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Abstract. In this paper, we consider the ill-posed continuation problem for harmonic functions from an ill-
defined boundary in a cylindrical domain with homogeneous boundary conditions of the second type on the
side faces. The value of the function and its normal derivative (Cauchy conditions) is known approximately on
an approximated surface of arbitrary shape bounding the cylinder. In this case, the Cauchy problem for the
Laplace equation has the property of instability with respect to the error in the Cauchy data, that is, it is ill-posed.
On the basis of an idea about the source function of the original problem, the exact solution is represented as
a sum of two functions, one of which depends explicitly on the Cauchy conditions, and the second one can be
obtained as a solution of the Fredholm integral equation of the first kind in the form of Fourier series on the
eigenfunctions of the second boundary value problem for the Laplace equation. To obtain an approximate stable
solution of the integral equation, the Tikhonov regularization method is applied when the solution is obtained
as an extremal of the Tikhonov functional. For an approximated surface, we consider the calculation of the
normal to this surface and its convergence to the exact value depending on the error with which the original
surface is given. The convergence of the obtained approximate solution to the exact solution is proved when the
regularization parameter is compared with the errors in the data both on the inexactly specified boundary and
on the value of the original function on this boundary. A numerical experiment is carried out to demonstrate the
effectiveness of the proposed approach for a special case, for a flat boundary and a specific initial heat source
(a set of sharpened sources).
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Introduction
Amongnon-invasive diagnosticmethods [1], thermal imaging stands out for its efficiency and accuracy
with proper data processing. When carried out with the help of a thermal imager, a thermogram of
the surface of the object can be obtained, showing the heat distribution on the surface of the object
under investigation in the infrared range.

Corrected for various interferences in heat exchange processes and surface inhomogeneities of the
observed object, the thermogram image conveys the structure of the heat-generating object, which
makes it possible to assess various abnormalities in the state of the patient’s internal organs during
medical diagnosis.

The paper proposes amethod for correcting the image on the thermogrambased on amathematical
model that considers a homogeneous heat-conducting body in the form of a rectangular cylinder
containing heat sources with a distribution density function independent of time, bounded by an
arbitrary surface 𝑆 on which a boundary condition of the third kind corresponding to convective
heat exchange with the medium is set. The proposed model considers the case when there is no heat
exchange on the lateral faces of the body — homogeneous boundary conditions of the second kind
take place.
As a result of processing, the temperature distribution function on the plane (corrected

thermogram) near the heat sources is constructed as a result of continuation of the temperature
distribution from an arbitrary surface from which the original thermogram is taken. The corrected
thermogrammore accurately conveys the structure of the heat sources than the image on the original
thermogram.
When obtaining the corrected thermogram as a result of processing, approaches similar to the

continuation of gravitational fields in geophysics problems were used [2–4].
To obtain the result, the inverse problem to the mixed boundary value problem for the Poisson

equation is solved, since the goal is to obtain information about inaccessible heat sources from data
on a given surface. The inverse problem is ill-posed, because small errors in the initial data (in the
initial thermogram, in the data on the surface) can lead to significant distortions of the result. To
construct its stable approximate solution, the Tikhonov regularisation method is used [5–7].

1. Problem statement
Physical model: we consider a homogeneous heat-conducting body in the form of a rectangular
cylinder bounded by the surface 𝑆 and containing heat sources with a distribution density function
independent of time.
These heat sources create a stationary temperature distribution in the body.
The object of study is the density function of heat source distribution.
On the surface 𝑆 there is convective heat exchangewith themediumdescribed by the given function.
On the side faces of the cylinder we assume that there is no heat exchange.
Mathematical model: in a rectangular cylinder

𝐷∞ = {(𝑥, 𝑦, 𝑧) ∶ 0 < 𝑥 < 𝑙𝑥, 0 < 𝑦 < 𝑙𝑦, −∞ < 𝑧 < +∞} (1)

we consider a cylindrical domain

𝐷(𝐹,+∞) = {(𝑥, 𝑦, 𝑧) ∶ 0 < 𝑥 < 𝑙𝑥, 0 < 𝑦 < 𝑙𝑦, 𝐹(𝑥, 𝑦) < 𝑧 < +∞}

bounded by a surface

𝑆 = {(𝑥, 𝑦, 𝑧) ∶ 0 < 𝑥 < 𝑙𝑥, 0 < 𝑦 < 𝑙𝑦, 𝑧 = 𝐹(𝑥, 𝑦) < 𝐻}, 𝐹 ∈ 𝐶2. (2)
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In the domain 𝐷(𝐹,+∞) we consider the following mixed boundary value problem for the Poisson
equation

𝛥𝑢(𝑀) = 𝜌(𝑀), 𝑀 ∈ 𝐷(𝐹,+∞)
𝜕𝑢
𝜕𝑛
||𝑆
= ℎ(𝑈0 − 𝑢)||𝑆

= 𝑔,

𝜕𝑢
𝜕𝑛
||𝑥=0, 𝑙𝑥

= 0, 𝜕𝑢
𝜕𝑛
||𝑦=0, 𝑙𝑦

= 0,

𝑢 bounded when 𝑧 → +∞.

(3)

Problem (3) corresponds to a stable temperature distribution created by heat sources with the
distribution density function 𝜌.
On the surface 𝑆 a third boundary condition is set and corresponds to a convective heat exchange

with a medium of temperature 𝑈0 with a constant coeffcient ℎ. In this case we will consider the
temperature of the medium as 𝑈0 = 0. On the side faces 𝐷(𝐹,+∞) there is no heat transfer —
boundary conditions of the second kind take place.
We assume that the functions 𝜌, 𝑔 are such that the solution of problem (3) exists in 𝐶2 (𝐷(𝐹,∞)) ∩

𝐶1(𝐷(𝐹,∞)). In particular, solving problem (3) allows us to find 𝑢|𝑆.
In addition, we assume that the support density 𝜌 is in the 𝑧 > 𝐻 domain.
Statement of the inverse problem:
Let 𝜌 not be known.
But 𝑢|𝑆 = 𝑓 is the initial thermogram.
We consider the surface 𝑆 to be arbitrary

𝑆 = {(𝑥, 𝑦, 𝑧) ∶ 0 < 𝑥 < 𝑙𝑥, 0 < 𝑦 < 𝑙𝑦, 𝑧 = 𝐹(𝑥, 𝑦) < 𝐻}, 𝐹 ∈ 𝐶2.

We need to find a continuous function 𝜌.
To solve the inverse problem, we apply the approach [2] used in geophysics problems.
The source of information about the density 𝜌will be the function 𝑢|𝑧=𝐻 on the plane 𝑧 = 𝐻, which

is closer to the support of the density 𝜌 than the surface 𝑆.
Since the support of the function 𝜌 is outside the domain

𝐷(𝐹,𝐻) = {(𝑥, 𝑦, 𝑧) ∶ 0 < 𝑥 < 𝑙𝑥, 0 < 𝑦 < 𝑙𝑦, 𝐹(𝑥, 𝑦) < 𝑧 < 𝐻}

then the solution of problem (3) satisfies the Laplace equation in this domain.
Assume that the functions 𝑓 and 𝑔 are taken from the set of solutions to the forward problem (3),

so the solution to the inverse problem exists in 𝐶2 (𝐷(𝐹,𝐻)) ∩ 𝐶1(𝐷(𝐹,𝐻)).
Then we obtain the continuation problem

𝛥𝑢(𝑀) = 0, 𝑀 ∈ 𝐷(𝐹,𝐻),

𝑢|𝑆 = 𝑓, 𝜕𝑢
𝜕𝑛
||𝑆
= −ℎ𝑢||𝑆

= 𝑔,

𝜕𝑢
𝜕𝑛
||𝑥=0, 𝑙𝑥

= 0, 𝜕𝑢
𝜕𝑛
||𝑦=0, 𝑙𝑦

= 0.

(4)

from the boundary 𝑆 with homogeneous boundary conditions of the second kind on the side faces
of 𝐷.
Note that in problem (4) the Cauchy conditions on the surface 𝑆 of the form (2) are given, i.e., the

boundary values 𝑓 of the desired function 𝑢 and the values of its normal derivative are given, so
problem (4) has a single solution.
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The boundary 𝑧 = 𝐻 of the domain 𝐷(𝐹,𝐻) is free, and, as a Cauchy problem for the Laplace
equation, is unstable with respect to errors in the data, i.e., ill-posed.
In the inverse problem, the function 𝑓 corresponds to the original thermogram obtained with

a thermal imager.
The function 𝑢|𝑧=𝐻 will be considered as a corrected thermogram, i.e., a source of more accurate

information about the density 𝜌.

2. Exact solution of the inverse problem
Based on the approach of [8], an explicit representation of the exact solution of problem (4) is
constructed similarly to [9].
Let us consider the source function 𝜑(𝑀, 𝑃) of the Neumann problem for the Laplace equation in

an infinite cylinder 𝐷∞ of the form (1), i.e. the solution of the problem

𝛥𝑤(𝑃) = −𝛿𝑀𝑃, 𝑃 ∈ 𝐷∞,
𝜕𝑤
𝜕𝑛

||𝑥=0, 𝑙𝑥
= 0, 𝜕𝑤

𝜕𝑛
||𝑦=0, 𝑙𝑦

= 0,

𝜕𝑤
𝜕𝑧 → 1

𝑙𝑥𝑙𝑦
at 𝑧 → +∞, 𝜕𝑤

𝜕𝑧 → 0 at 𝑧 → −∞.

(5)

for which the necessary solvability condition is fulfilled

∫
𝑆

𝜕𝑤
𝜕𝑛 𝑑𝑆 −∫

𝑉

𝛥𝑤𝑑𝑉 = 0.

The source function 𝜑(𝑀, 𝑃) of problem (5) can be represented as

𝜑(𝑀, 𝑃) = 1
4𝜋𝑟𝑀𝑃

+𝑊(𝑀, 𝑃)

where 𝑟𝑀𝑃 is the distance between points𝑀 and 𝑃,𝑊(𝑀, 𝑃) is a harmonic function on 𝑃. The source
function can also be obtained [9] as a Fourier series under the condition 𝑧𝑀 < min

(𝑥,𝑦)
𝐹(𝑥, 𝑦) < 𝑧𝑃

̃𝜑(𝑀, 𝑃) = 1
2𝑙𝑥𝑙𝑦

𝐶 + 2
𝑙𝑥𝑙𝑦

∞
∑

𝑛,𝑚=0,𝑛2+𝑚2≠0
𝜀𝑛𝜀𝑚

𝑒−𝑘𝑛𝑚|𝑧𝑀−𝑧𝑃|

𝑘𝑛𝑚
×

× cos 𝜋𝑛𝑥𝑀𝑙𝑥
cos

𝜋𝑚𝑦𝑀
𝑙𝑦

cos 𝜋𝑛𝑥𝑃𝑙𝑥
cos

𝜋𝑚𝑦𝑃
𝑙𝑦

(6)

where

𝑘𝑛𝑚 = 𝜋
√

𝑛2

𝑙2𝑥
+ 𝑚2

𝑙2𝑦
, 𝜀𝑛 =

⎧
⎨
⎩

1 n ≠ 0,

0, 5 n = 0.
(7)

Taking into account homogeneous boundary conditions for ̃𝜑 and 𝑢 on the side faces of the
cylindrical domain 𝐷(𝐹,𝐻), we obtain

𝑢(𝑀) = ∫
𝑆

[𝑔(𝑃) ̃𝜑(𝑀, 𝑃) − 𝑓(𝑃)
𝜕 ̃𝜑
𝜕𝑛𝑃

(𝑀, 𝑃)] 𝑑𝜎𝑃+

+ ∫
𝛱(𝐻)

[𝜕𝑢𝜕𝑛(𝑃) ̃𝜑(𝑀, 𝑃) − 𝑢(𝑃)
𝜕 ̃𝜑
𝜕𝑛𝑃

(𝑀, 𝑃)] 𝑑𝜎𝑃,
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where
𝛱(𝐻) = {(𝑥, 𝑦, 𝑧) ∶ 0 < 𝑥 < 𝑙𝑥, 0 < 𝑦 < 𝑙𝑦, 𝑧 = 𝐻} (8)

By introducing the notations

𝛷(𝑀) = −∫
𝑆

[𝑔(𝑃) ̃𝜑(𝑀, 𝑃) − 𝑓(𝑃)
𝜕 ̃𝜑
𝜕𝑛𝑃

(𝑀, 𝑃)] 𝑑𝜎𝑃, 𝑀 ∈ 𝐷(−∞,𝐻), (9)

𝑣(𝑀) = ∫
𝛱(𝐻)

[𝜕𝑢𝜕𝑛(𝑃) ̃𝜑(𝑀, 𝑃) − 𝑢(𝑃)
𝜕 ̃𝜑
𝜕𝑛𝑃

(𝑀, 𝑃)] 𝑑𝜎𝑃, 𝑀 ∈ 𝐷(−∞,𝐻), (10)

we obtain the solution of problem (4) in the form

𝑢(𝑀) = 𝑣(𝑀) − 𝛷(𝑀), 𝑀 ∈ 𝐷(𝐹,𝐻) (11)

where 𝛷(𝑀) is computed from known functions 𝑓 and 𝑔 and can be considered as a known function.
The function 𝑣(𝑀) can be viewed as a solution to the problem

𝛥𝑣(𝑀) = 0, 𝑀 ∈ 𝐷(−∞,𝐻),

𝑣|𝑧=𝐻 = 𝑣𝐻,
𝜕𝑣
𝜕𝑛
||𝑥=0,𝑙𝑥

= 0, 𝜕𝑣
𝜕𝑛
||𝑦=0, 𝑙𝑦

= 0,

𝑣 is bounded at 𝑧 → −∞,

which can be obtained by the Fourier method, and the function 𝑣 can be expressed through 𝑣𝐻

𝑣(𝑀) =
∞
∑

𝑛,𝑚=0, 𝑛2+𝑚2≠0
( ̃𝑣𝐻)𝑛𝑚𝑒𝑘𝑛𝑚(𝑧𝑀−𝐻) cos 𝜋𝑛𝑥𝑀𝑙𝑥

cos
𝜋𝑚𝑦𝑀
𝑙𝑦

, (12)

( ̃𝑣𝐻)𝑛𝑚 =
4𝜀𝑛𝜀𝑚
𝑙𝑥𝑙𝑦

𝑙𝑥

∫
0

𝑙𝑦

∫
0

𝑣𝐻(𝑥, 𝑦) cos
𝜋𝑛𝑥
𝑙𝑥

cos
𝜋𝑚𝑦
𝑙𝑦

𝑑𝑥𝑑𝑦. (13)

The function 𝑣𝐻 satisfies the Fredholm integral equation of the first kind, taking into account
homogeneous boundary conditions for ̃𝜑 and 𝑢, and notations (9) and (10), we obtain

𝑣(𝑀) = 𝛷(𝑀), 𝑀 ∈ 𝐷(−∞, 𝐹) (14)

Let 𝑎 < min
(𝑥,𝑦)

𝐹(𝑥, 𝑦) and𝑀 ∈ 𝛱(𝑎), where 𝛱(𝑎) is a domain of the form (8) at 𝑧 = 𝑎, then from (14)

and (12) we obtain a system of equations with respect to the Fourier coefficients of the function 𝑣𝐻
∞
∑

𝑛,𝑚=0, 𝑛2+𝑚2≠0
( ̃𝑣𝐻)𝑛𝑚𝑒𝑘𝑛𝑚(𝑎−𝐻) cos 𝜋𝑛𝑥𝑀𝑙𝑥

cos
𝜋𝑚𝑦𝑀
𝑙𝑦

= 𝛷(𝑀). (15)

Using (13), equation (15) can also be written as an integral equation of the first kind

∫
𝛱(𝐻)

𝐺(𝑀, 𝑃)𝑣𝐻(𝑃)𝑑𝑥𝑃𝑑𝑦𝑃 = 𝛷(𝑀), 𝑀 ∈ 𝛱(𝑎), (16)

where the kernel of the integral operator has the form

𝐺(𝑀, 𝑃) = 4
𝑙𝑥𝑙𝑦

∞
∑

𝑛,𝑚=0, 𝑛2+𝑚2≠0
𝜀𝑛𝜀𝑚𝑒−𝑘𝑛𝑚(𝐻−𝑎)×

× cos 𝜋𝑛𝑥𝑀𝑙𝑥
cos

𝜋𝑚𝑦𝑀
𝑙𝑦

cos 𝜋𝑛𝑥𝑃𝑙𝑥
cos

𝜋𝑚𝑦𝑃
𝑙𝑦

.
(17)
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Equation (16) will also be written in the form

𝐺𝑣𝐻 = 𝛷(𝑎).

Fromequation (16), taking into account the expansion (17) at 𝑧𝑀 = 𝑎, we obtain the relationbetween
the Fourier coefficients of the single solution 𝑣𝐻 and the Fourier coefficients of the right-hand side

( ̃𝑣𝐻)𝑛𝑚𝑒−𝑘𝑛𝑚(𝐻−𝑎) = 𝛷̃𝑛𝑚(𝑎), (18)

where 𝛷̃𝑛𝑚(𝑎) are the Fourier coefficients of the function 𝛷(𝑀)|𝑀∈𝛱(𝑎):

𝛷̃𝑛𝑚(𝑎) =
4𝜀𝑛𝜀𝑚
𝑙𝑥𝑙𝑦

∫
𝛱(𝑎)

𝛷(𝑥, 𝑦, 𝑎) cos 𝜋𝑛𝑥𝑙𝑥
cos

𝜋𝑚𝑦
𝑙𝑦

𝑑𝑥𝑑𝑦.

Substituting the Fourier coefficients ( ̃𝑣𝐻)𝑛𝑚 from (18) into the series (12), we obtain the function 𝑣
in the domain 𝐷(−∞,𝐻)

𝑣(𝑀) =
∞
∑

𝑛,𝑚=0, 𝑛2+𝑚2≠0
𝛷̃𝑛𝑚(𝑎)𝑒𝑘𝑛𝑚(𝑧𝑀−𝑎) cos 𝜋𝑛𝑥𝑀𝑙𝑥

cos
𝜋𝑚𝑦𝑀
𝑙𝑦

. (19)

The series (19), like series (12), converges uniformly in 𝐷(−∞,𝐻 − 𝜀) for any 𝜀 > 0, if the solution
of problem (4) exists given 𝑓 and 𝑔.

Formula (11), where the functions 𝑣 and𝛷 are of the form (19) and (9), respectively, gives an explicit
expression for the solution of problem (4).

𝑢(𝑀) =
∞
∑

𝑛,𝑚=0, 𝑛2+𝑚2≠0
𝛷̃𝑛𝑚(𝑎)𝑒𝑘𝑛𝑚(𝑧𝑀−𝑎) cos 𝜋𝑛𝑥𝑀𝑙𝑥

cos
𝜋𝑚𝑦𝑀
𝑙𝑦

+

+∫
𝑆

[𝑔(𝑃) ̃𝜑(𝑀, 𝑃) − 𝑓(𝑃)
𝜕 ̃𝜑
𝜕𝑛𝑃

(𝑀, 𝑃)] 𝑑𝜎𝑃.
(20)

3. Approximately given surface 𝑆. Calculation of the normal to the
surface

Formula (20) gives an explicit expression for the solution of problem (4).
Since the surface 𝑆 of the form (2)

𝑆 = {(𝑥, 𝑦, 𝑧) ∶ 0 < 𝑥 < 𝑙𝑥, 0 < 𝑦 < 𝑙𝑦, 𝑧 = 𝐹(𝑥, 𝑦) < 𝐻}

is given by the equation 𝑧 = 𝐹(𝑥, 𝑦), the function 𝑓, defined on 𝑆, can be viewed as a function of the
variables 𝑥 and 𝑦 on the rectangle 𝛱:

𝛱 = {(𝑥, 𝑦) ∶ 0 < 𝑥 < 𝑙𝑥, 0 < 𝑦 < 𝑙𝑦}. (21)

In applied problems, the surface 𝑆, which is a part of the boundary of the domain, can be defined on
the basis ofmeasurements, i.e. approximated. If the surface 𝑆 is definedwith an error, the calculation
of the integral (9) is complicated by the necessity to calculate the normal to such a surface. The
problem of calculating the normal to the surface, in other words, the gradient of a function given
approximatively, is ill-posed as a problem of numerical differentiation.
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To compute the function 𝛷 (9), it is necessary to compute [10] the vector function n1 of the normal
to the surface 𝑆, which is the gradient of the function 𝐹(𝑥; 𝑦) − 𝑧 of the following form

n1 = (𝐹′𝑥, 𝐹′𝑦 , −1) = 𝑖𝐹′𝑥 + 𝑗𝐹′𝑦 − 𝑘 = 𝑔𝑟𝑎𝑑(𝐹(𝑥, 𝑦) − 𝑧) = ∇𝑥𝑦𝐹 − 𝑘

𝜕 ̃𝜑
𝜕𝑛 = (n, ∇ ̃𝜑), n = n1

𝑛1
𝑑𝜎𝑃 = 𝑛1(𝑥𝑃, 𝑦𝑃)𝑑𝑥𝑃𝑑𝑦𝑃

The integral (9) can be represented as

𝛷(𝑀) = −∫
𝛱

[𝑔(𝑃) ̃𝜑(𝑀, 𝑃) − 𝑓(𝑃) (∇𝑃 ̃𝜑(𝑀, 𝑃),n(𝑃))] 𝑛1(𝑃)𝑑𝑥𝑃𝑑𝑦𝑃,

𝛷(𝑀) = −∫
𝛱

[𝑔(𝑃) ̃𝜑(𝑀, 𝑃)𝑛1(𝑃) − 𝑓(𝑃) (∇𝑃 ̃𝜑(𝑀, 𝑃), 𝑛1(𝑃))] 𝑑𝑥𝑃𝑑𝑦𝑃. (22)

Let us assume that the surface 𝑆 is defined with some error, namely: instead of the exact function
𝐹, there is a function 𝐹𝜇 such that

‖𝐹𝜇 − 𝐹‖𝐿2(𝛱) ≤ 𝜇. (23)

As an approximation to the function ∇𝑥𝑦𝐹, calculated from the known function 𝐹𝜇, related to 𝐹 by
the condition (23), consider the gradient from the extremum of the functional

𝑁𝛽[𝑊] = ‖𝑊 − 𝐹𝜇‖2𝐿2(𝛱) + 𝛽‖∇𝑊‖2𝐿2(𝛱) (24)

where 𝛱 is a plane of the form (21).
We will consider such surfaces 𝑆 for which

𝐹|𝑥=0, 𝑙𝑥 = 𝐹|𝑦=0, 𝑙𝑦 = 0.

This condition, in particular, takes place in the case when 𝑆 can be considered as a perturbation of
the main plane 𝑧 = 0. Then the extremal of the functional (24) satisfies the Euler equation

−𝛽𝛥𝑊 +𝑊 = 𝐹𝜇,

𝑊|𝑥=0, 𝑙𝑥 = 𝑊|𝑦=0, 𝑙𝑦 = 0.
(25)

Solving the problem (25) by Fourier method, we obtain:

𝑊 𝜇
𝛽 (𝑥, 𝑦) =

∞
∑

𝑛,𝑚=1

̃𝐹𝜇𝑛𝑚
1 + 𝛽𝑘2𝑛𝑚

sin 𝜋𝑛𝑥
𝑙𝑥

sin
𝜋𝑚𝑦
𝑙𝑦

. (26)

It is easy to see that the series (26) converges uniformly to 𝛱 (21).
As an approximation of the gradient of the function 𝐹𝜇 we will consider the vector function

∇𝑥𝑦𝑊
𝜇
𝛽 (𝑥, 𝑦) =

∞
∑

𝑛,𝑚=1

̃𝐹𝜇𝑛𝑚
1 + 𝛽𝑘2𝑛𝑚

×

×(i𝜋𝑛𝑙𝑥
cos 𝜋𝑛𝑥𝑙𝑥

sin
𝜋𝑚𝑦
𝑙𝑦

+ j𝜋𝑚𝑙𝑦
cos

𝜋𝑚𝑦
𝑙𝑦

sin 𝜋𝑛𝑥
𝑙𝑥

) .
(27)

The series (27) is also uniformly convergent on 𝛱 (21).
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Let 𝐹− be an odd-periodic continuation of a function 𝐹 with period 2𝑙𝑥, on the variable 𝑥 and with
period 2𝑙𝑦 on the variable 𝑦, i.e.

𝐹−(−𝑥, 𝑦) = −𝐹−(𝑥, 𝑦), (𝑥, 𝑦) ∈ 𝛱,

𝐹−(𝑥, −𝑦) = −𝐹−(𝑥, 𝑦), 𝐹−(−𝑥, 𝑦) = 𝐹−(𝑥, −𝑦),

𝐹−(𝑥 + 2𝑙𝑥𝑛, 𝑦 + 2𝑙𝑦𝑚) = 𝐹−(𝑥, 𝑦) = 𝐹(𝑥, 𝑦).

Similarly to [11–13] it can be proved

Theorem 1. Let 𝐹− ∈ 𝐶2(𝑅2), 𝛽 = 𝛽(𝜇) > 0, 𝛽(𝜇) → 0 and 𝜇/√𝛽(𝜇) → 0 if 𝜇 → 0. Then

‖∇𝑥𝑦𝑊
𝜇
𝛽(𝜇) − ∇𝑥𝑦𝐹‖𝐿2(𝛱) ≤

𝜇
2√𝛽

+
√𝛽
2 ‖𝛥𝐹‖𝐿2(𝛱) → 0 at 𝜇 → 0.

Based on the theorem, we can use formula (27) for approximate calculation of the normal to the
surface:

n𝜇1,𝛽 = ∇𝑥𝑦𝑊
𝜇
𝛽 − 𝑘. (28)

It follows from the proof of the theorem that under the conditions formulated in the theorem

‖n𝜇1,𝛽 − n1‖𝐿2(𝛱) = ‖∇𝑥𝑦𝑊
𝜇
𝛽 − ∇𝑥𝑦𝐹‖𝐿2(𝛱) ≤

𝜇
2√𝛽

+
√𝛽
2 ‖𝛥𝐹‖𝐿2(𝛱)

the maximum in 𝛽 of the expression on the right-hand side is reached when 𝛽(𝜇) = 𝜇
‖𝛥𝐹‖

, and thus,
denoting by (28)

n𝜇1 = n𝜇1,𝛽 = ∇𝑥𝑦𝑊
𝜇
𝛽(𝜇) − 𝑘, (29)

we obtain:
‖n𝜇1 − n1‖𝐿2(𝛱) ≤ √‖𝛥𝐹‖𝜇 −−−→

𝜇→0
0. (30)

It is also not difficult to obtain an approximate estimate

‖𝑊𝛽(𝜇) − 𝐹‖𝐿2(𝛱) ≤ 2𝜇.

The surface defined by the equation 𝑧 = 𝑊 𝜇
𝛽(𝜇)(𝑥, 𝑦) we denote as

𝑆𝜇 = {(𝑥, 𝑦, 𝑧) ∶ 0 < 𝑥 < 𝑙𝑥, 0 < 𝑦 < 𝑙𝑦, 𝑧 = 𝑊 𝜇
𝛽(𝜇)(𝑥, 𝑦)}.

4. Stable approximate solution in case of inaccurate data on the
approximated boundary

Now let the functions 𝑓 and 𝑔 in problem (4) be approximated, namely: let 𝑓𝛿 and 𝑔𝛿 be given such that

‖𝑓𝛿 − 𝑓‖𝐿2(𝛱) ≤ 𝛿, ‖𝑔𝛿 − 𝑔‖𝐿2(𝛱) ≤ 𝛿. (31)

Then the function 𝛷 of the form (22) at exactly given surface 𝑆 can be calculated with some error:

𝛷𝛿(𝑀) = −∫
𝛱

[𝑔𝛿(𝑃) ̃𝜑(𝑀, 𝑃)𝑛1(𝑃)−

−𝑓𝛿(𝑃) (∇𝑃 ̃𝜑(𝑀, 𝑃),n𝜇1 (𝑃))]𝑃∈𝑆 𝑑𝑥𝑃𝑑𝑦𝑃.

(32)
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Obtaining an approximate solution of problem (4) under conditions (31) and its convergence to the
exact solution (20) for a precisely defined surface 𝑆 is considered in [9].
When approximating the surface 𝑆 (23)

‖𝐹𝜇 − 𝐹‖𝐿2(𝛱) ≤ 𝜇

the right-hand side of (16) can be calculated approximating by formula (32) taking into account (29):

𝛷𝛿,𝜇(𝑀) = −∫
𝛱

[𝑔𝛿(𝑃) ̃𝜑(𝑀, 𝑃)𝑛𝜇1 (𝑃)−

−𝑓𝛿(𝑃) (∇𝑃 ̃𝜑(𝑀, 𝑃),n𝜇1 (𝑃))]𝑃=𝑃(𝑥,𝑦,𝑊𝜇
𝛽 )∈𝑆𝜇

𝑑𝑥𝑃𝑑𝑦𝑃.
(33)

Let us evaluate the difference

|𝛷𝛿,𝜇(𝑀) − 𝛷(𝑀)| ≤ |𝛷𝛿,𝜇(𝑀) − 𝛷𝛿(𝑀)|+

+|𝛷𝛿(𝑀) − 𝛷(𝑀)|, 𝑀 ∈ 𝛱(𝑎),
(34)

where𝛷𝛿,𝜇,𝛷𝛿,𝛷 are functions of the form (33), (32), (22), respectively. Weevaluate thefirst difference
in (34) by subtracting and adding the function:

𝛷𝛿,𝜇
1 (𝑀) =

𝑙𝑥

∫
0

𝑑𝑥

𝑙𝑦

∫
0

𝑑𝑦 [𝑔𝛿(𝑥, 𝑦) ̃𝜑(𝑀, 𝑃𝜇)𝑛1(𝑥, 𝑦)−

−𝑓𝛿(𝑥, 𝑦) (∇𝑃 ̃𝜑(𝑀, 𝑃𝜇),n1)] , 𝑃𝜇 = (𝑥, 𝑦,𝑊 𝜇
𝛽 (𝑥, 𝑦)), 𝑀 = (𝑥𝑀, 𝑦𝑀, 𝑎)

differing from the function 𝛷𝛿,𝜇(𝑀) by the exact normal:

|𝛷𝛿,𝜇(𝑀) − 𝛷𝛿(𝑀)| = ||𝛷𝛿,𝜇(𝑀) − 𝛷𝛿,𝜇
1 (𝑀) + 𝛷𝛿,𝜇

1 (𝑀) − 𝛷𝛿(𝑀)|| =

=
|
|
|

𝑙𝑥

∫
0

𝑑𝑥

𝑙𝑦

∫
0

𝑑𝑦 [𝑓𝛿(𝑥, 𝑦) (n𝜇1 (𝑥, 𝑦) − n1(𝑥, 𝑦), ∇𝑃 ̃𝜑(𝑀, 𝑃𝜇)) −

−𝑔𝛿(𝑥, 𝑦) ̃𝜑(𝑀, 𝑃𝜇) (𝑛𝜇1 (𝑥, 𝑦) − 𝑛1(𝑥, 𝑦)) +

+𝑓𝛿(𝑥, 𝑦) (n1(𝑥, 𝑦), ∇𝑃 ( ̃𝜑(𝑀, 𝑃𝜇) − ̃𝜑(𝑀, 𝑃))) −

− 𝑔𝛿(𝑥, 𝑦) ( ̃𝜑(𝑀, 𝑃𝜇) − ̃𝜑(𝑀, 𝑃)) 𝑛1(𝑥, 𝑦)]
|
|
|
.

Replacing the modulus by the sum of moduli and evaluating the difference of functions using the
Lagrange formula, we obtain:

|𝛷𝛿,𝜇(𝑀) − 𝛷𝛿(𝑀)| ≤

𝑙𝑥

∫
0

𝑑𝑥

𝑙𝑦

∫
0

𝑑𝑦 [|𝑓𝛿(𝑥, 𝑦)| ⋅ |n𝜇1 (𝑥, 𝑦) − n1(𝑥, 𝑦)| ⋅ |∇𝑃 ̃𝜑(𝑀, 𝑃𝜇)| +

+|𝑔𝛿(𝑥, 𝑦)| ⋅ | ̃𝜑(𝑀, 𝑃𝜇)| ⋅ |𝑛𝜇1 (𝑥, 𝑦) − 𝑛1(𝑥, 𝑦)|+

+|𝑓𝛿(𝑥, 𝑦)| ⋅ |n1(𝑥, 𝑦)| ⋅ ||
𝜕
𝜕𝑧𝑃

∇𝑃 ̃𝜑(𝑀, 𝑃∗)|| ⋅ ||𝑊
𝜇
𝛽 − 𝐹||+

+ |𝑔𝛿(𝑥, 𝑦)| ⋅ ||
𝜕 ̃𝜑(𝑀, 𝑃∗)

𝜕𝑧𝑃
||||𝑊

𝜇
𝛽 − 𝐹|| ⋅ |𝑛1(𝑥, 𝑦)|] ≤



66 Modeling and Simulation DCM&ACS. 2025, 33 (1), 57–73

taking out the maxima, we use the Cauchy–Bunyakovsky inequality:

≤ ( max
𝑀∈𝛱(𝑎)

|∇𝑃 ̃𝜑(𝑀, 𝑃𝜇)| ⋅ ‖𝑓𝛿‖ + max
𝑀∈𝛱(𝑎)

| ̃𝜑(𝑀, 𝑃𝜇)| ⋅ ‖𝑔𝛿‖) ‖n𝜇1 − n1‖+

+( max
𝑀∈𝛱(𝑎)

||
𝜕
𝜕𝑧𝑃

∇𝑃 ̃𝜑(𝑀, 𝑃∗)|| ⋅ |𝑛1|‖𝑓𝛿‖ + max
𝑀∈𝛱(𝑎)

||
𝜕
𝜕𝑧𝑃

̃𝜑(𝑀, 𝑃∗)|| ⋅ |𝑛1|‖𝑔𝛿‖) ‖𝑊
𝜇
𝛽 − 𝐹‖ ≤

By virtue of the inequalities ‖𝑓𝛿‖ − ‖𝑓‖ ≤ ||‖𝑓𝛿‖ − ‖𝑓‖|| ≤ ‖𝑓𝛿 − 𝑓‖ ≤ 𝛿 we obtain ‖𝑓𝛿‖ ≤ ‖𝑓‖ + 𝛿 and
thus,

≤ ( max
𝑀∈𝛱(𝑎)

|∇𝑃 ̃𝜑(𝑀, 𝑃∗)| ⋅ (‖𝑓‖ + 𝛿) + max
𝑀∈𝛱(𝑎)

| ̃𝜑(𝑀, 𝑃𝜇)| ⋅ (‖𝑔‖ + 𝛿)) ‖n𝜇1 − n1‖+

+( max
𝑀∈𝛱(𝑎)

||
𝜕
𝜕𝑧𝑃

∇𝑃 ̃𝜑(𝑀, 𝑃∗)|| ⋅ |𝑛1|(‖𝑓‖ + 𝛿) + max
𝑀∈𝛱(𝑎)

||
𝜕
𝜕𝑧𝑃

̃𝜑(𝑀, 𝑃∗)|| ⋅ |𝑛1|(‖𝑔‖ + 𝛿)) ‖𝑊 𝜇
𝛽 − 𝐹‖.

The maximums are evaluated by constants. Since we are interested in the behaviour of the
regularized solution of problem (4) when 𝛿 → 0, we can assume that 𝛿 ≤ 𝛿0, and thus, taking
into account (30)

|𝛷𝛿,𝜇(𝑀) − 𝛷𝛿(𝑀)|𝑀∈𝛱(𝑎) ≤ 𝐶1‖n
𝜇
1 − n1‖ + 𝐶2‖𝑊

𝜇
𝛽 − 𝐹‖.

Consider the difference
‖𝑊 𝜇

𝛽 − 𝐹‖ ≤ ‖𝑊 𝜇
𝛽 −𝑊𝛽‖ + ‖𝑊𝛽 − 𝐹‖, (35)

where𝑊𝛽 is calculated by formula (26) at 𝜇 = 0

𝑊𝛽 =
∞
∑

𝑛,𝑚=1

̃𝐹𝑛𝑚
1 + 𝛽𝑘2𝑛𝑚

sin 𝜋𝑛𝑥
𝑙𝑥

sin
𝜋𝑚𝑦
𝑙𝑦

.

The evaluation of the first difference in (35) gives:

‖𝑊 𝜇
𝛽 −𝑊𝛽‖2 =

𝑙𝑥

∫
0

𝑑𝑥

𝑙𝑦

∫
0

𝑑𝑦
|
|
|

∞
∑

𝑛,𝑚=1

̃𝐹𝜇𝑛𝑚 − ̃𝐹𝑛𝑚
1 + 𝛽𝑘2𝑛𝑚

sin 𝜋𝑛𝑥
𝑙𝑥

sin
𝜋𝑚𝑦
𝑙𝑦

|
|
|

2

.

Using the orthogonality of the trigonometric system, we obtain:

‖𝑊 𝜇
𝛽 −𝑊𝛽‖2 =

𝑙𝑥𝑙𝑦
4

∞
∑

𝑛,𝑚=1

( ̃𝐹𝜇𝑛𝑚 − ̃𝐹𝑛𝑚)2

(1 + 𝛽𝑘2𝑛𝑚)2
≤

≤
𝑙𝑥𝑙𝑦
4

∞
∑

𝑛,𝑚=1
( ̃𝐹𝜇𝑛𝑚 − ̃𝐹𝑛𝑚)2 = ‖ ̃𝐹𝜇𝑛𝑚 − ̃𝐹𝑛𝑚‖2 ≤ 𝜇2.

Similarly, to evaluate the second difference in (35) when 𝛽 = 𝜇
‖𝛥𝐹‖

we obtain:

‖𝑊 𝜇
𝛽 − 𝐹‖2 ≤ 𝜇2.

Combining the estimates, we obtain

‖𝑊𝛽 − 𝐹‖ ≤ 2𝜇. (36)

From (30), (35) and (36) we obtain

|𝛷𝛿,𝜇(𝑀) − 𝛷𝛿(𝑀)| ≤ 𝐶‖n𝜇1 − n1‖ + 𝐶‖𝑊 𝜇
𝛽 − 𝐹‖ ≤

≤ 𝐶𝜇 + 𝐶√𝜇 ≤ 𝐶√𝜇(1 + 𝐶𝜇) = 𝐶1√𝜇, 𝑀 ∈ 𝛱(𝑎).
(37)



Laneev, E. B., Klimishin, A. V. On the stable approximate solution of the ill-posed boundary value… 67

To evaluate the second difference, we obtain the same way as in [14]:

|𝛷𝛿(𝑀) − 𝛷(𝑀)| =
|
|
|
∫
𝛱

[(𝑓𝛿(𝑃) − 𝑓(𝑃))(n1(𝑃), ∇𝑃 ̃𝜑(𝑀, 𝑃))−

− (𝑔𝛿(𝑃) − 𝑔(𝑃)) ̃𝜑(𝑀, 𝑃)𝑛1(𝑃)]𝑃∈𝑆 𝑑𝑥𝑃𝑑𝑦𝑃
|| ≤

≤ 𝐶𝑜𝑛𝑠𝑡𝑛1 max
𝑀∈𝛱(𝑎)

‖∇ ̃𝜑(𝑀)‖𝐿2(𝑆) ⋅ ‖𝑓
𝛿 − 𝑓‖𝐿2(𝛱)+

+𝐶𝑜𝑛𝑠𝑡1𝑛1 max
𝑀∈𝛱(𝑎)

‖ ̃𝜑(𝑀)‖𝐿2(𝑆) ⋅ ‖𝑔
𝛿 − 𝑔‖𝐿2(𝛱) ≤ 𝐶2𝛿, 𝑀 ∈ 𝛱(𝑎).

(38)

From (37) and (38), we obtain for the estimate (34):

max
𝑀∈𝛱(𝑎)

|𝛷𝛿,𝜇(𝑀) − 𝛷(𝑀)| ≤ 𝐶1√𝜇 + 𝐶2𝛿 = 𝛥(𝜇, 𝛿) −−−−−→
𝜇 → 0

𝛿 → 0

0 (39)

Thus, the right part of the integral equation (16) is known with some error 𝛥, having the structure
(39). The stable approximate solution of the problem (4) is constructed on the basis of the search for
extrema of the Tikhonov functional [5], and can be obtained in the form of

𝑢𝛿,𝜇𝛼 (𝑀) = 𝑣𝛿,𝜇𝛼 (𝑀) − 𝛷𝛿,𝜇(𝑀), 𝑀 ∈ 𝐷(𝐻, 𝐹) (40)

where 𝛷𝛿,𝜇 is a function of the form (33), and 𝑣𝛿,𝜇𝛼 (19) has the form:

𝑣𝛿,𝜇𝛼 (𝑀) =
∞
∑

𝑛,𝑚=0, 𝑛2+𝑚2≠0

𝛷̃𝜇,𝛿
𝑛𝑚(𝑎)𝑒𝑘𝑛𝑚(𝑧𝑀−𝑎)

1 + 𝛼𝑒2𝑘𝑛𝑚(𝐻−𝑎) cos 𝜋𝑛𝑥𝑀𝑙𝑥
cos

𝜋𝑚𝑦𝑀
𝑙𝑦

. (41)

Here 𝛷̃𝜇,𝛿
𝑛𝑚(𝑎) is the Fourier coefficients of the function 𝛷𝜇,𝛿

𝑛𝑚(𝑎)||𝑀∈𝛱(𝑎):

𝛷̃𝜇,𝛿
𝑛𝑚(𝑎) =

4𝜀𝑛𝜀𝑚
𝑙𝑥𝑙𝑦

𝑙𝑥

∫
0

𝑑𝑥

𝑙𝑦

∫
0

𝑑𝑦 𝛷𝛿,𝜇(𝑥, 𝑦, 𝑎) cos 𝜋𝑛𝑥𝑙𝑥
cos

𝜋𝑛𝑦
𝑙𝑦

and 𝛼 is the regularisation parameter. According to the notations introduced above, the value of 𝑎 is
chosen such that

𝑎 < min
(𝑥,𝑦)∈𝛱

𝐹(𝑥, 𝑦).

For the considered boundary conditions of the second kind on the side faces of the cylinder, taking
into account [8], there is a theorem of convergence of the approximate solution to the exact one when
the regularisation parameter, consistent with the accuracy of the initial data, tends to zero.

Theorem 2. Let the solution of problem (4) exist in the domain 𝐷(𝐻, 𝐹), 𝛼 = 𝛼(𝛥), 𝛼(𝛥) → 0,
𝛥/√𝛼(𝛥) → 0 at 𝛥 → 0. Then the function 𝑢𝛼(𝛥) of the form (40), where according to (39) 𝛥 = 𝛥(𝜇, 𝛿) =
𝐶1√𝜇 + 𝐶2𝛿, converges uniformly to the exact solution of problem (4) at 𝛿 → 0, 𝜇 → 0 in the domain
𝐷(𝐹 + 𝜀,𝐻 − 𝜀), where 𝜀 > 0 is some fixed arbitrarily small number.

Proof. Let’s evaluate the difference

||𝑢𝛿,𝜇𝛼(𝛿) − 𝑢|| ≤ ||𝑣𝛿,𝜇𝛼 − 𝑣|| + ||𝛷𝛿,𝜇 − 𝛷||
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in the domain 𝐺(𝐻 + 𝜀, 𝐹 − 𝜀).
The second difference is evaluated similarly to (38) when replacing 𝛱(𝑎) by 𝐷(𝐻 + 𝜀, 𝐹 − 𝜀).
For the difference 𝑣𝛿𝛼 − 𝑣 we obtain

||𝑣𝛿𝛼 − 𝑣|| ≤ ||𝑣𝛿𝛼 − 𝑣𝛼|| + ||𝑣𝛼 − 𝑣||,

where 𝑣𝛼 is a function of the form (41) at 𝛿 = 0.
We estimate 𝑣𝛿𝛼 − 𝑣𝛼 in 𝐷(𝐻 + 𝜀, 𝐹 − 𝜀).

||𝑣𝛿𝛼(𝑀) − 𝑣𝛼(𝑀)|| ≤
|
|
|

∞
∑

𝑛,𝑚=0

𝑒𝑘𝑛𝑚(𝑧𝑀−𝑎)

1 + 𝛼𝑒2𝑘𝑛𝑚(𝐻−𝑎)

|
|
|
⋅ 4 max

𝑃∈𝛱(𝑎)
||𝛷𝛿(𝑃) − 𝛷(𝑃)|| ≤

≤ 𝐶1 ⋅ 𝛿
∞
∑

𝑛,𝑚=0

𝑒𝑘𝑛𝑚(𝐻−𝜀−𝑎)

1 + 𝛼𝑒2𝑘𝑛𝑚(𝐻−𝑎) ≤ 𝐶1 ⋅ 𝛿 ⋅max
𝑥′

[ 𝑒𝑥′

1 + 𝛼𝑒2𝑥′
]

∞
∑

𝑛,𝑚=0
𝑒−𝑘𝑛𝑚𝜀 ≤ 𝐶2 ⋅

𝛥(𝜇, 𝛿)
√𝛼

.

For the difference 𝑣𝛼 − 𝑣 we obtain

||𝑣𝛼 − 𝑣|| =
|
|
|

∞
∑

𝑛,𝑚=0

𝛼𝑒2𝑘𝑛𝑚(𝐻−𝑎)𝑒𝜋𝑘𝑛𝑚(𝑧𝑀−𝐻)

1 + 𝛼𝑒2𝑘𝑛𝑚(𝐻−𝑎) (𝑣𝐻)𝑛𝑚 cos 𝜋𝑛𝑥𝑀𝑙𝑥
𝜋𝑚𝑦𝑀
𝑙𝑦

|
|
|
≤

≤ [
∞
∑

𝑛,𝑚=0

𝛼𝑒2𝑘𝑛𝑚(𝐻−𝑎)

1 + 𝛼𝑒2𝑘𝑛𝑚(𝐻−𝑎) 𝑒
−𝜀𝑘𝑛𝑚]

1
2
⋅ ‖𝑣𝐻‖𝐿2.

Since the parameter-dependent series is majorised by a convergent numerical series

∞
∑

𝑛,𝑚=0
𝑒−𝜀𝑘𝑛𝑚

then a limit transition on 𝛼 is possible, and thus,

||𝑣𝛿,𝜇𝛼 − 𝑣|| → 0 при 𝛼(𝛿) → 0.

Using 2, the convergence of the approximate solution (40) to the exact solution (20) of the problem
(4) of continuation from the boundary 𝑆 (2) is proved.

5. Numerical solution of the inverse problem for the case of flat
boundary

Let us demonstrate the effectiveness of the proposed approach of solving the problem (4) of
continuation from the boundary 𝑆, on which the third boundary condition corresponding to
convective heat exchange with the medium of temperature 𝑈0 with a constant coefficient ℎ is defined

𝜕𝑢
𝜕𝑛
||𝑆
= 𝑔 = ℎ(𝑈0 − 𝑓)||𝑆

and the surface 𝑆 itself is the plane 𝛱(0) 𝑧 = 0 for the following conditions: 𝑈0 = 0, ℎ = 0.4, 𝑙𝑥 = 60,
𝑙𝑦 = 60, 𝐻 = 1.5

Let the function 𝜌(𝑀) in the direct problem (3) correspond to three point sources in the plane𝛱(𝐻):
(𝑥1, 𝑦1) = (30, 32), (𝑥2, 𝑦2) = (30, 30), (𝑥3, 𝑦3) = (32, 30).
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For this case, using the results of [15], the function specifying the boundary condition for problem
(3) with accuracy up to a constant can be obtained in the form of

𝑓(𝑥, 𝑦) =
∞
∑

𝑛,𝑚=0

3
∑
𝑖=0

𝑞𝑖𝜀𝑛𝜀𝑚
𝑒−𝑘𝑛𝑚𝐻
𝑘𝑛𝑚 + ℎ cos 𝜋𝑚𝑥𝑖𝑙𝑥

cos
𝜋𝑚𝑦𝑖
𝑙𝑦

cos 𝜋𝑚𝑥𝑙𝑥
cos

𝜋𝑚𝑦
𝑙𝑦

, (42)

where 𝑘𝑛𝑚, 𝜀𝑛 and 𝜀𝑚 are calculated by formula (7) and 𝑞𝑖 = 100, 𝑖 = 1, 2, 3.
We will solve the inverse continuation problem (4), assuming that the value of the function on the

boundary 𝑓𝛿 is given approximated, its values will be determined on the basis of the function 𝑓(𝑥, 𝑦)
(42) and a randomly given relative error within 3%.

In the applied approach, the solution can be obtained by applying (40) and (41).
According to (32)

𝛷𝛿(𝑀) = − ∫
𝛱(0)

[𝑔𝛿(𝑃) ̃𝜑(𝑀, 𝑃)𝑛1(𝑃)−

−𝑓𝛿(𝑃) (∇𝑃 ̃𝜑(𝑀, 𝑃),n𝜇1 (𝑃))]𝑃∈𝑆 𝑑𝑥𝑃𝑑𝑦𝑃

where n1 = (𝐹′𝑥, 𝐹′𝑦 , −1) and 𝑛1 = |n1| = √1 + (𝐹′𝑥)2 + (𝐹′𝑦)2.
For the assumption that 𝑆 is a plane 𝑧 = 𝐹(𝑥, 𝑦) = 0, n1 = (0, 0, −1) and 𝑛1 = 1.
According to (6) the source function with accuracy up to constant

̃𝜑(𝑀, 𝑃) = 2
𝑙𝑥𝑙𝑦

∞
∑

𝑛,𝑚=0,𝑛2+𝑚2≠0
𝜀𝑛𝜀𝑚

𝑒−𝑘𝑛𝑚|𝑧𝑀−𝑧𝑃|

𝑘𝑛𝑚
cos 𝜋𝑛𝑥𝑀𝑙𝑥

cos
𝜋𝑚𝑦𝑀
𝑙𝑦

cos 𝜋𝑛𝑥𝑃𝑙𝑥
cos

𝜋𝑚𝑦𝑃
𝑙𝑦

and

𝑔𝑟𝑎𝑑𝑃𝜑(𝑀, 𝑃)|𝑃∈𝑆 =
−2
𝑙𝑥𝑙𝑦

∞
∑

𝑛,𝑚=0
𝜀𝑛𝜀𝑚𝑒−𝑘𝑛𝑚|𝑧𝑀−𝑧𝑃| cos 𝜋𝑛𝑥𝑀𝑙𝑥

cos
𝜋𝑚𝑦𝑀
𝑙𝑦

cos 𝜋𝑛𝑥𝑃𝑙𝑥
cos

𝜋𝑚𝑦𝑃
𝑙𝑦

.

To obtain numerical results, problems (3), (4) are discretised.
We will assume that the rectangles 𝛱(0), 𝛱(𝐻) and 𝛱(𝑎), 𝑎 = −0.6, are covered by a uniform grid

(𝑁𝑥 + 1) × (𝑁𝑦 + 1) of points such that

𝑥𝑖 = 𝑖
𝑙𝑥
𝑁𝑥

, 𝑖 = 0,… ,𝑁𝑥,

𝑦𝑗 = 𝑗
𝑙𝑦
𝑁𝑦

, 𝑗 = 0,… ,𝑁𝑦

We will consider 𝑁𝑥 = 𝑁𝑦 = 60.
As a result of descretisation, using the approach [16], we obtain

𝛷̃𝛿
𝑛𝑚(𝑎) = [1 + ℎ

𝑘𝑛𝑚
] 2
𝑁𝑥𝑁𝑦

𝜀𝑛𝜀𝑚𝑒𝑘𝑛𝑚𝑎
𝑁𝑥−1
∑
𝑖=0

𝑁𝑦−1

∑
𝑗=0

𝑓𝛿(𝑥𝑖, 𝑦𝑖) cos
𝜋𝑛𝑖
𝑁𝑥

cos
𝜋𝑚𝑗
𝑁𝑦

(43)

𝑣𝑁𝛿 (𝑥𝑖, 𝑦𝑗, 𝐻) = −
𝑁𝑥−1
∑
𝑚=0

𝑁𝑦−1

∑
𝑛=0

𝛷̃𝛿
𝑛𝑚(𝑎)𝑒𝑘𝑛𝑚(𝐻−𝑎)

1 + 𝛼𝑒2𝑘𝑛𝑚(𝐻−𝑎) cos 𝜋𝑛𝑖𝑁𝑥
cos

𝜋𝑚𝑗
𝑁𝑦

,

𝑖 = 0,… ,𝑁𝑥, 𝑗 = 0,… ,𝑁𝑦.
(44)

And, thus, according to (40), as a result of function recovery at 𝑧 = 𝐻 we obtain

𝑢𝑁𝛿 (𝐻) = 𝑣𝑁𝛿 (𝐻) − 𝛷𝑁(𝐻).
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Figure 1. Initial thermogram on the surface 𝑆 Figure 2. Adjusted thermogram obtained as an
approximate solution of the
inverse problem ᵆ|𝑧=𝐻

The results of calculations are shown in Fig. 1 and Fig. 2.
Fig. 1 shows the initial data of the inverse problem — the function 𝑓𝛿 calculated by the discrete

analogue of the formula (42) with the addition of a randomly specified error within 3%. The three
sources are perceived as a single unit.
Fig. 2 shows the result of function recovery using (43), (44). Three sources are clearly visible.
When computing (44) discrete Fourier series, the algorithms described in [17–20] can be used.
The value of the obtained solution is calculated for the boundary conditions of the problem (4)

with accuracy to a constant. Accordingly, Fig. 1 and Fig. 2 show the values normalised from 0 to 100.

Conclusion
When solving the inverse problem (4) of continuation from the boundary 𝑆, the function 𝑓 can be
interpreted as the original image obtained with the thermal imager or as the original thermogram.
The thermogram obtained with the help of a thermal imager reproduces with a certain degree of

reliability the image of the structure of heat sources located inside the body. Then the solution of the
inverse problem obtained as a result of the proposed approach can be considered as a mathematical
processing of the thermogram, the obtained function 𝑢|𝑧=𝐻 represents the temperature distribution
on the plane located closer to the investigated heat sources than the initial surface 𝑆, we can expect
a more accurate reproduction of the image of the sources on the calculated thermogram 𝑢|𝑧=𝐻.

The above calculations show the effectiveness of the proposed method based on the stable solution
of the inverse continuation problem (40) and (41) and its applicability for processing thermographic
images, in particular, in medicine [1].
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Об устойчивом приближённом решении некорректно
поставленной краевой задачи для уравнения Лапласа
с однородными условиями второго рода на краях при
неточных данных на приближённо заданной границе
Е. Б. Ланеев, А. В. Климишин
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Федерация

Аннотация. В работе рассматривается некорректно поставленная задача продолжения гармонических
функций с неточно заданной границы в цилиндрической области с однородными краевыми условиями
второго рода на боковых гранях. Значение функции и её нормальной производной (условия Коши) — из-
вестны приближённо на приближённо заданной поверхности произвольного вида, ограничивающей
цилиндр. В данном случае задача Коши для уравнения Лапласа обладает свойством неустойчивости
по отношению к погрешности в данных Коши, т. е. является некорректно поставленной. На основе
представлений о функции источника исходной задачи, точное решение представляется в виде суммы
двух функций, одна из которых явно зависит от условий Коши, вторая может быль получена как реше-
ние интегрального уравнения Фредгольма первого рода в виде ряда Фурье по собственным функциям
второй краевой задачи для уравнения Лапласа. Для получения приближённого устойчивого решения
интегрального уравнения применён метод регуляризации Тихонова, когда решение получается как
экстремаль функционала Тихонова. Для приближённо заданной поверхности рассматривается вычисле-
ние нормали к этой поверхности и её сходимость к точному значению в зависимости от погрешности,
с которой задана исходная поверхность. Доказывается сходимость полученного приближённого реше-
ния к точному решению при сопоставлении параметра регуляризации с ошибками в данных как по
неточно заданной границе, так и по значению исходной функции на этой границе. Проводится числен-
ный эксперимент, который демонстрирует эффективность предложенного подхода для частного случая
— для плоской границы и конкретного исходного источника тепла (набора точеных источников).

Ключевые слова: некорректно поставленная задача, метод регуляризации Тихонова, задача Коши для
уравнения Лапласа, интегральное уравнение первого рода


