙∞

were initially passed on as practical skills in the fine arts from experienced craftsmen to apprentices.
The mathematical foundations of perspective were laid by the French geometer and architect Girard
Desargues (1591–1661), under the name projective geometry. Later, one of the main theorems of which
bears his name (Desargues’ theorem) was named after him. Further contributions to the development
of projective geometry were made by Jean-Victor Poncelet, M. Chasles, K. G. H. von Staudt,
A. F. Möbius, J. Plücker, F. H. Klein. For more information about the history of the development of
projective geometry, see the popular book [34].

A projective space or, more precisely, a model of the projective space ℝP𝑛 of dimension 𝑛 over the
field of real numbers ℝ is a set of straight lines in an ordinary Euclidean affine space ℝ𝑛+1 passing
through the origin point 𝑂. Three-dimensional computer graphics uses the projective space model
ℝP3. This model is based on the four-dimensional Euclidean space ℝ4, which greatly limits visibility
due to the natural complexity of illustrating four-dimensional spaces. Therefore, for greater clarity,
we will give examples of the spaces ℝP1 and ℝP2 for which illustrations can be given on a plane and
in three-dimensional space, respectively.

2.1. The real projective line

A model of a projective line, that is, a space of dimension 1, can be constructed if we define a certain
line ℝP1 on the plane ℝ2 that does not pass through the origin. Each point 𝑃 of this straight line will
correspond to a straight line in the plane that passes through the origin and intersectsℝP1 at the point
𝑃, as shown in the figure 1. Such points are called endpoints or proper points. The only straight line 𝑙∞
passing through 𝑂 and parallel to ℝP1 will correspond to a point of a special kind called improper or
ideal point.
Coordinates can be entered on the projective line. The most convenient way to do this is to draw

a projective line ℝP1 parallel to the 𝑂𝑥 axis, through the point (0, 𝑤) as shown in the figure 2. Since
each projective point is defined by a straight line passing through the origin, the components of the
non-normalized guide vector of this line can be taken as the projective coordinates, for example,
𝑃 = (𝑥,𝑤). When multiplying the components of the guide vector by the same number 𝜆 ≠ 0, it will
still set the same straight line, so you can write 𝑃 = (𝑥,𝑤) = (𝜆𝑥, 𝜆𝑤). Therefore, the coordinates are
a pair of numbers considered up to the proportionality of 𝑥/𝑤. To emphasize this fact, the coordinates
are written using a colon as a separator — the division symbol (𝑥 ∶ 𝑤). You can choose a fixed number
as 𝑤. Traditionally, 𝑤 = 1 is taken and such coordinates are called homogeneous or homogeneous.
Points with coordinates like (𝑥 ∶ 1) correspond to proper points, and points of the form (𝑥 ∶ 0) are
non-proper (in the one-dimensional case, there is one such point corresponding to the line 𝑂𝑥).
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Figure 2. A homogeneous coordinate system for a one-dimensional projective space. The coordinates of the point are
determined by the guide vector 𝒗 = (𝑥,𝑤)𝑇 = (𝜆𝑥, 𝜆)𝑇 of the straight line 𝑙. In homogeneous coordinates, they are
written as 𝒗⃗ = (𝑥 ∶ 𝑤)

2.2. The real projective plane

The projective plane can be defined axiomatically [5, 35]. Thus, a set is called a projective plane,
the elements of which are called points. It identifies subsets called straight lines and requires the
following properties to be fulfilled.
1. For any two different points, there is a single line containing them.
2. Any two different lines have a single point in common.
3. There are four points, none of which lie on the same straight line.
These axioms define the projective plane in an non-constructive way, since they say nothing about

how to construct a specific set of objects that satisfy these axioms — model of an abstract object.
Consider real projective plane ℝP2 and introduce homogeneous coordinates on the projective plane.

Such a space can be represented as a plane in a three-dimensional Euclidean affine space with
a Cartesian coordinate system. The plane ℝP2 passes through a point (0, 0, 1), parallel to the 𝑂𝑥 and
𝑂𝑦 axes. As before, each endpoint of the plane corresponds to a straight line passing through the
origin 𝑂 and intersecting the plane at this point, as shown in the figure 3. The coordinates of all
points on the plane have the form (𝑥, 𝑦, 1) and correspond to the homogeneous coordinates (𝑥 ∶ 𝑦 ∶ 1)
of the point 𝑃.
Unlike a projective line, there are an infinite number of ideal points on the projective plane. Each

such point corresponds to a straight line lying in the 𝑂𝑥𝑦 plane. These include, for example, the 𝑂𝑥
and 𝑂𝑦 axes themselves. The guide vectors of such lines have components of the form (𝑥, 𝑦, 0) and
define the direction on the projective plane.
Due to this, two types of vectors are distinguished in the projective space ℝP2 with component

notation.
– Radius vectors or point vectors — vectors anchored to the origin, having homogeneous

coordinates of the form (𝑥 ∶ 𝑦 ∶ 1) and defining endpoints on the plane.
– Direction vectors — loose, free vectors having homogeneous coordinates of the form (𝑥 ∶ 𝑦 ∶ 0)

and defining ideal points lying at infinity.
In addition to points, straight lines are also present on the projective plane. Each straight line

corresponds to a plane passing through the origin and intersecting ℝP2 along a certain straight line,
as shown in the figure 4. The plane 𝑂𝑥𝑦 parallel to ℝP2 corresponds to a perfect straight line on
which all ideal points lie. A model of an ideal straight line can be a circle lying infinitely far away in
the plane ℝP2.
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Figure 3. The model of the projective planeℝ𝑃2. Each point in the plane corresponds to a line ofℝ3 space passing through
the origin. The 𝑧 coordinate is traditionally denoted by the symbol𝑤

Figure 4. The model of the projective planeℝ𝑃2. Each straight plane corresponds to a plane of spaceℝ3 passing through the
origin. In this case, the plane is shown as a triangle

2.3. Amodel of three-dimensional projective spaceℝP3

Finally, let’s consider the model of the projective space ℝP3. Unfortunately, this model cannot be
fully visualized, since it uses the four-dimensional space ℝ4, where a Cartesian coordinate system
with the axes 𝑂𝑥, 𝑂𝑦, 𝑂𝑧 and 𝑂𝑤 is introduced. Some intuitive understanding can be gained if we
draw analogies with the projective plane, instead of which a hyperplane of dimension 3 is drawn
through the point 𝑤 = 1, which we will identify with ℝP3.

– Endpoints in ℝP3 correspond to lines intersecting ℝP3, and ideal points correspond to lines
parallel to ℝ.
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– Finite lines correspond to planes intersecting ℝP3, and ideal lines correspond to planes parallel
to ℝP3.

– The finite planes correspond to hyperplanes of dimension 3 intersecting ℝP3 along planes (of
dimension 2). The ideal plane corresponds to the hyperplane 𝑂𝑥𝑦𝑧 parallel to ℝP3.

Some idea of a hyperplane of dimension 3 can be obtained if we imagine that an ordinary plane
(of dimension 2) is intersected by some other plane that cuts off a straight line on the plane, that
is, a geometric object one dimension smaller than itself. Similarly, a hyperplane of dimension 3
intersects another hyperplane of dimension 3 and cuts off the usual planes of dimension 2 on it,
which in some way are located in “volume” ℝP3.

Although a full-fledged visual representation is impossible in this case, it is still possible to work
with ℝP3 using algebra, in particular using homogeneous coordinates. Each point in this space
can be matched in the same way as for ℝP1 and ℝP2 with homogeneous coordinates of the form
(𝑥 ∶ 𝑦 ∶ 𝑧 ∶ 1) in the case of endpoints and the form (𝑥 ∶ 𝑦 ∶ 𝑧 ∶ 0) for ideal points. Unlike the
projective plane, ℝP3 contains planes and infinitely many ideal straight lines, all of which lie on an
infinitely distant ideal plane, which can be conventionally modeled as a sphere with infinite radius.

To distinguish the vectors of the projective spaceℝP3 from the vectors of the Euclidean affine space
ℝ3, we will use bold font with the addition of an arrow icon at the top, for example:

⃗𝒑 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑥

𝑦

𝑧

1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= (𝒑 | 1) = (𝑥 ∶ 𝑦 ∶ 𝑧 ∶ 1), ⃗𝒒 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑥

𝑦

𝑧

𝑤

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= (𝒒 | 𝑤) = (𝑥 ∶ 𝑦 ∶ 𝑧 ∶ 𝑤).

A point inℝP3 is considered normalized if𝑤 = 1. Geometrically, thismeans that it lies in a hyperplane
drawn through the fourth axis 𝑂𝑤.
The introduction of homogeneous coordinates into the projective space model makes it possible

to represent not only points, but also straight lines and planes in linear algebraic form. In other
words — construct projective analytic geometry. The linear-algebraic representation of lines and planes
with the introduced homogeneous coordinates will be called homogeneous representation of lines and
planes. For the case of a straight line, the terms Plucker representation of a straight line or Plucker
coordinates of a straight line are also used. Both of these terms in this article will be synonymous
with the homogeneous representation of a straight line. For the case of a plane, the term Plucker
coordinates is not usually used.

3. A line on plane
Before proceeding to the representation of a line in a projective form, let us list the main ways of
algebraic representation of a line on an ordinary Euclidean plane. These methods are studied in
standard analytical geometry courses, so we will focus only on the main points that are important for
the topic of the article. For additional information, we refer the reader, for example, to [36, Chapter
5, §1] and [37].
Consider a line 𝑙 on a plane. Let’s use the letter 𝑃 to denote an arbitrary point on a line with the

radius vector 𝒑 = (𝑥, 𝑦)𝑇. Let us know some fixed point 𝑃0 with a radius vector 𝒑0 = (𝑥0, 𝑦0)𝑇, and the
guiding vector 𝒗 is also specified. You can write parametric equation in a line 𝑙:

𝒓(𝑡) = [
𝑥

𝑦
] = 𝒑0 + 𝒗𝑡 = [

𝑥0 + 𝑣𝑥𝑡

𝑦0 + 𝑣𝑦𝑡
] .
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𝑂

𝑃0, 𝑡 = 0 𝑃1, 𝑡 = 1

p0
p1

𝑡 = 1/2𝑡 = −1/2

Figure 5. Illustration of the linear interpolation process. By setting the segment 𝑃1𝑃2, you can move between points 𝑃1 and
𝑃2 by changing the parameter from 0 to 1. With parameter values outside the segment [0, 1], the point will slide
along a line (𝑃1𝑃2) going beyond the segment

Where 𝒓(𝑡) is the radius vector of a line point, 𝑡 is a parameter running through all real numbers. The
guiding vector 𝒗 can be geometrically interpreted as a tangent vector to a line that lies on 𝑙, since the
tangent to the 𝑙 line coincides with the line itself.
The guide vector can be calculated if any two points of a line are known, for example 𝑃0 and 𝑃1,

then 𝒗 = 𝒑1 − 𝒑0. The order of the radius vectors in the difference affects the direction of movement
of the point. Usually, a guiding vector is chosen so that as 𝑡 increases, the point moves from left to
right, and as it decreases from right to left.
Substitute 𝒗 = 𝒑1 − 𝒑0 into the parametric equation and rearrange the terms:

𝒓(𝑡) = 𝒑0 + (𝒑1 − 𝒑0)𝑡 = 𝒑0(1 − 𝑡) + 𝒑1𝑡.

In this form, the equation of a line defines the segment between the points 𝑃0 and 𝑃1, if 0 ⩽ 𝑡 ⩽ 1, as
shown in the figure 5. The term lerp is well-established in computer geometry from the phrase linear
interpolation (linear interpolation). This is the simplest version of interpolation, but it is very widely
used in animation, curve drawing, etc.

The guide vector 𝒗 can have an arbitrary length, since it is enough to specify any two points of a line
𝑃1 and 𝑃2 to calculate it, however, it is convenient to use a single guide vector ‖𝒗‖ = 1 for calculations,
which can always be obtained by reparametrization:

𝒓(𝑠) = 𝒑0 + 𝒗 𝑡
‖𝒗‖ = 𝒑0 + 𝒗𝑠, 𝑠 = 𝑡

√𝑣2𝑥 + 𝑣2𝑦
.

The parameter 𝑠 is called natural parameter and is interpreted as the length of a line measured from
some fixed point, in this case from 𝑃0, since for 𝑠 = 0 we get 𝑟(0) = 𝒑0. Sometimes the letter 𝑙 is used
to denote a natural parameter.
Directly from the parametric equation, one can obtain the canonical equation of a line:

𝑡 =
𝑥 − 𝑥0
𝑣𝑥

𝑡 =
𝑦 − 𝑦0
𝑣𝑦

⎫

⎬
⎭

⇒
𝑥 − 𝑥0
𝑣𝑥

=
𝑦 − 𝑦0
𝑣𝑦

.

If we put 𝒗 = (𝑥1 − 𝑥0, 𝑦1 − 𝑦0)𝑇, then we can write the equation of a line passing through two points
𝑃0 and 𝑃1: 𝑥 − 𝑥0

𝑥1 − 𝑥0
=

𝑦 − 𝑦0
𝑦1 − 𝑦0

.

Now consider a normal drawn to a line at some point and having a guiding vector 𝑵 = (𝐴, 𝐵). By
definition, a normal is perpendicular to a line, hence 𝑵 ⟂ 𝒗 = 𝒑 − 𝒑0:

(𝑵, 𝒑 − 𝒑0) = 0 ⇔ (𝑵, 𝒑) − (𝑵, 𝒑0) = 0 ⇔ 𝐴𝑥 + 𝐵𝑦 − 𝐴𝑥0 − 𝐵𝑦0 = 0.
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Figure 6. The geometric meaning of the normal equation of a line on a plane. The figure shows a line 𝑙, its guiding vector 𝒗,
the normal vector 𝑑𝒏, where 𝑑 is the directional distance from the origin to the line or, in other words, the length of
the perpendicular 𝑶𝑶⟂

Denoting 𝐶 = −𝐴𝑥0 − 𝐵𝑦0, we write general equation of a line on a plane:

𝐴𝑥 + 𝐵𝑦 + 𝐶 = 0.

It can also be rewritten in a different form by dividing all terms by −𝐶 and writing:

−𝐴𝐶𝑥 −
𝐵
𝐶𝑦 − 1 = 0 ⇔ 𝑥

−𝐶/𝐴 −
𝑦

−𝐶/𝐵 = 1 ⇒ 𝑥
𝑎 −

𝑦
𝑏 = 1, 𝑎 = −𝐶/𝐴, 𝑏 = −𝐶/𝐵.

This form of the equation is called the equation in segments.
In the equation 𝐴𝑥 + 𝐵𝑦 + 𝐶 = 0, we divide all terms by the norm of the guide vector of the normal

‖𝑵‖ = √𝐴2 + 𝐵2 and write:

𝐴
√𝐴2 + 𝐵2

𝑥 + 𝐵
√𝐴2 + 𝐵2

𝑦 + 𝐶
√𝐴2 + 𝐵2

= 0, 𝒏 = ( 𝐴
√𝐴2 + 𝐵2

, 𝐵
√𝐴2 + 𝐵2

) = (𝑛𝑥, 𝑛𝑦).

We have introduced the notation 𝒏 for the unit direction vector of the normal (ort of the normal) to
the line. In addition, since

𝐶
√𝐴2 + 𝐵2

=
−𝐴𝑥0 − 𝐵𝑦0
√𝐴2 + 𝐵2

= − 𝐴
√𝐴2 + 𝐵2

𝑥0 −
𝐵

√𝐴2 + 𝐵2
𝑦0 = −(𝒏, 𝒑0) = 𝑑.

as a result, the general equation of the line is written as

𝑛𝑥𝑥 + 𝑛𝑦𝑦 + 𝑑 = 0.

In this form, the equation of a line is called normalized equation. The coefficient 𝑑 has the geometric
meaning of the distance from the line to the origin. In general, the distance from a point to a line
is defined as the length of the perpendicular lowered from the point to the line. The direction
of the perpendicular coincides with the direction of the normal vector, since the normal is also
perpendicular to the line.
The components of the unit normal vector can be written using trigonometric functions. Since

‖𝒏‖2 = 𝑛2𝑥 + 𝑛2𝑦 = 1, there will always be a 𝜃 such that 𝑛𝑥 = cos 𝜃, 𝑛𝑦 = sin 𝜃, where 𝜃 = ∡(𝒆𝑥, 𝒏)— the
value of the angle between the ort 𝒆𝑥 of the 𝑂𝑥 axis and the vector 𝒏. For an unnormalized vector 𝑵,
you can also write 𝑵 = ‖𝑵‖(cos 𝜃, sin 𝜃) or else 𝐴 = ‖𝑵‖ cos 𝜃, 𝐵 = ‖𝑵‖ sin 𝜃.
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It should be emphasized here that the vector 𝒏 is a free vector that defines the direction of the
normal. When visualizing 𝒏, it can be moved both along the normal and the normal itself can be
moved along a line. The specific image method depends on what exactly we want to illustrate. For
example, in the figure 6, the vector 𝑑𝒏 is shifted away from the origin, since it indicates the point of
the plane closest to the origin.
It is interesting to note that the equation 𝐴𝑥 + 𝐵𝑦 + 𝐷 = 0 is already a projective equation of a line

on the plane ℝP2, since within the framework of this model, lines on the projective plane are three-
dimensional planes passing through the origin, which are given by the equation 𝐴𝑥 + 𝐵𝑦 + 𝐷𝑤 = 0.
If we put 𝑤 = 1, we get just the general equation of the line. For a line on the projective plane, the
term Plucker coordinates is not used, but their analog is the numbers 𝐴, 𝐵, 𝐶 or in normalized form
𝑛𝑥, 𝑛𝑦, 𝑑.

4. A line in space

4.1. The parametric equation

Here we briefly recall how the parametric equation of a line is written in Euclidean space, and
immediately proceed to write the Plucker coordinates of a line, that is, the linear algebraic
representation of a line in a projective space. For information about the canonical equation of
a line, we refer the reader to [36, Ch. 5, §4].
Let there also be some point 𝑃0 lying on the line 𝑙 and the guiding vector of the line 𝒗, then the

parametric equation will be written as

𝒍(𝑡) = 𝒑0 + 𝒗𝑡 =
⎧

⎨
⎩

𝑥0 + 𝑣𝑥𝑡,

𝑦0 + 𝑣𝑦𝑡,

𝑧0 + 𝑣𝑧𝑡.

Where 𝒍(𝑡) is the radius vector of an arbitrary point 𝑃 belonging to a line. By writing the guiding
vector through the radius of the vectors of the two points of the line, we obtain canonical equation:

𝒑 − 𝒑0 = (𝒑𝟏 − 𝒑0)𝑡 ⇒
𝑥 − 𝑥0
𝑥1 − 𝑥0

=
𝑦 − 𝑦0
𝑦1 − 𝑦0

=
𝑧 − 𝑧0
𝑧1 − 𝑧0

.

Just as for the plane case, a formula can be derived from the parametric equation for linear
interpolation of a segment lying between points with radius vectors 𝒑0 and 𝒑1:

𝒍(𝑡) = 𝒑0(1 − 𝑡) + 𝒑1𝑡.

The question arises, is it possible to write down the equivalent of the normal equation of a line
on a plane for the three-dimensional case? Even from visual geometric considerations, it becomes
clear that it is not possible to do this, since the distance from the origin and the guiding vector of the
normal do not uniquely define a line in space, unlike in the flat case.

4.2. Themoment and coordinates of the Plucker line in space

Consider a line 𝑙, the points of which are set parametrically using the radius vector 𝒍(𝑡) = 𝒑 + 𝒗𝑡,
where 𝒑 is the radius vector of some point 𝑃 belonging to the line 𝑙, and 𝒗 is the guiding vector of the
line. Let’s introduce the vector𝒎, which we define as

𝒎 = 𝒑 × 𝒗
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and let’s call the moment of the line 𝑙.
It can be shown that the moment𝒎 does not depend on the choice of a point on a line. To do this,

find the vector product 𝒍(𝑡) × 𝒗:

𝒍(𝑡) × 𝒗 = (𝒑 + 𝒗𝑡) × 𝒗 = 𝒑 × 𝒗 + 𝒗 × 𝒗𝑡 = 𝒑 × 𝒗.

Therefore, the moment𝒎 characterizes a line and does not depend on the choice of a point on it, but
depends on the guiding vector 𝒗. In this case, the vector 𝒗 is sliding, that is, its origin is not tied to
a single point and can move along the line 𝑙 in any direction, including in the opposite direction. To
emphasize the importance of the vector 𝒗, the following terminology is used: the point 𝑃 is called the
application point of the vector 𝒗, and the line itself 𝑙 is called the line vector 𝒗. We also note that the
moment𝒎 is the main object in the theory of screws [26, 28].
The line is completely characterized by its guiding vector 𝒗 and the moment𝒎. These two vectors

allow you to define a line without reference to a specific point in space, as is done in the two-
dimensional case using the normal equation of a line. The six parameters {𝑣𝑥, 𝑣𝑦, 𝑣𝑧 | 𝑚𝑥, 𝑚𝑦, 𝑚𝑧}
are called Plucker coordinates of a line in honor of Julius Plucker (1801-1868) [38, Ch. 3, §3] [29, 30].
The Plucker coordinates of a line are a linear algebraic representation of a line within a system of
homogeneous coordinates, and just like homogeneous coordinates, they are defined up to a common
factor. As a result, we get the opportunity to define any line in a homogeneous form.

{𝒗 | 𝒎} = {𝑣𝑥, 𝑣𝑦, 𝑣𝑧 | 𝑚𝑥, 𝑚𝑦, 𝑚𝑧} = {𝒗 | 𝒑 × 𝒗}. (1)

The notation for writing Plucker coordinates in the form of curly brackets is used in the book [30],
and we will follow them in this tutorial as well.
The moment of a line can also be calculated using two points 𝑃1, 𝑃2 ∈ 𝑙 with radius vectors 𝒑1 and

𝒑2. To do this, note that 𝒑2 − 𝒑1 is the guiding vector of a line, hence

𝒎 = 𝒑1 × (𝒑2 − 𝒑1) = 𝒑1 × 𝒑2 − 𝒑1 × 𝒑1 = 𝒑1 × 𝒑2 ⟹

𝒎= 𝒑1 × 𝒑2 (2)

This entry corresponds to the formula (B) of the table 1.
Emphasis should be placed on the fact that the moment𝒎 and the guiding vector 𝒗 are mutually

orthogonal, which follows directly from our definition of the moment as the vector product of 𝒑 × 𝒗.
Ratio

(𝒗,𝒎) = 𝑣𝑥𝑚𝑥 + 𝑣𝑦𝑚𝑦 + 𝑣𝑧𝑚𝑧 = 0,

It is called Plucker equations or Plucker condition. It imposes a restriction on the parameters
𝑣𝑥, 𝑣𝑦, 𝑣𝑧, 𝑚𝑥, 𝑚𝑦, 𝑚𝑧 so that not every six numbers can set a line, but only those for which the specified
equality holds. The condition itself is a second-order algebraic expression, which means that four
parameters are sufficient to define a line.
If the coordinates of the two points through which the line 𝑙 passes are given in a homogeneous

form, that is, 𝑃1 as (𝒑1 | 𝑤1) and 𝑃2 as (𝒑2 | 𝑤2), then normalize the coordinates of the point and
calculate the guide vector, which is written as 𝒗 = 𝒑2/𝑤2−𝒑1/𝑤1,𝑤1𝑤2𝒗 = 𝑤1𝒑2−𝑤2𝒑1. Themoment
of the line is calculated as follows:

𝒑1
𝑤1

× 𝑤1𝑤2𝒗 =
𝒑1
𝑤1

× (𝑤1𝒑2 − 𝑤2𝒑1) = 𝒑1 × 𝒑2 −
𝑤2
𝑤1

𝒑1 × 𝒑1 = 𝒑1 × 𝒑2 = 𝒎.

Therefore, in a homogeneous form, the line can be written as

{𝑤1𝒑2 − 𝑤2𝒑1 | 𝒑1 × 𝒑2}, (3)
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Figure 7. The distance from the origin𝑂 to the line 𝑙

which corresponds to formula (D) from table 1.
This formula allows you to calculate the Plucker coordinates of a line passing through non-matching

points (𝒖1 | 0) and (𝒖2 | 0):
{𝟎 | 𝒖1 × 𝒖2}.

Such a line is called improper line or ideal line. In the visual arts, the horizon line corresponds to such
line. The guiding vector of an improper line, therefore, is equal to the zero vector 𝟎, and the moment
can be nonzero.

4.3. Distance from a point to a line

Consider the problem of finding the distance from the origin point 𝑂 to the line 𝑙, for which we must
find the radius vector 𝑶𝑶⟂, where the point 𝑂⟂ is the base of the perpendicular omitted from 𝑂 onto
the line 𝑙 as shown in the figure 7. The vector 𝑶𝑶⟂ is found as the perpendicular part of the radius of
the vector 𝒑 relative to the guiding vector 𝒗 of the line. Note also that the choice of the point of the
line 𝑃 is arbitrary. Using the formula 𝒂 × 𝒃 × 𝒄 = 𝒃(𝒂, 𝒄) − 𝒄(𝒂, 𝒃) for a triple vector product, write an
expression for 𝑶𝑶⟂

𝑶𝑶⟂ = 𝒑⟂𝒗 = 𝒑 − 𝒑∥𝒗 = 𝒑 −
(𝒑, 𝒗)
‖𝒗‖2

𝒗 =
𝒑‖𝒗‖2 − (𝒑, 𝒗)𝒗

‖𝒗‖2
=
𝒗 × 𝒑 × 𝒗
‖𝒗‖2

.

Substitute 𝒑 × 𝒗 = 𝒎 and write:

𝑶𝑶⟂ =
𝒗 × 𝒑 × 𝒗
‖𝒗‖2

= 𝒗 ×𝒎
‖𝒗‖2

.

You can write the coordinates of the point 𝑂⟂ in a homogeneous form. Since the radius vector is
known, the homogeneous coordinates will look like:

(𝒗 ×𝒎
‖𝒗‖2

|| 1) = (𝒗 ×𝒎 | (𝒗, 𝒗)), (4)

which proves the formula (G) from the table 1.
Considering that 𝒗 ⟂ 𝒎 by virtue of the definition of the vector product, we calculate the length of

the vector 𝑶𝑶⟂

𝑑𝑂𝑂⟂ = ‖𝑶𝑶⟂‖ =
‖𝒗 ×𝒎‖
‖𝒗‖ =

‖𝒗‖‖𝒎‖ sin 𝜋
2

‖𝒗‖2
=
‖𝒎‖
‖𝒗‖ . (5)

Note that if a straight line passes through the origin, then the distance 𝑑𝑂𝑂⟂ = 0 and ‖𝒎‖/‖𝒗‖ = 0,
therefore𝒎 = 0. In Plucker coordinates, such a straight line is written as

{𝒗 | 0}. (6)
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Figure 8. The distance from an arbitrary point𝑄 to a straight line 𝑙. Vector 𝒖 = 𝒑 − 𝒒

Indeed, a straight line passing through 𝑂 is completely determined by its guiding vector, since in
parametric form the radius vector of its points is written as 𝒍(𝑡) = 𝟎 + 𝒗𝑡 = 𝒗𝑡.
Now let’s complicate the problem and calculate the distance from an arbitrary point 𝑄 ∉ 𝑙 to

the straight line 𝑙. To do this, we find the length of the segment 𝑄𝑄⟂, where 𝑄⟂ is the foot of the
perpendicular dropped from the point 𝑄 onto the straight line 𝑙 as this is shown in the figure 8.
We also use the radius vectors 𝒑 and 𝒒 of the points 𝑃 and 𝑄, respectively, as well as the vector

𝒖 = 𝒑 − 𝒒. The perpendicular vector 𝑸𝑸⟂ is calculated as the perpendicular part of the vector 𝒖
relative to the guiding vector of the straight line 𝒗. You can enter themoment of a straight line relative
to the point 𝑄 as follows:

𝒎𝑄 = (𝒑 − 𝒒) × 𝒗 = 𝒑 × 𝒗 − 𝒒 × 𝒗 = 𝒎𝑂 − 𝒒 × 𝒗,

where𝒎𝑂 is the moment of a straight line relative to the origin. Note that

(𝒎𝑄, 𝒗) = (𝒎𝑂, 𝒗) − (𝒒 × 𝒗, 𝒗) = 0, так как𝒎𝑂 ⟂ 𝒗 и 𝒗 ⟂ 𝒒 × 𝒗,

therefore, the moment𝒎𝑄 is orthogonal to the vector 𝒗.
Using the moment𝒎𝑄, we can calculate the vector 𝑸𝑸⟂

𝑸𝑸⟂ = (𝒑 − 𝒒)⟂𝒗 = (𝒑 − 𝒒) −
(𝒑 − 𝒒, 𝒗)
‖𝒗‖2

𝒗 =
𝒗 × (𝒑 − 𝒒) × 𝒗

‖𝒗‖2
=
𝒗 ×𝒎𝑄

‖𝒗‖2
.

To find the length of the vector 𝑸𝑸⟂, we write it as follows

𝑸𝑸⟂ = (𝒑 − 𝒒) − (𝒑 − 𝒒)∥𝒗 = 𝒖 − 𝒖∥𝒗

and find the square of the norm ‖𝒑 − 𝒒‖

‖𝒑 − 𝒒‖2 = (𝒖 − 𝒖∥𝒗, 𝒖 − 𝒖∥𝒗) = (𝒖𝒖) − (𝒖, 𝒖∥𝒗) − (𝒖∥𝒗, 𝒖) + (𝒖∥𝒗, 𝒖∥𝒗) = ‖𝒖‖2 + ‖
‖𝒖∥𝒗

‖
‖
2
− 2(𝒖, 𝒖∥𝒗)

Since 𝒖∥𝒗 =
(𝒖, 𝒗)𝒗
‖𝒗‖2

, then

(𝒖, 𝒖∥𝒗) =
(𝒖, 𝒗)
‖𝒗‖2

(𝒖, 𝒗) = (𝒖, 𝒗)2

‖𝒗‖2
,

‖
‖𝒖∥𝒗

‖
‖
2
= ((𝒖, 𝒗)

‖𝒗‖2
𝒗, (𝒖, 𝒗)

‖𝒗‖2
𝒗) = (𝒖, 𝒗)2

‖𝒗‖4
(𝒗, 𝒗) = (𝒖, 𝒗)2

‖𝒗‖4
‖𝒗‖2 = (𝒖, 𝒗)

‖𝒗‖2
.

Let now substitute this formula into the expression for ‖𝒖‖2 to get:

‖𝒖‖2 = ‖𝒖‖2 + (𝒖, 𝒗)
‖𝒗‖2

− 2(𝒖, 𝒗)
2

‖𝒗‖2
= ‖𝒖‖2 − (𝒖, 𝒗)2

‖𝒗‖2
=
‖𝒖‖2‖𝒗‖2 − (𝒖, 𝒗)2

‖𝒗‖2
=
‖𝒖 × 𝒗‖2

‖𝒗‖2
.
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Figure 9. The plane 𝜋 and its guide vectors 𝒖 and 𝒗. The normal vector 𝒏 is perpendicular to the guide vectors

In the last step, we again used the Lagrange identity of the vector product. Since 𝒖×𝒗 = (𝒑−𝒒)×𝒗 =
𝒑 × 𝒗 − 𝒒 × 𝒗 = 𝒎− 𝒒 × 𝒗 = 𝒎+ 𝒗 × 𝒒, then we got the formula for calculating the distance from an
arbitrary point 𝑄 to a straight line {𝒗 | 𝒎} (formula (P) in the table 1):

𝑑𝑄𝑄⟂ =
‖𝒎 + 𝒗 × 𝒒‖

‖𝒗‖ =
‖(𝒑 − 𝒒) × 𝒗‖

‖𝒗‖ . (7)

5. Plane equation

5.1. Parametric and general equations of the plane

Consider here the parametric equation of the plane. For information about other classical forms of the
plane equation, we refer the reader to [36, Ch. 5, §3]. The parametric equation is given as follows:

𝒓(𝑠, 𝑡) = 𝒑1 + (𝒑2 − 𝒑1)𝑠 + (𝒑3 − 𝒑1)𝑡,

where 𝒑1, 𝒑2 and 𝒑3 are the radius vectors of three points, 𝑠 and 𝑡 are some real numbers that are
parameters. Unlike a line, a plane requires two parameters, since it is a two-dimensional object.
The differences 𝒖 = 𝒑2 − 𝒑1 and 𝒗 = 𝒑3 − 𝒑1 can be interpreted as tangent vectors to the plane,

since
𝒓𝑠 =

𝜕𝒓
𝜕𝑠 = 𝒑2 − 𝒑1, 𝒓𝑡 =

𝜕𝒓
𝜕𝑡 = 𝒑3 − 𝒑1.

However, the tangent plane coincides with the 𝜋 plane itself, which is why these tangent vectors lie
completely in 𝜋 and are the guide vectors of the plane.

Normal to a plane is a line perpendicular to any line lying completely on the plane and, therefore,
perpendicular to the plane itself. The guiding vector of the normal is denoted as 𝑵 and is called the
normal vector of the plane. Its normalized version is more often used 𝒏 = 𝑵/‖𝑵‖— the unit normal
vector of the plane.
The plane 𝜋 can be defined using the vector 𝑵 and one fixed point belonging to the plane 𝑃0 with

the radius vector 𝒑0 = (𝑥0, 𝑦0, 𝑧0)𝑇. Let 𝒑 = (𝑥, 𝑦, 𝑧)𝑇 be the radius vector of an arbitrary point in the
plane, then 𝒑 − 𝒑0 also belongs to the plane, since the beginning and end of the vector lie in 𝜋. It
follows from the perpendicularity of the normal vector to the plane that

(𝑵, 𝒑 − 𝒑0) = 0 ⇒ (𝑵, 𝒑) − (𝑵, 𝒑0) = 0.
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Table 1
Formulas in terms of homogeneous coordinates [30, Table 3.1]. The duality relation holds between formulas D and E, F and L,
G and M, H and N. To simplify the search for the formula output, the first column contains the number under which it appears
in the main text

Formula Description

A (1) {𝒗 | 𝒑 × 𝒗} A line passing through the point 𝑃 in the direction
of 𝒗.

B (2) {𝒑2 − 𝒑1 | 𝒑1 × 𝒑2} A line passing through two points 𝑃1 and 𝑃2.

C (6) {𝒑 | 𝟎} A line passing through the origin and the point 𝑃.

D (3) {𝑤1𝒑2 − 𝑤2𝒑1 | 𝒑1 × 𝒑2} A line passing through two points ⃗𝒑1 = (𝒑1 | 𝑤1)
and ⃗𝒑2 = (𝒑2 | 𝑤2).

E (12) {𝒏1 × 𝒏2 | 𝑑1𝒏2 − 𝑑2𝒏1} A line of intersection of two layers [𝒏1 |1] and [𝒏2 |2
].

F (13) (𝒎 × 𝒏 + 𝑑𝒗 | −(𝒏, 𝒗)) The point of intersection of the plane [𝒏 |] and the
line {𝒗 | 𝒎}.

F.a (21) [𝒎1 ×𝒎2 | (𝒗2,𝒎1)] The point of intersection of two lines {𝒗1 | 𝒎1}
и {𝒗2 | 𝒎2}

F.b (11) (𝑑1𝒏3 × 𝒏2 + 𝑑2𝒏1 × 𝒏3 +
𝑑3𝒏2 × 𝒏1 | (𝒏1, 𝒏2, 𝒏3))

The point of intersection of three planes [𝒏1 | 𝑑1],
[𝒏2 | 𝑑2] и [𝒏3 | 𝑑3]

G (4) (𝒗 ×𝒎 | (𝒗, 𝒗)) The point closest to the origin on the line {𝒗 | 𝒎}.

H (14) (−𝑑𝒏 | (𝒏, 𝒏)) The point closest to the origin on the plane [𝒏 | 𝑑].

I (16) [𝒗 × 𝒖 | −(𝒖,𝒎)] A plane containing a line {𝒗 | 𝒎} and a direction 𝒖.

J (17) [𝒗 × 𝒑 +𝒎 | −(𝒑,𝒎)] Aplane containing a line {𝒗 | 𝒎} and a point (𝒑 | 1).

K (18) [𝒎 | 0] A plane containing a line {𝒗 | 𝒎} and the origin.

L (15) [𝒗 × 𝒑 + 𝑤𝒎 | −(𝒑,𝒎)] A plane containing a line {𝒗 | 𝒎} and a point (𝒑 |
𝑤).

L.a (19) [𝒗 × 𝒖 | (𝒖, 𝒗, 𝒑)] The plane containing the point (𝒑 | 1) and the
directions 𝒗 and 𝒖.

M [𝒎 × 𝒗 | (𝒎,𝒎)] The plane with a line {𝒗 | 𝒎}, the furthest from 𝑂.

N [−𝑤𝒑 | (𝒑, 𝒑)] The plane with the point (𝒑 | 𝑤) furthest from 𝑂.

O (20)
|(𝒗1,𝒎2) + (𝒗2,𝒎1)|

‖𝒗1 × 𝒗2‖
The distance between lines {𝒗1 | 𝒎1} and {𝒗2 | 𝒎2}.

P (7)
|𝒗 × 𝒑 +𝒎|

‖𝒗‖ The distance between the line {𝒗 | 𝒎} and point
(𝒑 | 1).

Q (5) ‖𝒎‖/‖𝒗‖ The distance from the line {𝒗 | 𝒎} to the origin.

R (9)
|(𝒏, 𝒑) + 𝑑|

‖𝒏‖ Distance from the plane [𝒏 | 𝑑] to the point (𝒑 | 1).

S (8) |𝑑|/‖𝒏‖ The distance from the plane [𝒏|𝑑] to the origin.
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Table 2
Normalization of a point, line, and plane

General form Normalized form

Point (𝒑 | 𝑤) (𝒑/𝑤 | 1)

Line (𝒗 | 𝒎) [𝒗/‖𝒗‖ | 𝒎/‖𝒗‖]

Plane [𝒏 | 𝑑] [𝒏/‖𝒏‖ | 𝑑/‖𝒏‖]

Table 3
Duality of a point, a line, and a plane

Original Dual

Point (𝒑 | 𝑤) Plane [𝒑 | 𝑤]

Line {𝒗 | 𝒎} Line {𝒎 | 𝒗}

Plane [𝒏 | 𝑑] Point (𝒏 | 𝑑)

Since the point 𝑃0 is fixed, then (𝑵, 𝒑0) = const.
Let’s introduce the components of the normal vector 𝑵 = (𝐴, 𝐵, 𝐶) and denote

𝐷 = −(𝑵, 𝒑0),

then, in the Cartesian coordinate system, the plane will be uniquely defined by a linear equation of
the following form:

𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 + 𝐷 = 0.

The resulting equation is called general equation of the plane. It is assumed that 𝐴, 𝐵, 𝐶 do not
simultaneously vanish, that is, 𝐴2 + 𝐵2 + 𝐶2 ≠ 0.

5.2. The projective representation of the plane

In the ℝP3 model of a three-dimensional projective space, planes are modeled using hyperplanes of
the ℝ4 space. When using homogeneous coordinates in the ℝ4 space, a Cartesian coordinate system
with 𝑂𝑥𝑦𝑧𝑤 axes is introduced, and a three-dimensional projective space is modeled as a hyperplane
passing through a point (0, 0, 0, 1) that is, through a point on the 𝑂𝑧 axis, parallel to the hyperplane
𝑂𝑥𝑦𝑧. The hyperplanes𝐴𝑥+𝐵𝑦+𝐶𝑧+𝐷𝑤 = 0 passing through the coordinate center and intersecting
the plane𝑤 = 1 cut off the three-dimensional planes defined by the equation𝐴𝑥+𝐵𝑦+𝐶𝑧+𝐷 = 0. In
fact, this is the general equation of the plane from classical analytical geometry, which we discussed
above. Let’s now consider its normalized version.
Instead of the vector 𝑵, you can use the unit normal vector 𝒏, the components of which are

calculated as follows:

𝒏 = 𝑵
‖𝑵‖ = ( 𝐴

√𝐴2 + 𝐵2 + 𝐶2
, 𝐵
√𝐴2 + 𝐵2 + 𝐶2

, 𝐵
√𝐴2 + 𝐵2 + 𝐶2

) = (𝑛𝑥, 𝑛𝑦, 𝑛𝑧), 𝑛2𝑥 + 𝑛2𝑦 + 𝑛2𝑧 = 1.
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The values 𝑛𝑥, 𝑛𝑦, 𝑛𝑧 are uniquely determined by the guiding cosines 𝑛𝑥 = cos𝛼, 𝑛𝑦 = cos 𝛽, 𝑛𝑧 =
cos 𝛾, where 𝛼, 𝛽, 𝛾 are the angles between the vector 𝒏 and the axes 𝑂𝑥, 𝑂𝑦 and 𝑂𝑧. You can also
normalize 𝐷 by dividing it by the norm of the normal vector 𝑵

𝑑 = 𝐷
√𝐴2 + 𝐵2 + 𝐶2

.

As a result, the general equation of the plane will be written as normal equation of the plane in the
following form:

𝑛𝑥𝑥 + 𝑛𝑦𝑦 + 𝑛𝑧𝑧 + 𝑑 = cos𝛼𝑥 + cos 𝛽𝑦 + cos 𝛾𝑧 + 𝑑 = (𝒏, 𝒑) + 𝑑 = 0.

If instead of the radius vector 𝒑 = (𝑥, 𝑦, 𝑧)𝑇 of a three-dimensional Euclidean space defining the
coordinates of a point 𝑃 ∈ 𝜋, enter the radius vector ⃗𝒑 = (𝒑 | 1) = (𝑥 ∶ 𝑦 ∶ 𝑧 ∶ 1) of a projective
space defining the projective coordinates of a point 𝑃, then the normal equation of the plane can be
rewritten as a scalar product of the vector ⃗𝒑 and the vector ⃗𝝅 = [𝒏 | 𝑑] = (𝑛𝑥 ∶ 𝑛𝑦 ∶ 𝑛𝑧 ∶ 𝑑):

( ⃗𝒑, ⃗𝝅) = [𝑛𝑥 𝑛𝑦 𝑛𝑧 𝑑]

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑥

𝑦

𝑧

1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= 𝑛𝑥𝑥 + 𝑛𝑦𝑦 + 𝑛𝑧𝑧 + 𝑑 = 0.

Writing down the coefficients of the normal equation of the plane in the form of [𝒏 | 𝑑], we follow
the notation adopted in [30].
The vector ⃗𝝅 = [𝒏 | 𝑑] for a plane is an analog of homogeneous coordinates for a point and allows

you to write formulas related to the plane in a homogeneous form. Indeed, multiplying the vector 𝒏⃗
by a scalar does not change the equation of the plane and you can always return to the normalized
form by dividing all the components of the vector by ‖𝒏‖:

[ 𝒏
‖𝒏‖

||
𝑑
‖𝒏‖] . (8)

The value of |𝑑|/‖𝒏‖ is equal to the distance from the origin to the plane. We have introduced the
vector 𝒏 as a unit, however, an error may accumulate in the process of computer calculations and 𝒏
will cease to be a unit. Therefore, the formula (8) is divided by ‖𝒏‖, which provides renormalization,
eliminating the accumulated error.

5.3. The distance from the point to the plane

Let’s return to the general equation of the 𝜋 plane and write it in a normalized form:

(𝒏, 𝒑) + 𝑑 = 0, 𝑛𝑥𝑥 + 𝑛𝑦𝑦 + 𝑛𝑧𝑧 + 𝑑 = 0, ‖𝒏‖ = 1.

The geometric meaning of the value 𝑑 is the projection of the radius vector of an arbitrary point 𝑃1
lying on a plane onto the unit vector of the normal 𝒏, as shown in the figure 10. The distance from an
arbitrary point in space to the plane is defined as the length of the perpendicular lowered from this
point onto the plane. The direction of the perpendicular to the plane coincides with the direction of
the normal vector 𝒏, so 𝑑 can also be interpreted as the distance from the origin to the plane.
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Figure 10. The geometric meaning of 𝑑 is the directional distance from the origin to the plane. Radius vector 𝑶𝑶⟂ = −𝑑𝒏,
where 𝒏 is the unit normal vector

We show that the value of 𝑑 does not depend on the choice of a point on the plane. Any point in the
plane is defined using the parametric equation radius vector

𝒑(𝑡, 𝑠) = 𝒑1 + 𝒖𝑠 + 𝒗𝑡,

where 𝒖 = 𝒑2 − 𝒑1 and 𝒗 = 𝒑3 − 𝒑1 are the guiding vectors of the plane perpendicular to the normal
vector 𝒏. Calculate the length of the projection of an arbitrary point (𝒑, 𝒏):

(𝒑, 𝒏) = (𝒑1 + 𝒖𝑠 + 𝒗𝑡, 𝒏) = (𝒑1, 𝒏) +����:0
(𝒖, 𝒏)𝑠 +����:0

(𝒗, 𝒏)𝑡 = (𝒑1, 𝒏).

Since the choice of the point 𝑃1 is also arbitrary, the parameter 𝑑 is uniquely determined for this
particular plane. So, the radius vector of the point 𝑂⟂ — projections of the origin on the plane 𝜋 can
be calculated as 𝑶𝑶⟂ = −𝑑𝒏 (see also (14)).
Let 𝑄 be an arbitrary point in space, and 𝒒 = (𝑥, 𝑦, 𝑧)𝑇 be its radius vector. The value 𝛿(𝒒) =

𝑛𝑥𝑥 + 𝑛𝑦𝑦 + 𝑛𝑧𝑧 + 𝑑 is called deviation of a point from the plane and has the geometric meaning of the
oriented distance from the point 𝑄 to the plane. The orientation of the distance makes it possible to
determine by the sign on which side of the plane the point is located.

𝛿(𝒒) = (𝒏, 𝒒) + 𝑑 =
⎧

⎨
⎩

> 0, is the point is in front of the plane,
= 0, is the point belongs to the plane,
< 0, is the point is behind the plane.

To clarify, the phrase “the point is in front of the plane” means that an observer at the point can see
the front of the plane, and the phrase “the point is behind the plane” means that the same observer
sees the inside of the plane. If the plane forms the face of some complex three-dimensional object,
then in this case the observer is inside this object.
If we consider the homogeneous coordinates of the point 𝑄 given by the vector ⃗𝒒 = (𝒒 | 1) = (𝑥 ∶

𝑦 ∶ 𝑧 ∶ 1), then the deviation of the point 𝑄 from the plane reduces to finding the dot product of the
vectors 𝒒 and ⃗𝝅:

𝛿( ⃗𝒒) = 𝑛𝑥𝑥 + 𝑛𝑦𝑦 + 𝑛𝑧𝑧 + 𝑑 = [𝑛𝑥 𝑛𝑦 𝑛𝑧 𝑑]

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑞𝑥
𝑞𝑦
𝑞𝑧
1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= ( ⃗𝝅, ⃗𝒒). (9)

Note that in the table 1, this formula is given in a normalized form on the assumption that the normal
vector 𝒏 will not necessarily be singular.
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(a) (b) (c) (d)

Figure 11. Options for intersecting planes at an incorrect point. In variant (a), the lines 𝑙13 and 𝑙23 are parallel and intersect at
an irregular point, hence the planes intersect at the same point. Similarly, in case (b), three parallel lines intersect
at an irregular point. In Figure (c), the planes intersect along their own straight line 𝑙123, which contains, among
other things, an irregular point at which the planes intersect. Finally, in (d), parallel planes intersect in an
irregular straight line

The point of intersection of three planes

Finite point Point at infinity

Three planes interaction line

Finite At infinity

Figure 12. Variants of the intersection of three planes in a projective space

The direction of the normal vector to the plane is extremely important in computer graphics, since
modeling the reflection of light from three-dimensional objects depends on it. The normal vector
allows you to specify the front side of the plane, that is, the side from which the normal vector is
directed (the vector is directed into the eye of the observer looking at the plane) and the back side of
the plane, opposite to the front. The front side can also be called face side if the plane forms the face
of an object.

5.4. Intersection of two and three planes

In ordinary three-dimensional Euclidean space, three planes can be in six different positions.
1. Have a single common point, figure 13.
2. Have a single common straight line, Figure 11 (c).
3. Intersect in pairs, as shown in the figure, figure 11 (b).
4. Two planes can be parallel and intersect with the third, as shown in the figure, figure 11 (a).
5. All three planes can be mutually parallel, figure 11 (d).
6. All planes can match.
If we consider the location of three planes in a projective space, then the number of options is

sharply reduced, since in a projective space any planes intersect, however, the intersection point can
be either its own or improper. The general scheme is shown in the diagram 12.
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Let’s define three planes in a homogeneous form: ⃗𝝅1 = [𝒏1 | 𝑑1], ⃗𝝅2 = [𝒏2 | 𝑑2] and 𝝅3 = [𝒏3 | 𝑑3].
It is necessary to find a point 𝑃 = 𝜋1∩𝜋2∩𝜋3 whose homogeneous coordinates (𝒑 | 1) = (𝑥 ∶ 𝑦 ∶ 𝑧 ∶ 1)
satisfy each of the three equations of the planes 𝜋1, 𝜋2 and 𝜋3:

( ⃗𝝅𝑖, ⃗𝒑) = [𝒏𝑖 | 1] [
𝒑

1
] = 0 ⇔ (𝒏𝑖, 𝒑) + 𝑑𝑖 = 0, 𝑖 = 1, 2, 3.

Let’s consider the matrix 𝑁, the rows of which make up the components of the normal vectors 𝒏1, 𝒏2
and 𝒏3 and use it to write a system of linear equations for the components of the radius vector 𝒑:

𝑁 =
⎡
⎢
⎢
⎢
⎣

𝒏1
𝒏2
𝒏3

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝑛1𝑥 𝑛1𝑦 𝑛1𝑧
𝑛2𝑥 𝑛2𝑦 𝑛2𝑧
𝑛3𝑥 𝑛3𝑦 𝑛3𝑧

⎤
⎥
⎥
⎥
⎦

⟹
⎡
⎢
⎢
⎢
⎣

𝑛1𝑥 𝑛1𝑦 𝑛1𝑧
𝑛2𝑥 𝑛2𝑦 𝑛2𝑧
𝑛3𝑥 𝑛3𝑦 𝑛3𝑧

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

𝑥

𝑦

𝑧

⎤
⎥
⎥
⎥
⎦

= −
⎡
⎢
⎢
⎢
⎣

𝑑1
𝑑2
𝑑3

⎤
⎥
⎥
⎥
⎦

𝒑 =
⎡
⎢
⎢
⎢
⎣

𝑥

𝑦

𝑧

⎤
⎥
⎥
⎥
⎦

.

To solve this system, we will find the inverse matrix 𝑁−1, for which we will use the formula to find
the attached matrix 𝑁∨ using the cross product and the mixed product to find the determinant det𝑁,
after which we write

𝑁−1 = 𝑁∨

det𝑁
=
[𝒏2 × 𝒏3 𝒏3 × 𝒏1 𝒏1 × 𝒏2]

(𝒏1, 𝒏2, 𝒏3)
, 𝑁∨ =

⎡
⎢
⎢
⎢
⎣

| | |

𝒏2 × 𝒏3 𝒏3 × 𝒏1 𝒏1 × 𝒏2
| | |

⎤
⎥
⎥
⎥
⎦

,

(𝒏1, 𝒏2, 𝒏3) = det𝑁 =

|
|
|
|
|
|

𝑛1𝑥 𝑛1𝑦 𝑛1𝑧
𝑛2𝑥 𝑛2𝑦 𝑛2𝑧
𝑛3𝑥 𝑛3𝑦 𝑛3𝑧

|
|
|
|
|
|

,

where the vectors 𝒏2 × 𝒏3, 𝒏3 × 𝒏1 and 𝒏1 × 𝒏2 form the columns of the matrix 𝑁∨. Next, you can
write the solution of a system of linear equations in the following form:

𝒑 =
⎡
⎢
⎢
⎢
⎣

𝑥

𝑦

𝑧

⎤
⎥
⎥
⎥
⎦

= 1
(𝒏1, 𝒏2, 𝒏2)

⎡
⎢
⎢
⎢
⎣

| | |

𝒏2 × 𝒏3 𝒏3 × 𝒏1 𝒏1 × 𝒏2
| | |

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

−𝑑1
−𝑑2
−𝑑3

⎤
⎥
⎥
⎥
⎦

=
−𝑑1𝒏2 × 𝒏3 − 𝑑2𝒏3 × 𝒏1 − 𝑑3𝒏1 × 𝒏2

(𝒏1, 𝒏2, 𝒏3)
.

Finally, we write down the formula for the radius vector of the point 𝑃 of the intersection of three
planes 𝜋1∶ [𝒏1 | 𝑑1], 𝜋2∶ [𝒏2 | 𝑑2] and 𝜋3∶ [𝒏3 | 𝑑3]:

𝒑 =
𝑑1𝒏3 × 𝒏2 + 𝑑2𝒏1 × 𝒏3 + 𝑑3𝒏2 × 𝒏1

(𝒏1, 𝒏2, 𝒏3)
. (10)

In this form, the formula can be found, for example, in [22, p. 56] or in [30, p. 129]. In homogeneous
coordinates, the same formula can be written without the division operation by moving the
denominator to the place of the 𝑤 coordinate:

⃗𝒑 = (𝑑1𝒏3 × 𝒏2 + 𝑑2𝒏1 × 𝒏3 + 𝑑3𝒏2 × 𝒏1 | (𝒏1, 𝒏2, 𝒏3)).

To solve the system of equations (𝑛, ∗ 𝑝) = 0, you can use the more familiar Kramer method.

⎧

⎨
⎩

𝑛1𝑥𝑥 + 𝑛1𝑦𝑦 + 𝑛1𝑧𝑧 + 𝑑1 = 0,

𝑛2𝑥𝑥 + 𝑛2𝑦𝑦 + 𝑛2𝑧𝑧 + 𝑑2 = 0,

𝑛3𝑥𝑥 + 𝑛3𝑦𝑦 + 𝑛3𝑧𝑧 + 𝑑3 = 0.
⇔

⎧

⎨
⎩

𝑛1𝑥𝑥 + 𝑛1𝑦𝑦 + 𝑛1𝑧𝑧 = −𝑑1,

𝑛2𝑥𝑥 + 𝑛2𝑦𝑦 + 𝑛2𝑧𝑧 = −𝑑2,

𝑛3𝑥𝑥 + 𝑛3𝑦𝑦 + 𝑛3𝑧𝑧 = −𝑑3.
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𝛥 =

|
|
|
|
|
|

𝑛1𝑥 𝑛1𝑦 𝑛1𝑧
𝑛2𝑥 𝑛2𝑦 𝑛2𝑧
𝑛3𝑥 𝑛3𝑦 𝑛3𝑧

|
|
|
|
|
|

𝛥𝑥 =

|
|
|
|
|
|

−𝑑1 𝑛1𝑦 𝑛1𝑧
−𝑑2 𝑛2𝑦 𝑛2𝑧
−𝑑3 𝑛3𝑦 𝑛3𝑧

|
|
|
|
|
|

𝛥𝑦 =

|
|
|
|
|
|

𝑛1𝑥 −𝑑1 𝑛1𝑧
𝑛2𝑥 −𝑑2 𝑛2𝑧
𝑛3𝑥 −𝑑3 𝑛3𝑧

|
|
|
|
|
|

𝛥𝑧 =

|
|
|
|
|
|

𝑛1𝑥 𝑛1𝑦 −𝑑1
𝑛2𝑥 𝑛2𝑦 −𝑑2
𝑛3𝑥 𝑛3𝑦 −𝑑3

|
|
|
|
|
|

.

As a result of solving this system, we obtain a point in homogeneous coordinates in the form:

⃗𝒑 = (
𝛥𝑥
𝛥 ,

𝛥𝑦
𝛥 , 𝛥𝑧𝛥

|| 1) = (𝛥𝑥, 𝛥𝑦, 𝛥𝑧 | 𝛥).

We get that:
𝑑1𝒏3 × 𝒏2 + 𝑑2𝒏1 × 𝒏3 + 𝑑3𝒏2 × 𝒏1 = 𝛥𝑥𝒆𝑥 + 𝛥𝑦𝒆𝑦 + 𝛥𝑧𝒆𝑧.

Let’s write down once again the formula for calculating the homogeneous coordinates of the
intersection point of three planes 𝜋1∶ [𝒏1 | 𝑑1], 𝜋2∶ [𝒏2 | 𝑑2] and 𝜋3∶ [𝒏3 | 𝑑3] in a homogeneous
form in two versions:

⃗𝒑 = (𝑑1𝒏3 × 𝒏2 + 𝑑2𝒏1 × 𝒏3 + 𝑑3𝒏2 × 𝒏1 | (𝒏1, 𝒏2, 𝒏3)) = (𝛥𝑥, 𝛥𝑦, 𝛥𝑧 | 𝛥). (11)

The first option has an advantage, since it is written in a non-component form, and in the second
option, the components participate in calculating the determinants 𝛥𝑥, 𝛥𝑦 and 𝛥𝑧 of the system.

For a full-fledged analytical study of the relative position of the three planes, we should first consider
the problem of the location of the two planes, which we will do next. In the meantime, it follows
directly from (11) that if 𝛥 = (𝒏1, 𝒏2, 𝒏3) ≠ 0, then the intersection point is its own (terminal), and if
(𝒏1, 𝒏2, 𝒏3) = 0, then the point is incorrect and this case covers all the remaining 5 plane locations.

Two planes in a projective space relative to each other can be in the following positions.

– Have their own common straight line (intersect along the end line).
– Should have a common irregular straight line (be parallel and intersect in a perfect straight

line).
– Match.

When considering planes in a projective space, it is not necessary to consider the first two cases
separately.
Find the straight line 𝑙 = 𝜋1 ∩ 𝜋2, which is obtained when two planes intersect 𝜋1∶ [𝒏1 | 𝑑1], and

𝜋2∶ [𝒏2 | 𝑑2]. The guiding vector of such a straight line must be perpendicular to both the normal
vector 𝒏1 and the normal vector 𝒏2, therefore it can be calculated as 𝒗 = 𝒏1×𝒏2, which means shown
on the left side of the figure 13a.
To find the point of this straight line, take the third plane 𝜋, with a normal vector equal to the

vector 𝒏3 = 𝒗 and passing through the origin, that is, 𝑑3 = 0. Then, using the formula (10), we
immediately get:

𝒑 = 𝑑1𝒗 × 𝒏2 + 𝑑2𝒏1 × 𝒗
(𝒏1, 𝒏2, 𝒗)

,

where the triple product is simplified to the square of the norm of the cross product ‖𝒏1 × 𝒏2‖
2

(𝒏1, 𝒏2, 𝒗) = (𝒏1, 𝒏2 × 𝒗) = (𝒏1 × 𝒏2, 𝒗) = (𝒗, 𝒗) = ‖𝒗‖2 = ‖𝒏1 × 𝒏2‖
2.

Let’s finally write it down:

𝒑 = 𝑑1𝒗 × 𝒏2 + 𝑑2𝒏1 × 𝒗
‖𝒗‖2

, where 𝒗 = 𝒏1 × 𝒏2.
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(a) (b)

Figure 13. In Figure (a), the line of intersection of two planes with the guide vector 𝒗 = 𝒏1 × 𝒏2. The triple of vectors
⟨𝒏1, 𝒏2, 𝒗⟩ is right, since the rotation from 𝒏1 to 𝒏2 from the end of 𝒗 occurs counterclockwise. In Figure (b), three
planes intersect along straight lines 𝑙12 = 𝜋1 cos𝜋2, 𝑙13 = 𝜋1 cos𝜋3, 𝑙23 = 𝜋2 cos𝜋3. The third plane passes
through the origin and its normal vector is perpendicular to 𝒏1 and 𝒏2 and coincides with the guiding vector 𝒗 of
the line 𝑙12 of the intersection of 𝜋1 and 𝜋2.

To write the line 𝑙 in Plucker coordinates, calculate the moment𝒎

𝒎 = 𝒑 × 𝒗 = 𝑑1𝒗 × 𝒏2 × 𝒗 + 𝑑2𝒏1 × 𝒗 × 𝒗
‖𝒗‖2

,

Using the “bac minus cab” property of the cross product, we transform the numerator to a simpler
form:

𝒗 × 𝒏2 × 𝒗 = 𝒏2‖𝒗‖
2 − 𝒗(𝒗, 𝒏) = 𝒏2‖𝒗‖

2,

𝒏1 × 𝒗 × 𝒗 = 𝒗(𝒗, 𝒏) − 𝒏1(𝒗, 𝒗) = −𝒏1‖𝒗‖
2,
⇒

⇒ 𝑑1𝒗 × 𝒏2 × 𝒗 + 𝑑2𝒏1 × 𝒗 × 𝒗 = 𝑑1𝒏2‖𝒗‖
2 − 𝑑2𝒏1‖𝒗‖

2 = (𝑑1𝒏2 − 𝑑2𝒏1)‖𝒗‖
2.

We used the fact that 𝒗 ⟂ 𝒏1 and 𝒗 ⟂ 𝒏2 since 𝒗 = 𝒏1 ×𝒏2 which means (𝒗, 𝒏1) = (𝒗, 𝒏2). The formula
for the moment is simplified.

𝒎 = (𝑑1𝒏2 − 𝑑2𝒏1)‖𝒗‖
2

‖𝒗‖2
= 𝑑1𝒏2 − 𝑑2𝒏1.

As a result, the line of intersection of the planes 𝜋1∶ [𝒏1 |1] and 𝜋2∶ [𝒏2 |2] in Plucker coordinates
is written as

{𝒗 | 𝒎} = {𝒏1 × 𝒏2 | 𝑑1𝒏2 − 𝑑2𝒏1} (12)

5.5. Intersection of a straight line and a plane

Consider the problem of the intersection of the plane 𝜋∶ [𝒏 | 𝑑] and the straight line 𝑙, given in
parametric form by the radius vector 𝒍(𝑡) = 𝒑 + 𝒗𝑡. Let’s immediately exclude the case when the
straight line is parallel to the plane, that is, (𝒏, 𝒗) = 0, 𝒏 ⟂ 𝒗 and there is no intersection point.
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In the case of non-parallel lines and planes, they will necessarily intersect at some point 𝑄with
homogeneous coordinates (𝒒 | 1), where 𝒒 is the radius vector of a point in Euclidean space. Since
the point belongs to a straight line, then 𝒒 = 𝒑 + 𝒗𝑡 for a certain value of the parameter 𝑡. The task is
to find the value of this parameter. To do this, we substitute the radius vector of the point 𝑄 into the
normal equation of the plane, or, in other words, we find the dot product of homogeneous vectors:

[𝒏 | 𝑑] [
𝒒

1
] = (𝒏, 𝒒) + 𝑑 = 0 ⇒ (𝒏, 𝒑) + 𝑡(𝒏, 𝒗) + 𝑑 = 0 ⇒ 𝑡 = −

(𝒏, 𝒑) + 𝑑
(𝒏, 𝒗)

.

Substituting this value of 𝑡 into the parametric equation of the straight line, we write:

𝒒 = 𝒑 −
(𝒏, 𝒑) + 𝑑
(𝒏, 𝒗)

𝒗.

Let’s transform this formula so as to express the moment𝒎 of a straight line:

(𝒏, 𝒗)𝒒 = 𝒑(𝒏, 𝒗) − (𝒏, 𝒑)𝒗 − 𝑑𝒗 = −(𝒗(𝒏, 𝒑) − 𝒑(𝒏, 𝒗) + 𝑑𝒗) = −𝒏 × 𝒗 × 𝒑 − 𝑑𝒗.

Here we used the “bac minus cab” property of the cross product again. Now consider that𝒎 = 𝒑 × 𝒗
and write:

−𝒏 × 𝒗 × 𝒑 − 𝑑𝒗 = 𝒏 ×𝒎− 𝑑𝒗 ⇒ (𝒏, 𝒗)𝒒 = 𝒏 ×𝒎− 𝑑𝒗 = −(𝒎 × 𝒏 + 𝑑𝒗) ⇒ 𝒒 = −(𝒎 × 𝒏 + 𝑑𝒗)
(𝒏, 𝒗)

.

The homogeneous coordinates of the point 𝑄 can be written as

(−(𝒎 × 𝒏 + 𝑑𝒗)
(𝒏, 𝒗)

|| 1) = (−(𝒎 × 𝒏 + 𝑑𝒗) | (𝒏, 𝒗)) = ((𝒎 × 𝒏 + 𝑑𝒗) | −(𝒏, 𝒗)) (13)

If the lines are parallel, then (𝒏, 𝒗) = 0 and the intersection point becomes ideal (𝒎 × 𝒏 + 𝑑𝒗 | 0) i.e.
the lines intersect in an infinitely distant point and the resulting coordinates indicate the direction
where this point is located.

5.6. The point of the plane closest to the origin

If the plane is specified as [𝒏 |]. The point of the plane closest to the origin lies on a straight line
passing through the origin perpendicular to the plane. Such a straight line is defined by the guiding
vector 𝒗 = 𝒏 and a certain moment𝒎 = 𝒑 × 𝒗, where 𝒑 is the radius vector of an arbitrary point on
a straight line. Since the straight line passes through the origin, you can choose 𝒑 = 𝟎 and calculate
the moment𝒎 = 𝟎 × 𝒗 = 𝟎. Therefore, the line can be written as {𝒗 | 𝟎}. Using the formula (13) we
write

(𝒎 × 𝒏 + 𝑑𝒗 | −(𝒏, 𝒗)) = (𝑑𝒏 | −(𝒏, 𝒏)) = (𝑑𝒏 | −‖𝒏‖2) = (−𝑑𝒏 | ‖𝒏‖2).

As a result, we obtain a formula for calculating the homogeneous coordinates of the point in the
plane closest to the origin.

(−𝑑𝒏 | ‖𝒏‖2). (14)
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5.7. A plane passing through a straight line and a point

Let the plane 𝜋 contain a straight line 𝑙 defined by the Plucker coordinates in the form {𝒗 | 𝒎}, as well
as a point 𝑃 with homogeneous coordinates (𝒑 | 𝑤). The radius vector of this point in ℝ3 will have
the form 𝒑/𝑤. As the second point of the plane, we can take any point lying on a straight line, the
equation of which we know. This point is the point of the straight line closest to the origin, which is
calculated using the formula (4) (𝒗 ×𝒎 | (𝒗, 𝒗)). Let’s denote this point as 𝑄 and calculate the vector
𝑷𝑸 = 𝒖:

𝒖 =
𝒑
𝑤 − 𝒒 =

𝒑
𝑤 − 𝒗 ×𝒎

‖𝒗‖2
.

Now we can find the normal vector of the plane 𝜋 as 𝒏 = 𝒗 × 𝒖, since 𝒗 ⟂ 𝜋 and 𝒖 ⟂ 𝜋.

𝒏 = 𝒗 × 𝒖 =
𝒗 × 𝒑
𝑤 − 𝒗 × 𝒗 ×𝒎

‖𝒗‖2
=
𝒗 × 𝒑
𝑤 + 𝒎‖𝒗‖2

‖𝒗‖2
=
𝒗 × 𝒑
𝑤 +𝒎,

where we used the “bac minus cab” property of the cross product. As a result, we come to the
expression for 𝒏:

𝑤𝒏 = 𝒗 × 𝒑 + 𝑤𝒎.

The distance from the origin to the plane is found as the length of the projection of the point 𝒑/𝑤
onto the vector 𝒏:

‖
‖‖
1
𝑤𝒑∥𝒏

‖
‖‖ =

1
𝑤(𝒑, 𝒏) =

1
𝑤 (𝒑,𝒎 +

𝒗 × 𝒑
𝑤 ) = 1

𝑤(𝒑,𝒎) +
1
𝑤�����*

0
(𝒑,

𝒗 × 𝒑
𝑤 ) = 1

𝑤(𝒑,𝒎)

and the directional distance from the plane to the straight line can be calculated as 𝑑 = −
(𝒑,𝒎)
𝑤 .

Now we can write the plane in homogeneous coordinates as

[𝒏 | 𝑑] = [
𝒗 × 𝒑
𝑤 +𝒎 || −

(𝒑,𝒎)
𝑤 ] ,

multiplying by 𝑤, we finally write down the formula 𝐿 from the table 1

[𝒗 × 𝒑 + 𝑤𝒎 | −(𝒑,𝒎)]. (15)

If instead of a point on the plane, the direction is known, that is, a point in homogeneous coordinates
(𝒖 | 0), then replacing the point (𝒑 | 𝑤) with (𝒖 | 0), we’ll write it down immediately

[𝒗 × 𝒖 | −(𝒖,𝒎)]. (16)

If the coordinates of a point are given as (𝒑 | 1), that is, 𝑤 = 1, then we also directly obtain
a homogeneous representation of the plane from the formula (15)

[𝒗 × 𝒑 +𝒎 | −(𝒑,𝒎)]. (17)

If the plane passes through the origin, then also substituting (𝟎 | 1) using the formula (15), we get

[𝒎 | 0]. (18)

Let’s prove another formula that is not in the original table, but which can be useful when defining
the plane 𝜋 through vector guides. Let us know one point 𝑃 of the plane ⃗𝒑 = (𝒑 | 1) and two guide
vectors ⃗𝒗 = (𝒗 | 0) and 𝒖⃗ = (𝒖 | 0). Then, using the formula (1), we obtain the Plucker coordinates of
a straight line lying in the plane {𝒗 | 𝒑 × 𝒗} ⊂ 𝜋, and from (16) the final expression for the plane 𝜋 in
homogeneous form:

[𝒗 × 𝒖 | −(𝒖, 𝒑 × 𝒗)] = [𝒗 × 𝒖 | (𝒖, 𝒗, 𝒑)], (19)

where (𝒖, 𝒗, 𝒑) is the triple product of three vectors.
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5.8. The position of straight lines in space

In a projective space, two straight lines 𝑙1 and 𝑙2 can be in three positions relative to each other.
– Lines can intersect, that is, they do not lie in the same plane.
– Lines can lie in the same plane (coplanar lines). In this case:

– lines intersect at their own point;
– lines intersect at an irregular point (parallel).

The distance between the lines is calculated as the length of the mutual perpendicular. If the lines
intersect, the length of the perpendicular will be zero.
When using Plucker coordinates, the distance between two intersecting lines can be obtained as

the distance between two parallel planes. Consider the lines {𝒗1 | 𝒎1} and {𝒗2 | 𝒎2} and construct two
planes 𝜋1 and 𝜋2, where the plane 𝜋1 contains the straight line {𝒗1 | 𝒎1} and the direction given by
the vector 𝒗2. In turn, the plane 𝜋2 contains the line {𝒗2 | 𝒎2} and the vector 𝒗1. The normal vectors
of the planes match and are calculated as 𝒗1 × 𝒗2 = 𝒏1 = 𝒏2.
We use the formula (16), where for 𝜋1 we put 𝒗 = 𝒗1, 𝒖 = 𝒗2, and for 𝜋2, on the contrary: 𝒗 = 𝒗2,

𝒖 = 𝒗1, as a result:
𝜋1∶ [𝒗1 × 𝒗2 | −(𝒗2,𝒎1)], 𝜋2∶ [𝒗2 × 𝒗1 | −(𝒗1,𝒎2)].

To find the distance from the origin to the planes, let’s go to the normalized view by dividing by the
norm of the normal vector ‖𝒗1 × 𝒗2‖:

𝜋1∶ [
𝒗1 × 𝒗2
‖𝒗1 × 𝒗2‖

|| −
(𝒗2,𝒎1)
‖𝒗1 × 𝒗2‖

] , 𝜋2∶ [−
𝒗1 × 𝒗2
‖𝒗1 × 𝒗2‖

|| −
(𝒗1,𝒎2)
‖𝒗1 × 𝒗2‖

] = [
𝒗1 × 𝒗2
‖𝒗1 × 𝒗2‖

||
(𝒗1,𝒎2)
‖𝒗1 × 𝒗2‖

] .

The distances from the planes 𝜋1 and 𝜋2 to the origin will be respectively:

𝑑1 = − (𝒗2,𝒎1)
‖𝒗1 × 𝒗2‖

, 𝑑2 = − (𝒗1,𝒎2)
‖𝒗1 × 𝒗2‖

.

The distance between the planes is calculated as the difference between 𝑑2 and 𝑑1:

𝑑 = |𝑑2 − 𝑑1| =
|||
(𝒗1,𝒎2) + (𝒗2,𝒎1)

‖𝒗1 × 𝒗2‖
|||. (20)

By the condition of constructing planes, this is the distance between the lines 𝑙1 and 𝑙2. Value
𝑀 = (𝒗1,𝒎2) + (𝒗2,𝒎1) is called mutual moment of two straight lines 𝑙1 and 𝑙2.

– If𝑀 > 0, then turn from 𝑙1 to 𝑙2 — right.
– If𝑀 < 0, then turn from 𝑙1 to 𝑙2 — left.
– If𝑀 = 0, then the lines lie in the same plane or, in other words, are coplanar.
The condition of line coplanarity𝑀 = 0 can be given a simple geometric interpretation. We have

found the formula for the distance between straight lines as the distance between two parallel planes.
If it turns to zero, then the planes coincide, and the mutual moment is zero.:

𝑀 = (𝒗1,𝒎2) + (𝒗2,𝒎1) = 0.

Meeting this condition allows us to assert that the lines lie in the same plane, but does not allow us
to determine the point of their intersection (proper or improper).
To find the intersection point of the lines, we use the projective formula (11) and consider three

planes: the first plane 𝜋1 passes through 𝑙1 and the origin, the second plane 𝜋2— through 𝑙2 and the
origin, and finally the third plane 𝜋3 contains the straight line 𝑙1 and the direction 𝒗2. From the
formula (16) we get the Plucker coordinates for 𝜋3, and from (18) for 𝜋1 and 𝜋2:

⃗𝝅1 = [𝒎1 | 0], ⃗𝝅2 = [𝒎2 | 0], ⃗𝝅3 = [𝒗1 × 𝒗2 | −(𝒗2,𝒎1)].
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Now we substitute the components of the planes in (11), which will give the following expression:

[−(𝒗2,𝒎1)𝒎2 ×𝒎1 | (𝒗1 × 𝒗2,𝒎1 ×𝒎2)].

Simplify (𝒗1 × 𝒗2,𝒎1 ×𝒎2) using the Lagrange property of the vector product:

(𝒗1 × 𝒗2,𝒎1 ×𝒎2) = (𝒗1,𝒎1)(𝒗2,𝒎2) − (𝒗1,𝒎2)(𝒗2,𝒎1) = −(𝒗1,𝒎2)(𝒗2,𝒎1),

since themoment and the guiding vector of the straight line are orthogonal, then (𝒗1,𝒎1) = (𝒗2,𝒎2) =
0. Next, we use the equality of the mutual moment of the curves to zero: (𝒗1,𝒎2) + (𝒗2,𝒎1) = 0,
whence (𝒗1,𝒎2) = −(𝒗2,𝒎1). Finally we get:

(𝒗1 × 𝒗2,𝒎1 ×𝒎2) = (𝒗2,𝒎1)2 = (𝒗1,𝒎2)2.

Using the uniformity of coordinates, we divide all coordinates by (𝒗2,𝒎1):

[−(𝒗2,𝒎1)𝒎2 ×𝒎1 | (𝒗2,𝒎1)2] = [−𝒎2 ×𝒎1 | (𝒗2,𝒎1)] = [𝒎1 ×𝒎2 | (𝒗2,𝒎1)].

We have obtained that the intersection point of two straight lines {𝒗1 | 𝒎1} and {𝒗2 | 𝒎2} in
homogeneous coordinates is calculated as

[𝒎1 ×𝒎2 | (𝒗2,𝒎1)] = [𝒎2 ×𝒎1 | (𝒗1,𝒎2)] (21)

6. Conclusion

We have outlined the basics of the ℝP3 model of projective space in an analytical form. As noted
above, there are two aspects of this work that may be of value.

– Filling the gap in educational literature and specialized monographs. Analytical projective
geometry is actively used for applied purposes in robotics and computer graphics, and a detailed
description of its basic aspects is extremely useful in methodological and pedagogical plans.

– Summary of the basic formulas in the form of a table, which is an extended table from [30].
Based on this table, you can implement everything you need to work with projective points,
straight lines, and planes in the form of software structures.

The latter aspect is covered in detail in the article [39].
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Аннотация.Мотивом к написанию данной работы послужила разработка авторами курса по компьютер-
ной геометрии для студентов физико-математических специальностей. Под термином «компьютерная
геометрия» здесь и далее понимаются математические основы машинной графики. Важно отдельно
подчеркнуть, что разрабатываемый курс должен быть рассчитан на студентов второго года обучения и,
следовательно, от них можно требовать лишь предварительное знание стандартного курса алгебры има-
тематического анализа. Это накладывает определённые ограничения на излагаемый материал. При
изучении тематической литературы было выяснено, что стандартомдефакто в современной компьютер-
ной графике стало использование проективного пространства и однородных координат. Однако авторы
столкнулись с проблемой методологического характера — практически полным отсутствием подходя-
щей учебной литераторы как на русском, так и на английском языках. Для представления собранной
авторами информации по данному вопросу и была написана данная работа.

Ключевые слова: проективная геометрия, система Asymptote, координаты Плюккера, собственные
и несобственные точки, прямые и плоскости


