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Abstract. In this paper, we consider the ill-posed continuation problem for harmonic functions from an ill-
defined boundary in a cylindrical domain with homogeneous boundary conditions of the second type on the
side faces. The value of the function and its normal derivative (Cauchy conditions) is known approximately on
an approximated surface of arbitrary shape bounding the cylinder. In this case, the Cauchy problem for the
Laplace equation has the property of instability with respect to the error in the Cauchy data, that is, it is ill-posed.
On the basis of an idea about the source function of the original problem, the exact solution is represented as
a sum of two functions, one of which depends explicitly on the Cauchy conditions, and the second one can be
obtained as a solution of the Fredholm integral equation of the first kind in the form of Fourier series on the
eigenfunctions of the second boundary value problem for the Laplace equation. To obtain an approximate stable
solution of the integral equation, the Tikhonov regularization method is applied when the solution is obtained
as an extremal of the Tikhonov functional. For an approximated surface, we consider the calculation of the
normal to this surface and its convergence to the exact value depending on the error with which the original
surface is given. The convergence of the obtained approximate solution to the exact solution is proved when the
regularization parameter is compared with the errors in the data both on the inexactly specified boundary and
on the value of the original function on this boundary. A numerical experiment is carried out to demonstrate the
effectiveness of the proposed approach for a special case, for a flat boundary and a specific initial heat source
(a set of sharpened sources).
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Introduction

Among non-invasive diagnostic methods [1], thermal imaging stands out for its efficiency and accuracy
with proper data processing. When carried out with the help of a thermal imager, a thermogram of
the surface of the object can be obtained, showing the heat distribution on the surface of the object
under investigation in the infrared range.

Corrected for various interferences in heat exchange processes and surface inhomogeneities of the
observed object, the thermogram image conveys the structure of the heat-generating object, which
makes it possible to assess various abnormalities in the state of the patient’s internal organs during
medical diagnosis.

The paper proposes a method for correcting the image on the thermogram based on a mathematical
model that considers a homogeneous heat-conducting body in the form of a rectangular cylinder
containing heat sources with a distribution density function independent of time, bounded by an
arbitrary surface S on which a boundary condition of the third kind corresponding to convective
heat exchange with the medium is set. The proposed model considers the case when there is no heat
exchange on the lateral faces of the body — homogeneous boundary conditions of the second kind
take place.

As a result of processing, the temperature distribution function on the plane (corrected
thermogram) near the heat sources is constructed as a result of continuation of the temperature
distribution from an arbitrary surface from which the original thermogram is taken. The corrected
thermogram more accurately conveys the structure of the heat sources than the image on the original
thermogram.

When obtaining the corrected thermogram as a result of processing, approaches similar to the
continuation of gravitational fields in geophysics problems were used [2-4].

To obtain the result, the inverse problem to the mixed boundary value problem for the Poisson
equation is solved, since the goal is to obtain information about inaccessible heat sources from data
on a given surface. The inverse problem is ill-posed, because small errors in the initial data (in the
initial thermogram, in the data on the surface) can lead to significant distortions of the result. To
construct its stable approximate solution, the Tikhonov regularisation method is used [5-7].

1. Problem statement

Physical model: we consider a homogeneous heat-conducting body in the form of a rectangular
cylinder bounded by the surface S and containing heat sources with a distribution density function
independent of time.

These heat sources create a stationary temperature distribution in the body.

The object of study is the density function of heat source distribution.

On the surface S there is convective heat exchange with the medium described by the given function.

On the side faces of the cylinder we assume that there is no heat exchange.

Mathematical model: in a rectangular cylinder

D*® ={(x,y,2) : 0 < x <ly,0<y<l,,—00 <z < +co} (1)
we consider a cylindrical domain
D(F,+00) ={(x,y,2) : 0 < x <l,,0 <y <1,,F(x,y) < z < +co}
bounded by a surface

S={(x,y,2) 1 0<x<1ly,0<y<l,z=F(x,y) <H}, FeC. 2)
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In the domain D(F, +o0) we consider the following mixed boundary value problem for the Poisson
equation

Au(M) = p(M), M € D(F, +o)

S =hUy -] =g
L ! - ©
on x=0, I, - on y=0, ly -

u bounded when z — +oo.

Problem (3) corresponds to a stable temperature distribution created by heat sources with the
distribution density function p.

On the surface S a third boundary condition is set and corresponds to a convective heat exchange
with a medium of temperature U, with a constant coeffcient h. In this case we will consider the
temperature of the medium as Uy = 0. On the side faces D(F, +0) there is no heat transfer —
boundary conditions of the second kind take place.

We assume that the functions p, g are such that the solution of problem (3) exists in C? (D(F, o)) N
CY(D(F, )). In particular, solving problem (3) allows us to find u|s.

In addition, we assume that the support density p is in the z > H domain.

Statement of the inverse problem:

Let p not be known.

But u|g = f is the initial thermogram.

We consider the surface S to be arbitrary

S={(x,y,2) 10<x<1l,0<y<l,z=F(x,y) <H}, FeC

We need to find a continuous function p.

To solve the inverse problem, we apply the approach [2] used in geophysics problems.

The source of information about the density p will be the function u|,_g on the plane z = H, which
is closer to the support of the density p than the surface S.

Since the support of the function p is outside the domain

D(F,H) ={(x,y,2) : 0 < x <l,0<y<1,F(x,y) <z < H}

then the solution of problem (3) satisfies the Laplace equation in this domain.

Assume that the functions f and g are taken from the set of solutions to the forward problem (3),
so the solution to the inverse problem exists in C? (D(F, H)) n C}(D(F, H)).

Then we obtain the continuation problem

Au(M) =0, M € D(F, H),

0
uls =1, £|s - u(s =& 4)
ou _ ou _
a_n(le), Lo %)y:O, L

from the boundary S with homogeneous boundary conditions of the second kind on the side faces
of D.

Note that in problem (4) the Cauchy conditions on the surface S of the form (2) are given, i.e., the
boundary values f of the desired function u and the values of its normal derivative are given, so
problem (4) has a single solution.
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The boundary z = H of the domain D(F, H) is free, and, as a Cauchy problem for the Laplace
equation, is unstable with respect to errors in the data, i.e., ill-posed.

In the inverse problem, the function f corresponds to the original thermogram obtained with
a thermal imager.

The function u|,_g will be considered as a corrected thermogram, i.e., a source of more accurate
information about the density p.

2. Exact solution of the inverse problem

Based on the approach of [8], an explicit representation of the exact solution of problem (4) is
constructed similarly to [9].

Let us consider the source function (M, P) of the Neumann problem for the Laplace equation in
an infinite cylinder D* of the form (1), i.e. the solution of the problem

ALU(P) = _SMP’ Pe Doo’

L L -

51’1 x=0, I, ’ an y=0, ly ’ (5)
w ow

— > —atz—-> 400, — —0atz - —o0.

0z L, 0z

for which the necessary solvability condition is fulfilled

/—dS /AdezO.

The source function (M, P) of problem (5) can be represented as

®(M,P) =

1
e + W(M, P)

where ryp is the distance between points M and P, W(M, P) is a harmonic function on P. The source
function can also be obtained [9] as a Fourier series under the condition z); < min F(x,y) < zp

(x,y)
1 2 had e_knm|zM_ZP|
@M,P) = —C + — D EpEm——————— X

Zley lxly n,m=0,n2+m2#£0 Knm (6)

X COS Tnxm cos Tmym co Tnxp cos Tmyp

L, L, I, L,
where

n? m2 1 n#o0
kpm =7 l + - ] Ep = ’ )

5 0,5 n=0.

Taking into account homogeneous boundary conditions for ¢ and u on the side faces of the
cylindrical domain D(F, H), we obtain

u(M) = / [e0)o0.7) - 121 22015 et

" f 2 E)pM.P) - u(P) 3201, P)| do

1I(H)
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where
I(H) ={(x,y,2) : 0<x <l,0<y<l,z=H} (8)
By introducing the notations

o) = - [ [P)p(00.P) - £2) 52 (0. dop. M € D=0, 1), o)

s

ou, . 0p

u(M) = / [%(P)co(M, P) - u(P)WP(M, P)] dop, M € D(—c0, H), (10)

T(H)

we obtain the solution of problem (4) in the form
u(M) = v(M) — (M), M € D(F,H) (11)

where &(M) is computed from known functions f and g and can be considered as a known function.
The function v(M) can be viewed as a solution to the problem

Av(M) = 0, M € D(—o0, H),

Ulz=f = Vm, g—lr” =0 av‘

=0, +— =0,
x=0,l on

y=0,1,
vis bounded at z — —oo,

which can be obtained by the Fourier method, and the function v can be expressed through vy

)
U(M) = Z (ﬁH)nmeknm(ZM_H) cos m cos 77.'"11&’ (12)
n,m=0, n2+m2#0 X y
L ly
4
Ch %%/f = iy, 13)
y

The function vy satisfies the Fredholm integral equation of the first kind, taking into account
homogeneous boundary conditions for ¢ and u, and notations (9) and (10), we obtain

u(M) = (M), M € D(—co,F) 14)

Leta < I(nu} F(x,y) and M € II(a), where II(a) is a domain of the form (8) at z = a, then from (14)

and (12) we obtain a system of equations with respect to the Fourier coefficients of the function vy

o0
nx m
Z O pmeFnm@=H) cos nl—M cos l—yM = (M). (15)
n,m=0, n2+m2#£0 x y

Using (13), equation (15) can also be written as an integral equation of the first kind

G(M, P)UH(P)dedyp = (D(M), M e H(a), (16)
M(H)
where the kernel of the integral operator has the form

o)

4

ly n,m=0, n2+m2+£0 17)
mnx mm mnx mm
M COS M Cos P COSs P

G(M,P) = EpEme FnmH=a)

X oS L L, L L,
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Equation (16) will also be written in the form
GUH = <IJ(a)

From equation (16), taking into account the expansion (17) at zy; = a, we obtain the relation between
the Fourier coefficients of the single solution vy and the Fourier coefficients of the right-hand side

(O pme™krm =) = &,,,,(a), (18)
where &,,,,(a) are the Fourier coefficients of the function ®(M)|yerr(a):
4enE, nx Tmy

Dym(a) = @(x,y,a)cos cos
Lely L, I
II(a)

dxdy.
y

Substituting the Fourier coefficients (Og),,, from (18) into the series (12), we obtain the function v
in the domain D(—o0, H)

o0
o(M) = > B, (a)eknm(zu=0) cog M (o m’;ﬂ (19)
n,m=0, n2+m2#£0 x y

The series (19), like series (12), converges uniformly in D(—o0, H — €) for any € > 0, if the solution
of problem (4) exists given f and g.

Formula (11), where the functions v and @ are of the form (19) and (9), respectively, gives an explicit
expression for the solution of problem (4).

o)

u(M) = > ®,,,,(a)eknm(Zm=a) cog XM o8 _ﬂn;y M,
=0, R0 x v (20)
8 0@
+ | |&(P)p(M, P) _f(P)WP(M’P) dop.
s

3. Approximately given surface S. Calculation of the normal to the
surface

Formula (20) gives an explicit expression for the solution of problem (4).
Since the surface S of the form (2)

S={(x,2):0<x<l,0<y<l,z=F(x,y) < H}

is given by the equation z = F(x, y), the function f, defined on S, can be viewed as a function of the
variables x and y on the rectangle I1:

I={xy):0<x<l,0<y<l} (21)

In applied problems, the surface S, which is a part of the boundary of the domain, can be defined on
the basis of measurements, i.e. approximated. If the surface S is defined with an error, the calculation
of the integral (9) is complicated by the necessity to calculate the normal to such a surface. The
problem of calculating the normal to the surface, in other words, the gradient of a function given
approximatively, is ill-posed as a problem of numerical differentiation.
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To compute the function @ (9), it is necessary to compute [10] the vector function n, of the normal
to the surface S, which is the gradient of the function F(x;y) — z of the following form

n, = (B, Fj,—1) = iF; + JFj — k = grad(F(x,y) — 2) = V., F — k

o _ - _my
n =m, V@), n= o

dop = ny(xp, yp)dxpdyp

The integral (9) can be represented as

M) = - / [&(P)p(M, P) — f(P) (Vpp(M, P),n(P))] n,(P)dxpdyp,
II

M) = - / [8(P)E(M, P)ny(P) — f(P) (Vpp(M, P), n1(P))] dxpdyp. (22)
II

Let us assume that the surface S is defined with some error, namely: instead of the exact function
F, there is a function F# such that
|F¥ — Fllym < i (23)

As an approximation to the function V F, calculated from the known function F¥, related to F by
the condition (23), consider the gradient from the extremum of the functional

NE[W] = [W = F¥12, oy + BIVWIZ, () (24)

where IT is a plane of the form (21).
We will consider such surfaces S for which

F|x=0, L, = F|y=0, Ly =0.

This condition, in particular, takes place in the case when S can be considered as a perturbation of
the main plane z = 0. Then the extremal of the functional (24) satisfies the Euler equation

—BAW + W = F¥,

(25)
W|x=0, I, = W|y=0, L, = 0.

Solving the problem (25) by Fourier method, we obtain:

< Fh . mhX . mmy
WH(x,y) = —__ sin = sin . (26)
0= 2 e, T,

It is easy to see that the series (26) converges uniformly to IT (21).
As an approximation of the gradient of the function F* we will consider the vector function

(o]

F,“
xy "B n,;:l 1+ Biam

(27)
y ( n nx . mwmy .7am my ﬂnx)

IKCOS lx SIHTJ{'JTCOSTSIH lx

The series (27) is also uniformly convergent on IT (21).
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Let F~ be an odd-periodic continuation of a function F with period 2I, on the variable x and with
period 2l, on the variable y, i.e.

F_(_x’y)=_F_(x’y)’ (x’y)EH’
F7(x,=y)=—-F~(x,y), F(=x,y) =F (x,-y),
F~(x +2ln,y +2l,m) = F~(x,y) = F(x, y).
Similarly to [11-13] it can be proved
Theorem 1. Let F~ € C%(R?), 8 = B(u) > 0, B(u) — 0 and u/+/B(u) = 0ifu — 0. Then
B
IV s Wiy = VayFlliym < ZMW + gHAF"LZ(H) —~0atu— 0.

Based on the theorem, we can use formula (27) for approximate calculation of the normal to the

surface:
n} 5= vxy%“ —k. (28)

It follows from the proof of the theorem that under the conditions formulated in the theorem

u VB
"n’iﬁ - nl"Lz(H) = ”ny%'u - nyF"LZ(H) < m + T”AF”Lz(H)

the maximum in 8 of the expression on the right-hand side is reached when S(u) = ﬁ, and thus,
denoting by (28)
nf =n{;= ny%’g#) -k, (29)
we obtain:
0¥ =l < VIAFk —— 0. (30)

It is also not difficult to obtain an approximate estimate
IWa(w) = FllL,amy < 24
The surface defined by the equation z = Wﬁ‘(‘ (X, y) we denote as

SH={(x,y,2) 1 0<x <L, 0<y<l,z= Wﬁ‘(‘#)(x,y)}.

4. Stable approximate solution in case of inaccurate data on the
approximated boundary

Now let the functions f and g in problem (4) be approximated, namely: let f° and g° be given such that

1% = fllyary <8, 1% = &llyam < 6. (1)

Then the function @ of the form (22) at exactly given surface S can be calculated with some error:

2500 = - [ [£PW0 PP

I
~f°(P) (Vpp(M, P),n{(P))] ,_, dxpdyp.

(32)
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Obtaining an approximate solution of problem (4) under conditions (31) and its convergence to the
exact solution (20) for a precisely defined surface S is considered in [9].
When approximating the surface S (23)

IF# — Fll,qm) < M

the right-hand side of (16) can be calculated approximating by formula (32) taking into account (29):

GOH(M) = — / [£2(P)p(M. P)r(P)—
II

(33)
_fa(P) (VP¢(M’ P)a nlll(P))]PzP(x,y,Wg)eS# dedyp.
Let us evaluate the difference
|BSH(M) — D(M)| < |DOH(M) — H°(M)|+ o0
34

+@°(M) — d(M)|, M € II(a),

where &%+, &%, ® are functions of the form (33), (32), (22), respectively. We evaluate the first difference
in (34) by subtracting and adding the function:

L ly

ot#0n) = [ dx [ ay (e n)o01 Pomi(x.)-
0 0
—f2(x, ) (Vp@(M, P¥),my)], P* = (x,y, W' (x, ), M = (xp1, Yy, @)
differing from the function ®>#(M) by the exact normal:

|DSH(M) — B3(M)| = |DPHM) — BYH(M) + B3 H(M) — DO(M)| =

L ly
- ( f dx f dy [£5Cey) (0 Cr. y) = 1y (), V p@(M, PRY) —
(0] (0]

—g%(x, )M, PH) (nf (x,y) — my(x, ) +
+£(x,y) (my(x, ), Vp (@(M, PH) — G(M, P))) —

— 8°(x, ) (@(M, PH) — ¢(M, P)) ny(x, y)] |-

Replacing the modulus by the sum of moduli and evaluating the difference of functions using the
Lagrange formula, we obtain:

Ly ly
|@OH(M) — @O(M)| < fdxfdy[|f5(x,y)| -0 (x, y) = my(x, )| - V@M, PH)| +
0 0
+g°Ce, Y| - [g(M, PR)| - [ (x, y) — ny(x, p)|+

5 g 5P
PP M) | 5= Vep(M, P)

W - Fl+

0p(M, P*
+12°0x, )| - ‘(MTP)“%M —F- Inl(x,y)l] <
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taking out the maxima, we use the Cauchy-Bunyakovsky inequality:
< (,max, 190,21 1]+ max (6, P9) - 171 ) Inf — mll+
MeIl(a)

6]
— Vpd(M, P*
+ (Mrglglz(a) ) 0zp Pl )

. 5 - *
Imlllf)+ max \ 52,900

Inlllg ||) W — Pl <

By virtue of the inequalities || f%]| — ]| < [Ilf° = Iflll < |.f° = fIl < & we obtain ||f°] < ||f]| + & and
thus,

< ~ | . 3 IS M
< (max, 1V604.P91- (171 +8)+ max (6042 -(lgl + ) I —my 1+

3
2 V.M, P*
+(Mrg% )\ 52; VPPM. PY)

3 b
Aml(If]+8) + max | g(M, P)

ml(lgl + &) W4~ Fl.

The maximums are evaluated by constants. Since we are interested in the behaviour of the
regularized solution of problem (4) when § — 0, we can assume that § < §,, and thus, taking
into account (30)

|PH(M) — P°(M)|mena) < Cillnf —my || + G| W5 = F.

Consider the difference
W = Fll < |W5* = Wall + W3 — F, (35)

where W is calculated by formula (26) at 4 = 0

o E
W = Z Lz sin 2% sin 2.
ey 1+ Bkam Iy L,
The evaluation of the first difference in (35) gives:
”Wﬂ %”2 fdx ./- dy M Sln T[_nx Sln ﬂ_’,ny
n. m 1 1+ Bkim Ly L,

Using the orthogonality of the trigonometric system, we obtain:

l L, (B4 )2
g e = 22 5y BB
n,m=1 (1 + BkHM)
< Ty Z —Fm) = ”Fi’lﬂm — Byl < 12
nm=1
Similarly, to evaluate the second difference in (35) when § = HAM_FH we obtain:
W = FII* < pi2.

Combining the estimates, we obtain
IWs - FIl < 21 (36)

From (30), (35) and (36) we obtain
|2 (M) — @2(M)| < C|lnf —ny|| + C|[W* - F|| <

< Cu+ C\fu < C\Ju(1 + Cw) = Cy/u, M € I(a). 37
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To evaluate the second difference, we obtain the same way as in [14]:
|BO(M) — D(M)| = ‘ / [(f(P) = F(P)(0,(P), Vp&(M, P))—
big

— (&(P) - g(P)GM, Pny (P)],_; dxpdyp| < (38)
< Consty, Mnqué) IVEDDLys) - 18 = fllz,am+

+Consty, max |G(MD]lLys) - lg® = gllr,amy < C28, M € II(a).

From (37) and (38), we obtain for the estimate (34):

5,[4 _ < —
Mrggé ) |@OH(M) — D(M)| < Cry/u + Co8 = A, 8) —— 0 (39)
H—0
-0

Thus, the right part of the integral equation (16) is known with some error 4, having the structure
(39). The stable approximate solution of the problem (4) is constructed on the basis of the search for
extrema of the Tikhonov functional [5], and can be obtained in the form of

WSHM) = v3H(M) — @5¥(M), M € D(H, F) (40)

where @%* is a function of the form (33), and vg’# (19) has the form:

(9]

B (@)eknmEM=0)  zpxl wmyy
D cos )
1 + ae2knm(H-a) Ly ly

veH(M) = (41)

n,m=0, n2+m2#0

Here i”rf;f,(a) is the Fourier coefficients of the function @ﬁ;ﬁ(aﬂ Mell(@)’

Ix ly
- 4e,e nx nn
o) = =2 [ dx | dy &5H(x, y, a) cos == cos o2
L, Ly L,
0 0
and « is the regularisation parameter. According to the notations introduced above, the value of a is
chosen such that

a< min F(x,y).
S (x,)

For the considered boundary conditions of the second kind on the side faces of the cylinder, taking
into account [8], there is a theorem of convergence of the approximate solution to the exact one when
the regularisation parameter, consistent with the accuracy of the initial data, tends to zero.

Theorem 2. Let the solution of problem (4) exist in the domain D(H,F), a = a(4), a(4) — 0,
A/m — 0atA — 0. Then the function uq,) of the form (40), where according to (39) 4 = A(u, 6) =
CiyJu + C38, converges uniformly to the exact solution of problem (4) at § — 0, u — 0 in the domain
D(F + ¢,H —¢), where € > 0 is some fixed arbitrarily small number.

Proof. Let’s evaluate the difference

|u

s s,
asy — Ul < Jva™ = v] + |@0K — 2|
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in the domain G(H + ¢, F —¢).

The second difference is evaluated similarly to (38) when replacing I1(a) by D(H + ¢, F —¢).

For the difference v — v we obtain

08 = v] < [0 — gl + o — o,
where v, is a function of the form (41) at § = 0.
We estimate v — v, in D(H + ¢, F —¢).

b eknm(ZM_a)

2 o 1 + ae?knm(H—a)

n,m=

s 5
[vaar = Van] < : 4Préll§l(>§) |@°(P) — @(P)| <

kKnym(H—e—a) X! ©
efnm A ,5
=G-9o msq-é-ma}x—u, 2 e~hnme < C, - - )'
nmeo 1 + ae?nm X[ 1+ae [ 2 Va
For the difference v, — v we obtain
|U vl _ i ananVI(H—a)eﬂ'an(zM_H) (U ) cos TAXpp ﬂmyM‘ <
oa = - _ H/nm -7 T 7 | =
nme=0 1 + qeknm(H-a) Ly ly

<

[ ®© o e2knm(H—a)

— e | . ogllL,.
n;;o 1 + ae2knm(H—-a) ] vz,

Since the parameter-dependent series is majorised by a convergent numerical series

o]

Z e_Eknm

n,m=0

then a limit transition on « is possible, and thus,
|vg’“ —v| - 0mpu a(8) — 0.

Using 2, the convergence of the approximate solution (40) to the exact solution (20) of the problem
(4) of continuation from the boundary S (2) is proved.

5. Numerical solution of the inverse problem for the case of flat
boundary

Let us demonstrate the effectiveness of the proposed approach of solving the problem (4) of
continuation from the boundary S, on which the third boundary condition corresponding to
convective heat exchange with the medium of temperature U, with a constant coefficient  is defined

Ju
Il = &= hUo = N
and the surface S itself is the plane I7(0) z = 0 for the following conditions: U, = 0, h = 0.4, [, = 60,
I, =60,H=1.5
Let the function p(M) in the direct problem (3) correspond to three point sources in the plane II(H):

(x1, 1) = (30, 32), (x2,¥,) = (30, 30), (x3,y3) = (32, 30).

y
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For this case, using the results of [15], the function specifying the boundary condition for problem
(3) with accuracy up to a constant can be obtained in the form of

hd kan . .
flx,y) = Z Z Qi€nEm s X0 g TV (g X s 1V (42)
n,m=0 i=0 k m+ h lx ly lx ly

where k,,,, €, and ¢, are calculated by formula (7) and q; = 100, i = 1,2,3.

We will solve the inverse continuation problem (4), assuming that the value of the function on the
boundary f? is given approximated, its values will be determined on the basis of the function f(x, y)
(42) and a randomly given relative error within 3%.

In the applied approach, the solution can be obtained by applying (40) and (41).

According to (32)

S3(M) = f [£2(P)@(M. Py (P)—
11(0)
~f°(P) (Vpp(M, P),n{(P))] ,_, dxpdyp

where n; = (F,F),—1)and n; = |my| = /1 + (F2)? + (F)%
For the assumption that S is a plane z = F(x,y) = 0,n; = (0,0,—1) and n; = 1.
According to (6) the source function with accuracy up to constant

3 2 d eknmlzm—2l  gnx,,  mmyy  wnxp  wmyp
@M, P) = o E EnEm X €OS —— €0S —=— C0S —— COS —
XY n,m=0,n2+m2#£0 nm X y X y

and

oo

-2
gradpp(M, P)|pes = T D epgpmeknmlzu=2rl cos l l l
XY n,m=0 X y X y

nmnx mm nx mm
M Ccos M Cos P Ccos P

To obtain numerical results, problems (3), (4) are discretised.
We will assume that the rectangles I1(0), II(H) and II(a), a = —0.6, are covered by a uniform grid
(Ny +1) x (N;, + 1) of points such that

Lty .
yj:J}Vy’ Jj=0,...,N,

We will consider N, = N, = 60.
As a result of descretisation, using the approach [16], we obtain

Nx—lNy 1
N mj
475 — Knma
(@ =14 | o eene o 2, 1y cos T cos (43)
Ny=1Ny=1 25 Knm(H-a)
D9, (a)enm i Tmj
N nm
vs (x;, -’H = — ——— C0S — C0S —,
s (X1, H) mZ::O nZ::O 1 + qetlom(H—a) N, N, (44)

i=0,...Ny, j=0,....N,.

And, thus, according to (40), as a result of function recovery at z = H we obtain

ul(H) = v (H) — oN(H).
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Figure 1. Initial thermogram on the surface S Figure 2. Adjusted thermogram obtained as an
approximate solution of the
inverse problem u|,_g

The results of calculations are shown in Fig. 1 and Fig. 2.

Fig. 1 shows the initial data of the inverse problem — the function f¢ calculated by the discrete
analogue of the formula (42) with the addition of a randomly specified error within 3%. The three
sources are perceived as a single unit.

Fig. 2 shows the result of function recovery using (43), (44). Three sources are clearly visible.

When computing (44) discrete Fourier series, the algorithms described in [17-20] can be used.

The value of the obtained solution is calculated for the boundary conditions of the problem (4)
with accuracy to a constant. Accordingly, Fig. 1 and Fig. 2 show the values normalised from 0 to 100.

Conclusion

When solving the inverse problem (4) of continuation from the boundary S, the function f can be
interpreted as the original image obtained with the thermal imager or as the original thermogram.
The thermogram obtained with the help of a thermal imager reproduces with a certain degree of
reliability the image of the structure of heat sources located inside the body. Then the solution of the
inverse problem obtained as a result of the proposed approach can be considered as a mathematical
processing of the thermogram, the obtained function u|,_ represents the temperature distribution
on the plane located closer to the investigated heat sources than the initial surface S, we can expect
a more accurate reproduction of the image of the sources on the calculated thermogram u|,_g.
The above calculations show the effectiveness of the proposed method based on the stable solution
of the inverse continuation problem (40) and (41) and its applicability for processing thermographic
images, in particular, in medicine [1].
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06 ycToiM4nMBOM NPUGINIKEHHOM peLLeHUN HEKOPPEKTHO
NOCTaB/IEHHOW KpaeBOU 3apauu ans ypaBHeHus Jlannaca
C OAHOPOAHBIMU YC/IOBUAMU BTOPOIro poa Ha Kpasix npwu
HETOYHbIX fAaHHbIX HA NPU6/NKEHHO 3ag4aHHOM rpaHuLe

E. b. laHees, A. B. KnumunuuH

Poccuitcknii yHuBepcunTeT gpyx6bl HapoaoB, yi. Muknyxo-Maknas, g. 6, Mocksa, 117198, Poccuiickast
depepayus

AHHoTauus. B paboTe paccMaTprBaeTCs HEKOPPEKTHO ITOCTABIEHHAS 3a/5a4a IIPOODKEHNS FApMOHNIECKUX
(yHKIM ¢ HETOYHO 3alaHHOM IPAHUIIBI B MIMHAPUIECKOHN 001aCTH C OZHOPOAHBIMU KPAaeBBIMU YCIOBUSIMU
BTOPOTO POZia Ha GOKOBBIX IpaHsX. 3HadeHNe QYHKIUY U eé HOpMaJIbHOI IPOU3BOAHOI (ycroBus Komn) — ms-
BECTHBI IPUOIIKEHHO Ha IPUOIIKEHHO 33/[aHHOHN IIOBEPXHOCTHU IIPOM3BOJIBHOTO BU/IA, OTPAaHUYIMBAIOIEH
UUINHADP. B faHHOM ciay4ae 3agada Komn g1 ypaBHeHus Jlanaca o61agaeT CBOMCTBOM HEYCTOMYHNBOCTH
10 OTHOIIEHUIO K IIOTPENIHOCTH B JaHHBIX Koly, T. e. sIBJIsieTCsI HEKOPPEKTHO IOCTaBleHHOH. Ha ocHOBe
IIpeJCTaBIeHUH 0 QYHKIIUY UCTOYHUKA UCXOAHON 3a/jadil, TOYHOE PellleHNe IIPeACTaBIsIeTCs B BUJE CYMMBI
IByX QYHKIMI, OfHA 13 KOTOPBIX IBHO 3aBHCUT OT yca0Bui Koy, Bropast MOXeT ObLIb IIOJIyYeHa KaK pelre-
HIe NHTeTpalbHOro ypaBHeHUs OpeArosbMa MepBoro poga B Buzie psia ypbe 1o co6cTBEHHBIM QYHKIUAM
BTOPOH KpaeBOH 3a7a4u A1 ypaBHeHUs Jlartaca. Jj1s moTy9eHNs TPUOIIKEHHOTO YCTOMYMBOTO PelIeHNs
MHTerpajbHOTo ypaBHEHUsI IPUMEHEH MeTo/ peryaspusaunu THUXOHOBA, KOTAA pellleHHe [OIydaeTcs Kak
aKcTpeMasb GyHKIMoHaIa TuxoHoBa. [/ IPUOIMKEHHO 3a/JaHHOM II0OBEPXHOCTH PacCMaTPHBAeTCs BbIYHCTIe-
HYe HOPMaJIX K 9TOU IIOBEPXHOCTH U €€ CXOJVMOCTb K TOYHOMY 3HaYE€HUIO B 3aBUCUMOCTH OT ITOTPELIHOCTH,
C KOTOPOH 3aZlaHa HCXO/IHAsI IOBEPXHOCTb. JIOKa3bIBAE€TCS CXOLUMOCTb IIOIyIeHHOTO IPUGIKEHHOTO pellie-
HUS K TOYHOMY PelIeHUIO IIPU COIIOCTABIeHUH ITapaMeTpa PeTyIIprU3aluy ¢ OUIMOKaMU B JAaHHBIX KaK I10
HETOYHO 33/IaHHOM TpaHMUIle, TAK U [10 3HAYEHUIO MCXOAHOMN (QPYHKINY Ha 3TOH rpaHule. [IpoBOAUTCS YUCIEH-
HBIH 9KCIIePUMEHT, KOTOPBIH AeMOHCTPUPYET 3 (PeKTUBHOCTD IIPEAIOKEHHOTO IOAXO0/a JIg YaCTHOTO CIIydas
— [AJIS1 TIJIOCKOM TPaHUIIBI M KOHKPETHOT'O MCXOJHOTO MCTOYHMKA TellIa (Habopa ToYeHbIX UCTOYHUKOB).

Kniouyesble cnoBa: HEKOPPEKTHO IIOCTaBJIEeHHAad 3aJa4da, MeTO/ PEeryjlapusannmn TuxoHOBa, 3aga4ya Komiu ajis
ypaBHEHUA Jlannaca, HWHTEerpajJbHO€ YpPaBHEHME IIEPBOI'0 poJa



