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Abstract. In the modern world, the volume of data stored electronically and transmitted over networks continues
to grow rapidly. This trend increases the demand for the development of effectivemethods to protect information
transmitted over networks as network traffic. Anomaly detection plays a crucial role in ensuring net security
and safeguarding data against cyberattacks.
This study aims to review statistical and density-based clustering methods used for anomaly detection in

network systems and to perform a comparative analysis based on a specific task. To achieve this goal, the authors
analyzed existing approaches to anomaly detection using clustering methods. Various algorithms and clustering
techniques applied within network environments were examined in this study.
The comparative analysis highlights the high effectiveness of clustering methods in detecting anomalies in

network traffic. These findings support the recommendation to integrate such methods into intrusion detection
systems to enhance information security levels.
The study identified common features, differences, strengths, and limitations of the different methods. The

results offer practical insights for improving intrusion detection systems and strengthening data protection in
network infrastructures.
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1. Introduction
With the growing frequency and complexity of attacks targeting information systems [1], such as
DDoS and data breaches, having a system to protect information from these types of attacks becomes
a vital aspect of network design. Anomaly detection serves as a key element in ensuring the security
of information systems, as anomalies in network traffic often indicate unauthorized access attempts
or other forms of intrusion. That is why developing effective methods to detect deviations in network
traffic behavior remains a crucial challenge.

In [2], the authors provided a comprehensive overview of methods, systems, and tools for anomaly
detection in network traffic. That study placed particular attention on classifying the approaches
available at the time, including clustering-based methods. However, due to its publication date, the
review does not fully reflect recent advances in data processing and modern algorithms. The study in
[2] also overlooked key aspects of density-based clustering methods such as DBSCAN, HDBSCAN, etc.
Therefore, actualization and in-depth study of clustering methods in the context of modern

network traffic paradigms presents a highly relevant research direction. Recent approaches offer
new opportunities to improve the accuracy and efficiency of anomaly detection.
Researchers now explore a wide range of anomaly detection techniques. For example, some

researchers detect it using deep unfolding methods to reconstruct normal and anomalous data flows
based on sparse and full-dimensional components [3]. The others use approaches such as Isolation
Forest and autoencoders to detect anomalies [4].
Many researchers focus on neural network-based techniques. In [5], the authors investigate

deep learning to address the issue of false positives in anomaly detection. At the same time, the
others combine traditional approaches with machine learning techniques [6]. These methods have
demonstrated strong performance in recognizing different data patterns, making them particularly
effective for solving cybersecurity challenges.
This study proposes a clustering-based approach for network intrusion detection. The proposed

method aims to serve as the first line of defense against network attacks within intrusion detection
systems (IDS), which monitor events occurring within information systems or their individual
components.
The objective of this study is to analyze existing clustering methods for anomaly detection and

to perform a comparative assessment. To achieve this, the study analyzes and evaluates several
clustering algorithms and summarizes their properties in a comparison table. An experimental
section follows, presenting results for each method applied to a specific dataset.
The article includes several sections, each addressing a specific aspect of the research:
The section “Types of intrusion detection systems and anomaly detection methodology” defines

IDS, outlines main IDS types, and introduces clustering methods.
The section “Methods and instruments” presents a detailed review and analysis of clustering

techniques. Subsections cover partitioning methods (e.g., k-means, k-medoids), hierarchical
clustering, and density-based clustering (DBSCAN, HDBSCAN, OPTICS). A summary table at the
end of this section facilitates the comparison of these methods.
The section “Practical application of clustering methods in network anomaly detection systems”

presents the comparative analysis results of six clustering algorithms, tested on a real dataset. This
section includes results and interpretation of the metrics obtained for each clustering method
experimentally.

The section “Results” presents the metrics obtained by application of the clustering methods to the
specific dataset. Data is presented in the summary table, heatmap and text format.
The section “Discussion” summarizes the experimental findings and justifies the selection of the

most suitable clustering method for network anomaly detection.
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The section “Conclusion” outlines the main outcomes and discusses directions for future research.

2. Types of intrusion detection systems and anomaly detection
methodology

An intrusion detection system (IDS) is software or hardware that analyzes network traffic or computer
activity to identify potential unauthorized access attempts, attacks, or intrusions into computer
systems or networks [7]. IDS detects a wide range of threats, including intrusions, viruses, worms,
denial-of-service (DoS) attacks, and other anomalous behaviors, and alerts administrators about it,
forcing them to enable timely defensive actions [8].
Researchers classify intrusion detection systems into two main types based on detection methods

and the way of deployment [9, 10]:

1. Network-based intrusion detection systems (NIDS) analyze network traffic for anomalies by
intercepting data at the network adapter level or via network devices such as switches and
routers. NIDS can detect attacks before they reach the target system.

2. Host-based intrusion detection systems (HIDS) run on individual computers andmonitor activity
at the operating system level, including file system changes, registry modifications, event logs,
and other system parameters. HIDS typically detect attacks targeting a specific host and may
offer additional insights about system compromise.

This study focuses on clustering methods as a key tool for identifying anomalies in network-based
intrusion detection systems (NIDS). Dividing network traffic into clusters that represent normal
and abnormal behavior plays a critical role in designing effective NIDS and ranks among the most
successful techniques for detecting network anomalies.
This clustering approach enhances both the accuracy and efficiency of IDS work.
The section titled “Methods and instruments” presents a comparison of six clustering algorithms:

k-means, k-medoids, hierarchical clustering, DBSCAN, HDBSCAN, and OPTICS.
This analysis aims to further selection of the most appropriate method for anomaly detection in

NIDS based on their performance, accuracy, strengths, and limitations.

3. Methods and instruments
This chapter presents a comparative analysis of clustering methods applicable to the stated problem
(see Fig. 1).

The analysis focuses on three main types of clustering methods [11]:
1. Partitioning clustering;
2. Hierarchical clustering;
3. Density-based clustering.
To cluster network traffic into two categories this study evaluates the following methods:

– Two partitioning clustering methods: k-means and k-medoids;
– A hierarchical clustering method;
– Three density-based clustering methods: DBSCAN, HDBSCAN, and OPTICS.
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Figure 1. Clustering methods

3.1. Partitioning clusteringmethods

3.1.1. The k-means clusteringmethod

The k-means method divides data into a predefined number of clusters 𝑘. The algorithm begins with
selecting random centroids—mean points that represent each cluster. It then assigns each data point
to the nearest centroid and after that recalculates centroids as the arithmeticmean of all points within
the cluster. These steps repeat iteratively until convergence is achieved, after which the algorithm
evaluates the clustering quality (see Fig. 2).
This method offers several advantages relevant to the current task, including simplicity, scalability,

interpretability, and versatility.
However, it also introduces some limitations. The algorithmshowshigh sensitivity to initial centroid

placement and outliers, which may distort the final results. Additionally, it does not guarantee an
optimal solution [12].
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Figure 2. K-means method

Figure 3. K-medoids method

3.1.2. The k-medoids clusteringmethod

The k-medoids algorithm extends the k-means method by requiring that cluster centers (medoids)
belong to the input data points. The algorithm begins by selecting 𝑘 random points as initial medoids,
where 𝑘 denotes the predefined number of clusters. Then, it assigns each data point to the cluster by
choosing the smallest distance from the medoid to the point, using a selected distance metric.
After assigning all points, the algorithm calculates the cost of the current clustering. It then

attempts to replace one of the existing medoids with a non-medoid point and recalculates the cost. If
the new cost exceeds or remains equal to the previous value, the algorithm reverts the change and
stops. Otherwise, it accepts the newmedoid and repeats the process from this step (see Fig. 3).
This method has several advantages. It executes a certain number of iterations. Compared to

k-means, it provides more determined cluster centers since they correspond to actual data points.
Also, this algorithm supports various distance metrics for cluster assignment.

However, k-medoids also introduces some drawbacks. It remains sensitive to the initial choice of
medoids, and the randomness in selecting replacement candidates may lead to inconsistent results
across different runs [13].

3.1.3. The hierarchical clusteringmethod

The hierarchical clustering algorithm begins by treating each data point as an individual cluster. It
then iteratively merges the closest clusters until all points belong to a single cluster. At the end of the
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Figure 4. Hierarchical method

process, the algorithm constructs a dendrogram that illustrates the hierarchy of cluster merging and
allows the selection of an optimal number of clusters (see Fig. 4).
This method provides several advantages, including a high level of interpretability and versatility.
However, it also has some drawbacks. The algorithm suffers from high computational complexity

and is sensitive to the choice of distance metric [12].

3.2. Density-based clusteringmethods

3.2.1. The DBSCAN clusteringmethod

The DBSCAN (Density-Based Spatial Clustering of Applications with Noise) algorithm identifies
clusters by locating areas of high point density. The process begins by selecting a random point
and defining its neighborhood. If the number of neighboring points exceeds a predefined threshold
MinPts (minimum number of neighbors), the point becomes a core point.
The algorithm then forms clusters by uniting core points and cluster-related boundary points.

Points that do not belong to any cluster and are not part of dense areas are treated as outliers or noise
(see Fig. 5).
This method offers several advantages relevant to anomaly detection tasks, such as strong

performance on large datasets.
However, DBSCAN has some limitations. It shows sensitivity to the choice of parameters and

struggles to cluster data with varying densities or scales. In addition, the computational cost increases
with large values of the input parameters [12].

3.2.2. The HDBSCAN clusteringmethod

The HDBSCAN (Hierarchical Density-Based Spatial Clustering of Applications with Noise) algorithm
extends DBSCAN by incorporating a hierarchical clustering approach. After running the DBSCAN
core procedure, HDBSCAN iteratively merges clusters based on the distances between them, forming
a hierarchy of density-connected areas (see Fig. 6).

Overall, HDBSCAN offers a powerful clustering technique with several advantages over the classical
DBSCAN. These include automatic determination of the number of clusters and greater robustness to
parameter selection.
At the same time, applying HDBSCAN may require increased computational resources and can

encounter limitations when dealing with datasets that exhibit highly irregular or complex structures
[14].
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Figure 5. DBSCAN

Figure 6. HDBSCAN

3.2.3. The OPTICS clusteringmethod

The OPTICS (Ordering Points To Identify the Clustering Structure) algorithm builds upon the ideas
introduced inDBSCAN, allowing the detection of clusterswith varying densities by ordering points and
dynamically selecting parameters. The algorithm requires setting a minimum number of neighbors
(MinPts) and optionally an 𝜀-radius. Compared to DBSCAN, OPTICS is less sensitive to the exact
choice of these parameters.
After setting the parameters, the algorithm identifies the neighbors of each data point within the

𝜀-radius and calculates the density of each point based on the number of its neighbors. OPTICS then
generates an ordered list of points by iteratively traversing the dataset, starting from an random
unvisited point and proceeding through its neighbors. This list forms the basis for constructing
a dendrogram and selecting a density threshold that separates clusters [15] (see Fig. 7).
OPTICS offers several advantages, including the ability to detect clusters of arbitrary shape,

robustness to noise and outliers, and no need to specify the number of clusters in advance. It
also supports a variety of distance metrics for cluster formation.
However, the algorithm still requires careful tuning of 𝜀 and MinPts, and its computational

complexity becomes significant on large datasets [14].

3.3. Comparative table

Let’s make a summary table of the data (Table 1).
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Table 1
Comparison of Clustering Methods

Method Core Principle Parameters Outliers Advantages Disadvantages

k-means Finds cluster
centers and
minimizes
deviation from
points.

Number of
clusters

Sensitive to
outliers

Simplicity,
scalability,
interpretability,
versatility

Sensitive
to initial
conditions and
outliers, no
guarantee of
optimality

k-medoids Selects and
updates
medoids

Number of
clusters

Less
sensitive
than k-
means

Clusters
defined
by actual
data points,
supports
various
distance
metrics

Sensitive to
initial medoid
selection,
random
replacement

Hierarchical
Clustering

Merges and
splits clusters
based on inter-
point distances

Number
of clusters
(optional)

Outliers
affect
hierarchy
formation

High
interpretability,
versatility

High
computational
complexity,
sensitive
to distance
metric

DBSCAN Separates
high- and
low-density
regions

𝜀, MinPts Isolates
outliers into
separate
clusters

Good
performance
on large
datasets

Sensitive to
parameters,
computational
complexity

HDBSCAN Builds
hierarchy
of density-
based clusters

𝑚𝑖𝑛_𝑐𝑙𝑢𝑠𝑡𝑒𝑟
_𝑠𝑖𝑧𝑒,
𝑐𝑙𝑢𝑠𝑡𝑒𝑟_
𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛_
𝑒𝑝𝑠𝑖𝑙𝑜𝑛

Detects and
ignores
outliers

Automatic
cluster
number
selection,
robust to
parameters

Higher
computational
demands than
DBSCAN

OPTICS Estimates
density and
performs
ordered
traversal

𝜀, MinPts Robust to
noise and
outliers

Noise
resilience,
various
distance
metrics,
arbitrary
shape
detection

Sensitive to
parameters,
computationally
intensive
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Figure 7. OPTICS

4. Practical application of clusteringmethods in network anomaly
detection systems

This chapter presents a comparative analysis of six clustering methods described in the previous
chapter that is conducted through experimental application to the task of separating network traffic
into two categories: normal and anomalous. The analysis is based on the NSL-KDD dataset, which is
an improved version of the well-known KDD Cup 1999 dataset [16, 17]. The NSL-KDD dataset contains
41 attributes and includes a label indicatingwhether the connection is normal or an anomaly [18]. The
evaluationmetrics and visualizations obtained from the experiments allow assessing the effectiveness,
advantages, and limitations of each method, as well as identifying the most suitable approach for
a Network Intrusion Detection System (NIDS).

4.1. Experiment description

The experiment was conducted using the NSL-KDD dataset, which contains both numerical
and categorical features of network traffic, such as connection duration, number of bytes sent
and received, as well as categorical features like protocol type and flags. The data underwent
preprocessing: numerical features were normalized using StandardScaler, and categorical features
were encoded using OneHotEncoder. Dimensionality reduction was performed using PCA, retaining
10 principal components to accelerate computation and facilitate analysis [19].

The clustering procedure was used to partition the data into groups corresponding to normal and
anomalous traffic. The quality of clustering was evaluated using the following metrics: precision,
recall, F1-score, execution time, silhouette coefficient, Calinski-Harabasz index (𝑐ℎ_𝑖𝑛𝑑𝑒𝑥), number
of clusters (𝑛_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠), noise ratio, cluster purity, and Precision-Recall AUC (𝑃𝑅 − 𝐴𝑈𝐶). A cluster
was classified as anomalous if more than 50% of the traffic within it was anomalous.

4.2. The analysis of clusteringmethods

4.2.1. K-means

In the K-means method, the number of clusters was fixed at 𝑛clusters = 20. As shown in Figure 8, the
clusters exhibit clear separation; however, their sizes vary significantly, with a few large clusters
dominating the distribution. The algorithm demonstrates sensitivity to outliers, which can distort
centroid positions and reduce clustering quality, as it does not isolate noise into a separate category.
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Figure 8. K-means—results

To evaluate clustering performance, the experiment used F1-score, execution time, and the
silhouette coefficient. The F1-score reached 0.858, indicating a balanced correlation between
precision and recall. The algorithm achieved exceptional computational efficiency, with an execution
time of just 0.032 seconds. A silhouette coefficient of 0.496 suggests a tolerable level of compactness
and separation among clusters.

The Calinski–Harabasz index further supports the presence of well-defined cluster structures. This
method proves effective for processing large-scale datasets and performs well when anomalies form
dense groups. Also, it demonstrates high speed and ease of implementation. However, its inability to
explicitly handle noise stints its applicability in scenarios with significant outlier presence.

4.2.2. K-medoids

In the experimentwith the k-medoidsmethod, the number of clusterswas set to 20, and theManhattan
distancemetricwas used for evaluating distances between objects. Unlike k-means, thismethod relies
on medoids instead of centroids, making it less sensitive to outliers. The clustering visualizations
(see Fig. 9) show a more balanced cluster size distribution, although the compactness becomes lower
due to the heterogeneous data density.
The evaluation used F1-score, execution time, cluster purity, and silhouette coefficient. The F1-

score reached 0.883, surpassing k-means and indicating higher clustering quality. However, the
execution time amounted to 28.499 seconds, highlighting a significant drawback in computational
efficiency. Cluster purity reached 0.868, reflecting a strong correspondence between the formed
clusters and the actual data labels. However, the method’s sensitivity to the initial medoid selection
introduced variability, resulting in a low silhouette value of 0.221.
This approach achieves a strong balance between precision and anomaly coverage, as evidenced

by high F1-score and purity. It proves more robust than k-means in noisy environments, although it
similarly lacks explicit mechanisms for isolating noise points. The method’s resource intensity must
also be taken into account when applying it to large-scale data.

4.2.3. Hierarchical clustering

Hierarchical clustering begins by treating each data point as an individual cluster and gradually
merges them based on distances between objects using theWard linkage method until the desired
number of clusters (10) is formed. As illustrated in Fig. 10, the resulting clusters exhibit a clear
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Figure 9. K-medoids—results

Figure 10. Hierarchical clustering—results

hierarchical structure; however, the cluster size distribution remains imbalanced, with one dominant
large cluster.
Evaluation used the following metrics: F1-score, precision, Calinski–Harabasz index, silhouette

coefficient, and execution time. The F1-score reached 0.824, indicating a reasonable balance between
precision and recall. Precision achieved a high value of 0.939, reflecting strong classification accuracy.
The Calinski–Harabasz index was 10159.3, suggesting excellent cluster separability and compactness.
The silhouette coefficient was 0.559, which confirms passable intra-cluster cohesion and inter-cluster
separation. However, the method required 17.538 seconds to complete, limiting its suitability for
time-sensitive applications.
Hierarchical clustering allows us to identify internal data structure and relationships between

clusters. Despite its interpretability and clustering effectiveness, the high computational complexity
constrains its applicability to large-scale datasets or real-time systems.

4.2.4. DBSCAN

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) identifies clusters based on
data density using the predefined parameters 𝜖 = 0.3 (radius) and min_samples = 20 (minimum
number of neighbors). With these settings, DBSCAN detected a noise fraction of 0.14 relative to the
total number of data points. As shown in Fig. 11, the resulting cluster size distribution is unbalanced,



38 Computer science DCM&ACS. 2025, 33 (1), 27–45

Figure 11. DBSCAN—results

with a single dominant cluster. Nevertheless, the remaining clusters maintain a moderate degree of
compactness.
The clustering quality was assessed using F1-score, precision, execution time, and noise ratio.

The F1-score reached 0.889, indicating high overall clustering performance. Precision was 0.86,
suggesting an acceptable level of errors in the distribution of objects into clusters. Execution time
amounted to 2.536 seconds, demonstrating good computational efficiency. However, the method’s
performance is highly sensitive to parameter tuning, which complicates its practical application. The
silhouette coefficient is not a reliable measure for density-based methods and thus was not used as
a primary evaluation metric.
DBSCAN offers an effective balance between computational speed and clustering quality. Yet,

the requirement for careful parameter selection imposes additional complexity in real-world
deployments.

4.2.5. HDBSCAN

HDBSCAN (Hierarchical Density-Based Spatial Clustering of Applications with Noise) extends
DBSCAN by building a hierarchy of clusters with automatic determination of the optimal number of
clusters, which amounted to 243 in this case. The method employs parameters min_cluster_size = 5
and cluster_selection_epsilon = 0.08. Unlike DBSCAN, HDBSCAN replaces the fixed radius 𝜖 with
a minimum cluster size, thereby offering greater flexibility in clustering process. With these
parameters, the method identified noise accounting for 0.131 of the total number of instances.
Figure 12 shows that the cluster size distribution is relatively balanced, with several large groups

and a moderate number of smaller ones. However, cluster compactness remained limited due to
heterogeneous density across groups.
The evaluation relied on F1-score, recall, PR-AUC, and execution time. The F1-score reached

0.924, the highest among all methods considered. Recall was 0.988, reflecting excellent sensitivity in
anomaly detection. The PR-AUC value of 0.932 further confirmed outstanding overall performance.
Execution time was 4.194 seconds, acceptable for mid-scale problems.
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Figure 12. HDBSCAN—results

The combination of high recall and F1-score demonstrates the method’s ability to detect nearly all
anomalies, while the presence of a noise cluster assists outlier identification. Overall, HDBSCAN
provides strong performance in clustering tasks involving heterogeneous densities and noisy data.

4.2.6. OPTICS

OPTICS (Ordering Points To Identify the Clustering Structure) is a density-based clustering method
that utilizes the parameters min_samples = 4 and 𝜉 = 0.01, resulting in the formation of 2066 clusters
and a high noise level with a noise ratio of 0.386. As shown in Figure 13, the cluster size distribution
is imbalanced, with one dominant large cluster and numerous small groups. Despite this, the main
cluster maintains high compactness.

Clustering quality was assessed using F1-score, recall, execution time, and the silhouette coefficient.
The F1-score reached 0.853, indicating a satisfactory result. Recall achieved 0.987, highlighting the
method’s strong anomaly detection capability. However, the execution time amounted to 41 seconds,
which significantly reduces the method’s feasibility for real-time applications. Furthermore, the high
noise proportion of 0.39 emphasizes its sensitivity to data structure.
OPTICS effectively identifies clusters of arbitrary shapes and exhibits robustness to noise.

Nevertheless, its computational complexity and sensitivity to parameter tuning limitations for
deployment in performance-critical environments.

5. Results
The comparative analysis of clusteringmethodswas conducted based on evaluationmetrics presented
in the heatmap (Figure 14) and the clustering visualizations. Table 2 summarizes the key performance
indicators across all methods.
For the task of distinguishing between normal and anomalous traffic, it is essential to balance

precision and recall, which is reflected in the F1-score, while also considering computational
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Figure 13. OPTICS—results

Table 2
Comparison of clustering metrics

HDBSCAN DBSCAN K-Medoids K-Means OPTICS Hierarchical

precision 0,868 0,860 0,895 0,896 0,751 0,939

recall 0,988 0,920 0,870 0,823 0,987 0,734

F1 0,924 0,889 0,883 0,858 0,853 0,824

time 4,194 2,536 28,499 0,032 41,203 17,538

silhouette −0, 088 0,192 0,221 0,496 −0, 038 0,559

ch_index 229,125 829,498 1396,012 12286,905 15,215 10159,276

n_clusters 243 51 20 20 2066 10

noise_ratio 0,131 0,140 0 0 0,386 0

purity 0,846 0,774 0,868 0,845 0,601 0,822

pr_auc 0,932 0,913 0,783 0,692 0,873 0,912

efficiency, robustness to noise, and ease of parameter setting. Among the evaluated methods,
HDBSCAN achieved the highest F1-score (0.92), followed by DBSCAN (0.89), K-Medoids (0.88),
K-Means (0.86), OPTICS (0.85), and Hierarchical Clustering (0.82). In terms of execution time,
K-Means (0.03 seconds) and DBSCAN (2.5 seconds) demonstrated the fastest performance, whereas
OPTICS (41 seconds), K-Medoids (28 seconds), and Hierarchical Clustering (17 seconds) required
significantly more time. HDBSCAN ranked second in speed with a runtime of 4 seconds. Regarding
noise handling, HDBSCAN (0.13) and DBSCAN (0.14) effectively isolated outliers, while OPTICS (0.39)
marked a substantial portion of data as noise. K-Means, K-Medoids, and Hierarchical Clustering
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Figure 14. Heatmap

do not separate noise explicitly. In terms of configuration simplicity, K-Means, K-Medoids, and
Hierarchical Clustering are more straightforward, requiring only the number of clusters as input,
whereas DBSCAN, HDBSCAN, and OPTICS involve more complex parameter setting.

Thus, HDBSCAN represents themost suitablemethod for this task: it identifies nearly all anomalies
(recall of 0.99), yields a strong F1-score (0.92), and effectively isolates suspicious points via noise
detection. However, if execution time is a critical constraint, K-Means offers a viable alternative,
achieving a runtime of just 0.03 seconds and high precision (0.94), albeit with lower recall (0.69).

6. Discussion
The analysis demonstrated that the most effective clustering methods for separating network traffic
into normal and anomalous categories are HDBSCAN and K-Means. These methods achieved high
F1-scores in the range of 0.85-0.92 and exhibited low execution times (0.03-4 seconds), making
them suitable for use in network intrusion detection systems (NIDS). K-Means stands out due to its
simplicity and speed, but its sensitivity to initial conditions can result in instability. K-Medoids is
more robust to outliers but suffers from slow performance on large datasets. Hierarchical clustering
offers a high degree of interpretability, yet its computational complexity limits its scalability for
large-scale applications.
Density-based methods such as DBSCAN and OPTICS identified a substantial proportion of data

as noise, which complicates their direct application to binary classification tasks in network traffic
analysis. In contrast, HDBSCAN achieved an optimal balance between clustering quality (F1-score of
0.923) and anomaly detection capability (recall of 0.988), while maintaining a rapid runtime. These
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results make HDBSCAN the most suitable clustering method for practical deployment in network
intrusion detection systems.
In conclusion, for practical applications, HDBSCAN and K-Means are recommended, depending

on the specific requirements for computational efficiency and robustness to noise.

7. Conclusion
This study conducted a comparative analysis of six clustering methods for the task of separating
network traffic into normal and anomalous categories. Experimental results indicate that HDBSCAN
is themost suitablemethod according to several criteria, including precision, recall, F1-score, and the
ability to detect outliers. HDBSCAN achieved the highest F1-score (0.92) and recall (0.988), effectively
identifying nearly all anomalies and handling noise robustly.
At the same time, the K-Means algorithm, having much lower computational complexity and

execution time (0.03 seconds), is also an effective solution for time-sensitive applications. However,
its sensitivity to the initial centroid selection and initial conditions, as well as its inability to detect
noise stint its applicability. K-Medoids offers better robustness to outliers compared to K-Means, but
its computational cost makes it less attractive for large-scale datasets.
Hierarchical clustering, OPTICS, and DBSCAN exhibit advantages such as the ability to detect

clusters of arbitrary shape and considering noise. Nevertheless, their high computational complexity
and sensitivity to parameter selection restrict their use in scenarios requiring rapid analysis of large
datasets.
Future research directions include the development of hybrid approaches that combine the high

accuracy and recall of density-based methods (e.g., HDBSCAN) with the speed and simplicity of
partitioning-based methods (e.g., K-Means). Moreover, integrating clustering techniques with neural
network architectures may further enhance the overall performance of anomaly detection systems.
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Статистические и плотностные методы кластеризации
в задачах обнаружения аномалий сетевых систем:
сравнительный анализ
А. С. Баклашов1, 2, Д. С. Кулябов1, 3

1 Российский университет дружбы народов, ул. Миклухо-Маклая, д. 6, Москва, 117198, Российская
Федерация
2 Институт проблем управления им. В. А. Трапезникова Российской академии наук, ул. Профсоюзная,
д. 65, Москва, 117997, Российская Федерация
3 Объединённый институт ядерных исследований, ул. Жолио-Кюри, д. 6, Дубна, 141980, Российская
Федерация

Аннотация. В современном мире количество данных, хранящихся в электронном виде и передающихся
по сети, непрерывно растёт. Это создаёт потребность в разработке эффективных методов защиты
информации, передающейся в виде сетевого трафика. Выявление аномалий играет ключевую роль
в обеспечении безопасности сетей и защите информации от кибератак.
Цель данной работы заключается в проведении обзора статистических и плотностных методов

кластеризации, применяемых для определения аномалий в сетевых системах, и проведении их сравни-
тельного анализа на конкретной задаче.
Для достижения цели исследования использовались методы анализа существующих подходов к обна-

ружению аномалий с помощью методов кластеризации. В исследовании рассматривались различные
алгоритмы и методы кластеризации, применяемые в сетевых системах.
Результаты проведённого сравнительного анализа продемонстрировали высокую эффективность ме-

тодов кластеризации в задачах обнаружения аномалий сетевого трафика, что позволяет рекомендовать
их для интеграции в системы обнаружения вторжений с целью повышения уровня информационной
безопасности.
Был проведён сравнительный анализ различных методов, выявлены их общие черты, различия,

достоинства и недостатки.
Полученные результаты могут быть использованы для улучшения систем обнаружения вторжений

и повышения уровня защиты информации в сетевых системах.

Ключевыеслова: системыобнаружения вторжений, сетевые системы,методыкластеризации


