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Abstract. This work presents an intensive study of a single server finite-capacity queueingmodel with impatience
timers which depend on the server’s states, feedback, and a single working vacation policy operating under
an 𝑁-policy discipline. We examine the scenario where the server must wait for the number of customers to
reach 𝑁 to start a regular busy period; otherwise, the server will initiate a working vacation or switch to the
dormant state if the number of customers increases. By applying the Markov recursive method, the steady-
state probabilities were derived. Various performance metrics were visually depicted to assess diverse system
parameter configurations. After constructing the expected cost function of the model, GreyWolf Optimization
(GWO) algorithm is utilized to determine the optimum values of the service rates 𝜇∗ and 𝜇∗𝑣. Numerical examples
are provided to validate the theoretical findings, offering insights into this intricate system.
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1. Introduction
Queueing theory is a branch of applied mathematics focused on studying and analyzing processes
within a wide range of service, production, management, and communication systems. These
systems involve repetitive occurrences of homogeneous events. Examples include consumer
services, information reception, processing, and transmission systems, automated production lines,
telecommunication networks, among others.
Queueing theory offers invaluable solutions to mitigate long queues in real-life settings, providing

mathematical frameworks to address such challenges [1–4].
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In contemporary times, research on queueing systems with impatient customers has garnered
increased attention. Impatience emerges as a prominent characteristic, as customers often feel
anxious and restless while awaiting services. Hence, it is imperative for queueing systems research
to incorporate patron impatience to accurately reflect real-world conditions. Typically, customer
dissatisfaction is modeled through concepts like balking and reneging. When faced with a long
queue, customers may opt to leave (balk) or refrain from entering the system altogether if the queue
is excessively lengthy. This behavior is observed in practical systems such as hospital emergency
rooms, especially when dealing with critically ill patients [2, 5–7].
The concept of the 𝑁-policy was first introduced by Yadin and Naor [8]. Meena et al. [9] developed

a non-Markovian system for machine repair problems with finite capacity and the 𝑁-policy, a variant
of the vacation queueing system under Bernoulli feedback. Bouchentouf et al. [10] studied an
𝑀/𝑀/𝑐 queue with customers’ impatience and Bernoulli feedback, incorporating a variant of multiple
vacations. Kathirvel [11] addressed a finite single-server model with an optional second service
and obtained the waiting time distribution of customers in the waiting hall using Laplace–Stieltjes
transforms. Kadi et al. [12] analyzed an 𝑀/𝑀/2 machine repairable model for both single and
multiple vacations under the triadic policy using a matrix geometric method. Adou et al. [13]
applied a comparative study between peremptive and non-preemptive scheduling algorithms for the
operation of a wireless network slicing model. Additionally, Sharma et al. [14] examined the 𝑁-policy
with the vacation interruption concept and impatience behavior. Rajadurai et al. [15] introduced
an𝑀/𝐺/1 queueing system with multiple working vacations, vacation interruption with feedback,
and server breakdowns, applying the results to Simple Mail Transfer Protocol (SMTP) applications.
Furthermore, Boualem [16] utilized stochastic orders to analyze an𝑀/𝐺/1 queueing model where the
server undergoes breakdown and repair processes. Hilquias et al. [17] compared 𝑅𝐸𝐷 and 𝑇𝑎𝑖𝑙𝐷𝑟𝑜𝑝
algorithms with the renovation mechanism for different models of queueing systems. Goswami [18]
investigated the interrelationship between 𝐹-policy and 𝑁-policy considering inter-arrival times of
customers and geometrically distributed service times. Vemuri et al. [19] determined the optimum
value of the control parameter𝑁 for the expected cost function of an𝑀𝑋/𝑀/1 system. Bouchentouf et
al. [5] analyzed balking and server state-dependent reneging queues using generating functions and
obtained the steady-state solution. Additionally, Bouchentouf et al. [2] analyzed a multi-server model
with finite capacity, multiple synchronous working vacations, and balking. As a highly effective
approximation function, ANFIS (Adaptive neuro-fuzzy inference system) is considered the best tool
of neural and fuzzy systems which ensures smoothness to reduce the optimization search space from
fuzzy systems. ANFIS has been Commonly implemented for prediction, control, and optimization
Assignments. Divya and Indhira [20] applied ANFIS computing to analyze an unreliable model under
hybrid vacation and feedback. Moreover, Indumathi et al. [21] applied the ANFIS to assess the
accuracy of cost results for an𝑀/𝑀/2 system with two heterogeneous servers and Catastrophe and
Restoration phenomena. Recently, Dehimi et al. [22] studied a finite multi-server model operating
under a hybrid hiatus policy and applied ANFIS to validate the accuracy of diverse performance
metrics achieved.

Scientists believe that theGreyWolf Optimizer (GWO) has an exceptional huntingmechanism. From
this perspective, optimization using the grey wolf method has gained prominence. GWO is employed
as a meta-heuristic algorithm known for its strong optimal search capability in studying queueing
system costs. The GWO algorithm was initially introduced by [23], who demonstrated its ability to
address issues of instability and convergence accuracy, highlighting its superior accuracy and faster
convergence speed. As a meta-heuristic algorithm for queueing systems, GWO was introduced in the
seminal work of [24], where the authors applied GWO to study repairable systems in cloud computing
using an 𝑁-policy. Also Dehimi et al. [25] applied GWO to derive the optimal service rates for a finite
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𝑀/𝑀/𝑐 system with synchronous differentiated working vacation policy, Bernoulli feedback, and
impatience.
The originality of the work done is to study a finite-capacity single-server Markovian queue with

feedback and impatience operating under the 𝑁-policy discipline along with the provision to go
on a working vacation (single working vacation policy), simultaneously, which was not studied in
past literature. Our study utilized GWO (Grey Wolf Optimizer) to minimize the cost function for
this queueing system. To the best of our knowledge, GWO has not been used so far in optimizing
this category’s queuing systems. We use it to determine service rates couple (𝜇∗, 𝜇∗𝑣) to minimize
the expected cost function. Our model accurately represents an airport security checkpoint, where
passengers arrive randomly following a Poisson process. The main contributions of this work can be
summarized as follows:

– Obtaining the steady-state solution for the system using the Markov recursive method, which
provides a powerful approach for analyzing steady-state probabilities and stochastic processes.

– Deriving important performance metrics, then performing a numerical analysis to validate the
analytical results and investigate the impact of different system parameters on the performance
metrics.

– Applying the GWO algorithm to acquire the optimum values of 𝜇 and 𝜇𝑣 of the optimum cost
function. This offers decision-makers significant management information for designing
management policy.

The paper is structured as follows: Section 2 introduces the mathematical description of the
proposed model along with a practical application. Section 3 establishes the analysis of the system.
Section 4 examines various performance measures based on the steady-state probability distribution
of the system. Section 5 provides numerical simulations for the performance metrics. Section 6
applies the GWO algorithm to determine the optimal parameters for the cost function. Finally,
a comprehensive conclusion for the study is presented.

2. Description of the queueingmodel
We consider a finite-capacity 𝑀/𝑀/1/𝐾 queue with feedback, single working vacation, impatient
customers, and 𝑁-policy. The assumptions of the proposed model are as follows:
1. Customers arrive according to a Poisson process with rate 𝜆. Upon arrival, a customer decides to

join the queue with probability 𝛽𝑖 or balk (refuse to join) with probability 1− 𝛽𝑖, where 0 ⩽ 𝑖 ⩽ 𝐾.
Specifically, 𝛽0 = 1 and 𝛽𝐾 = 0.

2. Customers, unsatisfied with the service provided, either leave the system with probability 𝜃 or
return with probability 𝜃′ = 1 − 𝜃. Feedback customers are treated as new arrivals.

3. Service times follow an exponential distribution with rate 𝜇 during regular busy periods and 𝜇𝑣
during vacation periods (𝜇𝑣 < 𝜇). Service is provided on a First-In-First-Out (FIFO) discipline.

4. Upon entering the queue, a customer activates a timer 𝑇0 (during dormant periods) or 𝑇2 (during
working vacation periods). These timers follow exponential distributions with rates 𝜉0 and 𝜉2
respectively. A customer leaves the queue with probability 𝛼 and may return to the system with
probability 1 − 𝛼. Impatient clients are only active during vacation and dormant states.

5. When the number of customers in the system drops to zero while at least one server is active,
the server enter a working vacation period (𝑊𝑉):
• During a𝑊𝑉, the server serves arriving customers at a rate lower than the regular service

rate. At the end of the vacation period, if the system size is 𝑁, the server switches to
a regular busy period and starts operating under the 𝑁-policy.
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Figure 1: State transition rate diagram
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Figure 1. State transition rate diagram

• Under a SingleWorkingVacation (𝑆𝑊𝑉) policy, server takes only one𝑊𝑉whenever the system
becomes empty. If there are at least 𝑁 customers at the end of the vacation period, the
server resumes operation under the 𝑁-policy with the usual service rate. Otherwise,
servers remain dormant in the system until 𝑁 customers arrive instead of taking another
𝑊𝑉.

• Vacation durations are assumed to follow an exponential distribution with rate 𝜙.
We assume that inter-arrival times, service times, and vacation times are mutually independent.

Figure 1 illustrates the state-transition rate diagram of the model.

2.1. Implementation of themodel in practical scenarios

Consider an airport security checkpoint where passengers arrive randomly following a Poisson
process with rate 𝜆. Upon arrival, passengers decide whether to join the security queue based on its
current length. Each passenger decides to join the queue based on a probability 𝛽𝑖, potentially opting
to delay or avoid joining if the queue reaches its capacity 𝐾 (balking). Passengers dissatisfied with
wait times may leave (quit) with probability 𝜃 or return later (feedback) with probability 𝜃′ = 1 − 𝜃.
A single security agent performs screenings at rate 𝜇 during peak hours and a reduced rate 𝜇𝑣 during
off-peak times. Impatient passengers may permanently leave the queue during quieter periods with
probability 𝛼. If the queue becomes empty with one active agent, they enter a working vacation
period, conducting screenings at a reduced rate for an exponentially distributed duration with rate 𝜙.
The agent resumes full-speed screening if enough passengers accumulate (𝑁 or more) by the end of
the working vacation, ensuring effective passenger flowmanagement under varying demand and
operational conditions.

3. Queueingmodel analysis
Consider the state of the system at time 𝑡 characterized by the random variables 𝑁(𝑡) representing
the system size and 𝐽(𝑡) indicating the server’s state, defined as:

𝑗(𝑡) =

⎧
⎪

⎨
⎪
⎩

0, if the server is inWV period,

1, if the server is active during regular busy period,

2, if the server is dormant.
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We can define the process {𝑁(𝑡), 𝑗(𝑡)} with its state space as follows:

Ω = {(0, 0) ∪ (𝑛, 𝑗) ∶ 0 ⩽ 𝑛 ⩽ 𝐾, 𝑗 = 0, 1, 2}.

Applying Markov process, we derive the following set of equations describing the steady state:

(𝜙 + 𝜆𝛽0)𝑃0,0 = 𝜃𝜇𝑣𝑃0,1 + 𝜃𝜇𝑃1,1, 𝑛 = 0, (1)

(𝜙 + 𝜃𝜇𝑣 + (𝑛 − 1)𝑎𝜉0 + 𝜆𝛽𝑛)𝑃0,𝑛 = (𝜃𝜇𝑣 + 𝑛𝑎𝜉0)𝑃0,𝑛+1 + 𝜆𝛽𝑛−1𝑃0,𝑛−1, 1 ⩽ 𝑛 ⩽ 𝐾 − 1,

(𝜙 + 𝜃𝜇𝑣 + (𝐾 − 1)𝑎𝜉0)𝑃0,𝐾 = 𝜆𝛽𝐾−1𝑃0,𝐾−1, 𝑛 = 𝐾, (2)
(𝜃𝜇 + 𝜆𝛽1)𝑃1,1 = 𝜃𝜇𝑃1,2, 𝑛 = 1,

(𝜆𝛽𝑛 + 𝜃𝜇)𝑃1,𝑛 = 𝜆𝛽𝑛−1𝑃1,𝑛−1 + 𝜃𝜇𝑃1,𝑛+1, 2 ⩽ 𝑛 ⩽ 𝑁 − 1, (3)
(𝜆𝛽𝑁 + 𝜃𝜇)𝑃1,𝑁 = 𝜆𝛽𝑁−1𝑃1,𝑁−1 + 𝜆𝛽𝑁−1𝑃2,𝑁−1 + 𝜃𝜇𝑃1,𝑁+1 + 𝜙𝑃0,𝑁, 𝑛 = 𝑁, (4)
(𝜆𝛽𝑛 + 𝜃𝜇)𝑃1,𝑛 = 𝜆𝛽𝑛−1𝑃0,𝑛−1 + 𝜃𝜇𝑃1,𝑛+1 + 𝜙𝑃0,𝑛, 𝑁 + 1 ⩽ 𝑛 ⩽ 𝐾 − 1,

𝜃𝜇𝑃1,𝐾 = 𝜆𝛽𝐾−1𝑃1,𝐾−1 + 𝜙𝑃0,𝐾, 𝑛 = 𝐾, (5)
𝜆𝛽0𝑃2,0 = 𝜙𝑃0,0, 𝑛 = 0, (6)

(𝜆𝛽𝑛 + (𝑛 − 1)𝑎𝜉2)𝑃2,𝑛 = 𝜆𝛽𝑛−1𝑃2,𝑛−1 + 𝑛𝑎𝜉2𝑃2,𝑛+1 + 𝜙𝑃0,𝑛, 1 ⩽ 𝑛 ⩽ 𝑁 − 2,

((𝑁 − 2)𝑎𝜉2 + 𝜆𝛽𝑁−1)𝑃2,𝑁−1 = 𝜆𝛽𝑁−2𝑃2,𝑁−2 + 𝜙𝑃0,𝑁−1, 𝑛 = 𝑁 − 1. (7)

The normalization condition:

𝐾
∑
𝑛=0

𝑃0,𝑛 +
𝐾
∑
𝑛=1

𝑃1,𝑛 +
𝑁−1
∑
𝑛=0

𝑃2,𝑛 = 1. (8)

3.1. Steady-state solution

In this sub-section, we employ the Markov recursive method to obtain the steady-state distribution of
the server states.

Theorem 1. The steady-state probabilities of the system size during the working vacation period are
provided as follows:

𝑃0,𝑛 = 𝜒𝑛𝑃0,𝐾, (9)

where

𝜒𝑛 =

⎧
⎪
⎪

⎨
⎪
⎪
⎩

1, 𝑛 = 𝐾,
𝜙 + 𝜃𝜇𝑣 + (𝐾 − 1)𝑎𝜉0

𝜆𝛽𝐾−1
, 𝑛 = 𝐾 − 1,

(
𝜆𝛽𝑛+1 + 𝜙 + 𝜃𝜇𝑣 + 𝑛𝑎𝜉0

𝜆𝛽𝑛
)𝜒𝑛+1 − (

𝜃𝜇𝑣 + (𝑛 + 1)𝑎𝜉0
𝜆𝛽𝑛

)𝜒𝑛+2,

0 ⩽ 𝑛 ⩽ 𝐾 − 2.

The steady-state probabilities during the busy period are given by:

𝑃1,𝑛 = Υ𝑛𝑃0,𝐾 + 𝑡𝑛−2𝑃2,𝑁−1,
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where

Υ𝑛 =

⎧
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎩

𝜙 + 𝜆𝛽0
𝜃𝜇 𝜒0 −

𝜃𝜇𝑣
𝜃𝜇 𝜒1, 𝑛 = 1,

𝜆𝛽1 + 𝜃𝜇
𝜃𝜇 Υ1, 𝑛 = 2,

(
𝜆𝛽𝑛−1 + 𝜃𝜇

𝜃𝜇 )Υ𝑛−1 − (
𝜆𝛽𝑛−2
𝜃𝜇 )Υ𝑛−2, 3 ⩽ 𝑛 ⩽ 𝑁,

(
𝜆𝛽𝑛−1 + 𝜃𝜇

𝜃𝜇 )Υ𝑛−1 − (
𝜆𝛽𝑛−2
𝜃𝜇 )Υ𝑛−2 −

𝜙
𝜃𝜇𝜒𝑛−2, 𝑁 + 1 < 𝑛 ⩽ 𝐾 − 1.

and

𝑡𝑛 =

⎧
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎩

0, 0 ⩽ 𝑛 ⩽ 𝑁 − 2,

𝜆𝛽𝑁−1
𝜃𝜇 , 𝑛 = 𝑁 − 1,

(
𝜆𝛽𝑁+1 + 𝜃𝜇

𝜃𝜇 ) 𝑡𝑁−1, 𝑛 = 𝑁,

(
𝜆𝛽𝑛+1 + 𝜃𝜇

𝜃𝜇 ) 𝑡𝑛−1 − (
𝜆𝛽𝑛
𝜃𝜇 ) 𝑡𝑛−2, 𝑁 + 1 < 𝑛 ⩽ 𝐾 − 2.

and the stationary probabilities for the dormant period verify the equation:

𝑃2,𝑛 = 𝛥𝑛𝑃2,𝑁−1 + 𝛳𝑛𝑃0,𝐾,

where

𝛥𝑛 =

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎩

0, 𝑁 ⩽ 𝑛 ⩽ 𝐾,

1 𝑛 = 𝑁 − 1,

(
(𝑁 − 2)𝑎𝜉2 + 𝜆𝛽𝑁−1

𝜆𝛽𝑁−1
) , 𝑛 = 𝑁 − 2,

(
𝜆𝛽𝑛+1 + 𝑛𝑎𝜉2

𝜆𝛽𝑛
)𝛥𝑛+1 − (

(𝑛 + 1)𝑎𝜉2
𝜆𝛽𝑛

) , 𝑛 = 𝑁 − 3,

(
𝜆𝛽𝑛+1 + 𝑛𝑎𝜉2

𝜆𝛽𝑛
)𝛥𝑛+1 − (

(𝑛 + 1)𝑎𝜉2
𝜆𝛽𝑛

) 𝛥𝑛+2, 0 ⩽ 𝑛 < 𝑁 − 3.

𝛳𝑛 =

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

0, 𝑁 − 1 ⩽ 𝑛 ⩽ 𝐾,

(
𝜙𝜓𝑁−1
𝜆𝛽𝑁−2

) , 𝑛 = 𝑁 − 2,

(
𝜆𝛽𝑛+1 + 𝑛𝑎𝜉2

𝜆𝛽𝑛
)𝜓𝑛+2 − (

𝜙
𝜆𝛽𝑛

) 𝜓𝑛+1, 𝑛 = 𝑁 − 3,

(
𝜆𝛽𝑛+1 + 𝑛𝑎𝜉2

𝜆𝛽𝑛
)𝛳𝑛+1 − (

(𝑛 + 1)𝑎𝜉2
𝜆𝛽𝑛

)𝛳𝑛+2 −
𝜙
𝜆𝛽𝑛

𝜓𝑛+1, 0 ⩽ 𝑛 < 𝑁 − 3.

𝛳𝑛 = 𝛳𝑛+1 −
𝜙
𝜆𝛽𝑛

𝜒𝑛+1, 0 ⩽ 𝑛 ⩽ 𝑁 − 2.

Then, using equation (7), we get:

𝑃2,𝑁−1 = (
𝜙𝜒0 − 𝜆𝛽0𝛳0

𝜆𝛽0𝛥0
) 𝑃0,𝐾.
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Finally, we have:

𝑃0,𝐾 = [
𝐾
∑
𝑛=0

𝜒𝑛 +
𝐾
∑
𝑛=1

(Υ𝑛 + 𝜍0𝑡𝑛) +
𝑁−1
∑
𝑛=0

(𝜍0𝛥𝑛 + 𝛳𝑛)]
−1

.

Where, 𝜍0 = (
𝜙𝜒0 − 𝜆𝛽0𝛳0

𝜆𝛽0𝛥0
).

4. Performancemetrics
In this section, useful performance measures for different server states are presented.
1. The probability of the server being in a working vacation state:

𝑃𝑉𝑎𝑐𝑎𝑡𝑖𝑜𝑛 =
𝐾
∑
𝑛=0

𝑃0,𝑛 =
𝐾
∑
𝑛=0

𝜒𝑛𝑃0,𝐾.

2. The probability of the server being in a busy state:

𝑃𝐵ᵆ𝑠𝑦 = [
𝐾
∑
𝑛=1

Υ𝑛 + 𝜍0
𝐾−2
∑
𝑛=1

𝑡𝑛] 𝑃0,𝐾.

3. The probability of the server being in a dormant state:

𝑃𝐷𝑜𝑟𝑚𝑎𝑛𝑡 = [𝜍0
𝑁−1
∑
𝑛=0

𝛥𝑛 +
𝑁−2
∑
𝑛=0

𝛳𝑛] 𝑃0,𝐾.

4. The probability that the server is idle:

𝑃𝑖𝑑𝑙𝑒 = [𝜒0 + 𝜍0
𝑁−1
∑
𝑛=0

𝛥𝑛 +
𝑁−2
∑
𝑛=0

𝛳𝑛] 𝑃0,𝐾.

5. The expected number of customers in the queue:

𝐿𝑠 =
𝐾
∑
𝑛=0

𝑛𝑃0,𝑛+
𝐾
∑
𝑛=1

(𝑛−1)𝑃1,𝑛+
𝑁−1
∑
𝑛=0

(𝑛−1)𝑃2,𝑛 = [
𝐾
∑
𝑛=0

𝜒𝑛 +
𝐾
∑
𝑛=1

Υ𝑛 + 𝜍0 (
𝐾−2
∑
𝑛=0

𝑡𝑛 +
𝑁−1
∑
𝑛=0

𝛥𝑛) +
𝑁−2
∑
𝑛=0

𝛳𝑛] 𝑃0,𝐾.

6. The average balking rate:

𝐵𝑅 =
𝐾
∑
𝑛=0

𝑛𝜆(1 − 𝛽𝑛)𝑃0,𝑛 +
𝐾
∑
𝑛=1

(𝑛 − 1)𝜆(1 − 𝛽𝑛)𝑃1,𝑛 +
𝑁−1
∑
𝑛=0

𝑛𝜆(1 − 𝛽𝑛)𝑃2,𝑛 =
𝐾
∑
𝑛=0

𝑛𝜆(1 − 𝛽𝑛)𝜒𝑛𝑃0,𝐾 +

+
𝐾
∑
𝑛=1

(𝑛 − 1)𝜆(1 − 𝛽𝑛) (
𝐾
∑
𝑛=1

Υ𝑛 + 𝜍0
𝐾−2
∑
𝑛=1

𝑡𝑛) 𝑃0,𝐾 + 𝑛𝜆(1 − 𝛽𝑛) (𝜍0
𝑁−1
∑
𝑛=0

𝛥𝑛 + 𝛳𝑛) 𝑃0,𝐾.

7. The average reneging rate:

𝑅𝑅 = 𝜉0
𝐾
∑
𝑛=0

(𝑛 − 1)𝑃0,𝑛 + 𝜉2
𝑁−1
∑
𝑛=0

(𝑛 − 1)𝑃2,𝑛 = [𝜉0
𝐾
∑
𝑛=0

(𝑛 − 1)𝜒𝑛 + 𝜉2 (𝜍0
𝑁−1
∑
𝑛=0

(𝑛 − 1)𝛥𝑛 + 𝛳𝑛)] 𝑃0,𝐾.

8. The average rate of lost customers:

𝐴𝑅 = 𝐵𝑅 + 𝑅𝑅.

9. The expression for the expected waiting time of customers in the system:

𝑊𝑠 =
𝐿𝑠
𝜆′ , where 𝜆

′ = 𝜆 − 𝐴𝑅.
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Figure 2. 𝑃𝑏𝑢𝑠𝑦 vs. 𝜆 for different values of 𝜇
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Figure 3. 𝑃𝑏𝑢𝑠𝑦 vs. 𝜆 for different values of 𝜇𝑣

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

Figure 4. 𝑃𝑣𝑎𝑐 vs. 𝛽 for multiple values of 𝜙

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Figure 5. 𝐿𝑠 vs. 𝛼 for multiple values of 𝜙

5. Numerical results
In this section, key numerical results are presented graphically to illustrate the impact of various
system parameters on different performance metrics. These graphs were generated using theMAT-
LAB program. For this purpose, the following set of system parameters was fixed: 𝜆 = 0.4, 𝜇 = 1.5,
𝜇𝑣 = 0.7, 𝜙 = 0.6, 𝜉0 = 0.5, 𝜉2 = 1.8, 𝜃 = 0.7, 𝛽 = 0.8, 𝛼 = 0.7, 𝑁 = 3, and 𝐾 = 5.

5.1. Analysis of findings

The numerical experiments systematically analyzed the sensitivity of various system parameters
on performance measures. Based on these analyses, the following key observations and potential
managerial recommendations have been identified:

1. Effect of 𝜆 (arrival rate): With an increasing value of 𝜆, several factors are significantly affected.
The service rates 𝜇 and 𝜇𝑣 increase correspondingly, leading to an increase in the probability
of the server being in the busy state 𝑃𝑏ᵆ𝑠𝑦 (see Figures 2 and 3). Additionally, as the capacity 𝐾
increases, the expected number of customers in the queue 𝐿𝑠 also increases (see Figure 7).
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Figure 6. 𝑃𝑏𝑢𝑠𝑦 vs. 𝜃 for different values of 𝜇𝑣
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Figure 7. 𝐿𝑠 vs. 𝜆 for different values of𝐾
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Figure 8. 𝑊𝑠 vs. 𝜆 for different values of 𝜉0 and 𝛼

0.2 0.25 0.3 0.35 0.4 0.45 0.5

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Figure 9. 𝑊𝑠 vs. 𝜆 for different values of 𝜉2 and 𝛼

2. Effect of parameter 𝜙 (vacation rate): As the balking rate 𝛽 and vacation rate 𝜙 increase, 𝑃𝑣𝑎𝑐
gradually increases (see Figure 4). Conversely, an increase in the probability 𝛼 while increasing
the vacation rate 𝜙 leads to a decrease in the expected number of customers in the queue 𝐿𝑠
(see Figure 5).

3. Effect of parameter 𝜃 (feedback rate): As the feedback rate 𝜃 increases, the probability 𝑃𝑏ᵆ𝑠𝑦 of
the server being in the busy state increases for different service rates 𝜇𝑣 (see Figure 6).

4. Effect of parameters 𝜉0 and 𝜉2 (impatience rate): A lower impatience rate 𝜉0 (or 𝜉2) and parameter
𝛼 (probability of leaving the queue) lead to an increase in the expected waiting time of customers
in the system𝑊𝑠 (see Figures 8 and 9). Consequently, due to this impatience, there is an increase
in the number of customers 𝐿𝑠.
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Figure 10. 𝐹(𝜇,𝜇𝑣) vs. 𝜇 and 𝜇𝑣

6. Numerical cost optimum

6.1. Cost model

The utilization of various cost factors in terms of cost function can play a crucial role in optimizing
and enhancing the system availability by considering the benefits associated with different design
variable options. Using the GreyWolf Optimizer (GWO) algorithm . We will assess the expected total
cost and determine the optimal values of (𝜇∗, 𝜇∗𝑣) the decision variables based on the costs are fixed
as: 𝐶𝑊𝑉 = 30, 𝐶𝐵 = 20, 𝐶𝑑 = 15, 𝐶𝑠 = 20, 𝐶𝐴𝑅 = 30, 𝐶𝜇𝑣 = 10, 𝐶𝜇 = 20.
Then we define the total expected cost per unit of time of the system as follows:

𝐹 = 𝐶𝑤𝑣𝑃𝑣𝑎𝑐 + 𝐶𝐵𝑃𝑏ᵆ𝑠𝑦 + 𝐶𝑑(𝑃𝑑𝑜𝑟𝑚𝑎𝑛𝑡 + 𝑃𝑖𝑑𝑙𝑒) + 𝐶𝑠𝐿𝑠 + 𝐶𝐴𝑅𝐴𝑅 + 𝜇𝐶𝑚ᵆ + 𝜇𝑣𝐶𝑣,

where,
– 𝐶𝑤𝑣: denotes the cost per unit time when the server is on a working vacation period,
– 𝐶𝐵: denotes the cost per unit time when the server is on a busy period,
– 𝐶𝑑: denotes the cost per unit time when the server is on a dormant or idle period,
– 𝐶𝑠: denotes the cost per unit time when a customer joins the queue and waits for service,
– 𝐶𝐴𝑅: denotes the cost per unit time when a customer leaves the queue,
– 𝐶𝜇𝑣 (resp. 𝐶𝜇): denotes the cost per service per unit time during normal busy period (resp.

working vacation period).

6.2. GWO—GreyWolf optimizer

The GreyWolf optimizer (GWO) algorithm is inspired by the leadership organization and hunting
strategy of grey wolves in nature. GWO represents a recent innovation in cost optimization methods.
This meta-heuristic algorithm effectively explores the search space and converges to the optimal
solution by simulating the hunting behavior of grey wolves. This section presents a practical
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Table 1
The optimal (𝜇∗, 𝜇∗𝑣) and 𝐹∗(𝜇∗, 𝜇∗𝑣) vs. 𝜃, when 𝜃 = 0.2 ∶ 0.8, 𝜉0 = 0.5, 𝜉2 = 1.8, 𝜆 = 0.4, 𝜙 = 0.6, 𝛽 = 0.8, 𝛼 = 0.7,
𝑁 = 3 and𝐾 = 5

𝜇∗ 𝜇∗𝑣 𝐹(𝜇∗, 𝜇∗𝑣)

𝜃 = 0.2 3.8882 1.0039 143.9779

𝜃 = 0.4 2.4800 0.8102 104.9952

𝜃 = 0.6 2.3922 0.5771 80.0489

𝜃 = 0.8 2.3003 0.4035 83.5105

Table 2
The optimal (𝜇∗, 𝜇∗𝑣) and 𝐹∗(𝜇∗, 𝜇∗𝑣) vs. 𝐾 and𝑁, when 𝜆 = 0.4, 𝜙 = 0.6, 𝜉0 = 0.5, 𝜉2 = 1.8, 𝜃 = 0.7, 𝛽 = 0.8, 𝛼 = 0.7

𝜇∗ 𝜇∗𝑣 𝐹(𝜇∗, 𝜇∗𝑣)

𝑁 = 3 2.2297 0.8871 126.2557

𝐾 = 10 𝑁 = 5 1.8132 0.9201 80.9963

𝑁 = 7 1.6801 0.0225 69.3733

𝑁 = 3 2.5312 1.3530 151.4877

𝐾 = 15 𝑁 = 5 1.8374 0.3141 90.3144

𝑁 = 7 1.6846 0.0179 70.9343

𝑁 = 3 2.7078 1.5911 164.5993

𝐾 = 18 𝑁 = 5 1.8545 0.4193 90.3144

𝑁 = 7 1.6944 0.0105 71.4826

𝑁 = 3 2.8737 1.7380 172.7564

𝐾 = 20 𝑁 = 5 1.8656 0.4832 94.6289

𝑁 = 7 1.7018 0.0956 71.9032

application of GWO in the field of queueing systems. The objective of this study is to determine
the optimal service rates (𝜇, 𝜇𝑣) that minimize the expected cost function. Given the complexity of
higher-order non-linear optimization problems, it is recommended to employ nonlinear optimization
techniques to find these optimal solutions. For optimizing the cost model, the GWO algorithm is
applied by initially setting parameters to obtain the optimal values of (𝜇∗, 𝜇∗𝑣).
The optimization problem can be written as:

min
𝜇,𝜇𝑣

𝐹(𝜇, 𝜇𝑣)s.t
⎧

⎨
⎩

𝜇 − 𝜇𝑣 > 0

𝜇𝑣 > 0

(𝜇, 𝜇𝑣) ∈ ℝ2
+.
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Table 3
The optimal (𝜇∗, 𝜇∗𝑣) and 𝐹∗(𝜇∗, 𝜇∗𝑣) vs. 𝜆, when 𝜆 = 0.6 ∶ 1.8, 𝜙 = 0.6, 𝜉0 = 0.5, 𝜉2 = 1.8, 𝜃 = 0.7, 𝛽 = 0.8, 𝛼 = 0.7,
𝑁 = 3 and𝐾 = 5

𝜇∗ 𝜇∗𝑣 𝐹(𝜇∗, 𝜇∗𝑣)

𝜆 = 0.6 2.9196 0.9762 101.4854

𝜆 = 0.8 2.7014 1.3150 117.0471

𝜆 = 1 3.1103 1.6098 131.1372

𝜆 = 1.2 3.4837 1.8806 144.1337

𝜆 = 1.4 3.8283 2.1393 156.2874

𝜆 = 1.8 4.1440 2.2980 167.7924

Table 4
The optimal (𝜇∗, 𝜇∗𝑣) and 𝐹∗(𝜇∗, 𝜇∗𝑣) vs. 𝜙, when 𝜙 = 0.5 ∶ 5.5, 𝜉0 = 0.5, 𝜉2 = 1.8, 𝜆 = 0.4, 𝜃 = 0.7, 𝛽 = 0.8, 𝛼 = 0.7,
𝑁 = 3 and𝐾 = 5

𝜇∗ 𝜇∗𝑣 𝐹(𝜇∗, 𝜇∗𝑣)

𝜙 = 0.5 1.7138 0.5838 83.6245

𝜙 = 1.5 1.7043 0.7143 83.5471

𝜙 = 2.5 1.7059 0.7596 83.4869

𝜙 = 3.5 1.7070 0.7801 83.4537

𝜙 = 4.5 1.7082 0.7939 83.4330

𝜙 = 5.5 1.7090 0.8034 83.4188

– Table 1 clearly shows that higher feedback probabilities have a negative effect on the optimal
cost and (𝜇∗, 𝜇∗𝑣).

– By examining Table 2, it is evident that the optimal cost and (𝜇∗, 𝜇∗𝑣) increase with the system
capacity 𝐾 and the number of customers 𝑁.

– The impact of arrival rates can be observed through Table 3. The optimal cost and (𝜇∗, 𝜇∗𝑣)
directly increase as the arrival rate takes larger values.

– Table 4 demonstrates that the vacation rate has a direct impact on the optimal cost and (𝜇∗, 𝜇∗𝑣);
as the vacation rate increases, so do the optimal cost and (𝜇∗, 𝜇∗𝑣).

– Upon analyzing Table 5, it becomes clear that the optimal cost and (𝜇∗, 𝜇∗𝑣) exhibit a significant
increase as the values of the impatience rates 𝜉0 and 𝜉2 increase.

– Figure 11, shows that a higher arrival rate 𝜆 leads to an increase in the expected cost 𝐹(𝐾,𝑁)
and (𝐾, 𝑁) values.



22 Computer science DCM&ACS. 2025, 33 (1), 10–26

Table 5
The optimal (𝜇∗, 𝜇∗𝑣) and 𝐹∗(𝜇∗, 𝜇∗𝑣) vs. 𝜉0 and 𝜉0, when 𝜉0 = [0.5; 1; 1.5], 𝜉2 = [1; 1.2; 1.4; 1.6; 1.8], 𝜆 = 0.4, 𝜙 = 0.6,
𝜃 = 0.7, 𝛽 = 0.8, 𝛼 = 0.7,𝑁 = 3 and𝐾 = 5

𝜇∗ 𝜇∗𝑣 𝐹(𝜇∗, 𝜇∗𝑣)

𝜉2 = 1 1.5167 0.4454 77.5487

𝜉2 = 1.2 1.5718 0.4910 79.2290

𝜉0 = 0.5 𝜉2 = 1.4 1.6209 0.5348 80.7922

𝜉2 = 1.6 1.6673 0.5747 82.2544

𝜉2 = 1.8 1.7117 0.6102 83.6292

𝜉2 = 1 1.4912 0.2287 77.4745

𝜉2 = 1.2 1.5448 0.2778 79.1299

𝜉0 = 1 𝜉2 = 1.4 1.5955 0.3210 80.6766

𝜉2 = 1.6 1.6408 0.3601 82.1278

𝜉2 = 1.8 1.6865 0.3968 83.4951

𝜉2 = 1 1.4666 0.0140 77.3672

𝜉2 = 1.2 1.5203 0.0641 79.0078

𝜉0 = 1.5 𝜉2 = 1.4 1.5713 0.1081 80.5449

𝜉2 = 1.6 1.6182 0.1483 81.9898

𝜉2 = 1.8 1.6608 0.1854 83.3530

7. Conclusion
This study is based on a finite capacity queueing model tailored for application in the scenario of
passengers at the airport. Our model represents single working vacations, 𝑁-policy, feedback during
both dormant and working vacation periods, and impatience timers which depend on the server’s
states. By employing the Markov recursive method, we derived closed-form expressions for steady-
state probabilities and performance metrics. Furthermore, various metrics were graphically shown
and discussed. Additionally, we applied the 𝐺𝑊𝑂 algorithm intending to obtain the optimum service
rates for the expected cost function and also conducted a comprehensive numerical analysis to assess
the influence of various parameters on the results obtained.
In the future, the model could be enhanced by incorporating characteristic customer behaviors

such as priority mechanisms, as well as multiple optional services. This extension would broaden
the model applicability but also increase the complexity of calculations.
Author Contributions: Conceptualization, A. Kadi, M. Boualem and N. Touche; methodology, A. Kadi, M. Boualem and N.
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draft preparation, A. Kadi, M. Boualem and A. Dehimi; writing-review and editing, A. Kadi, M. Boualem, N. Touche and A.
Dehimi; visualization, A. Kadi, M. Boualem, N. Touche and A. Dehimi; supervision, M. Boualem and N. Touche. All authors
have read and agreed to the published version of the manuscript.
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(a) 𝜆 = 0.4 (b) 𝜆 = 1.4

(c) 𝜆 = 2.4

Figure 11. The expected cost 𝐹∗(𝐾,𝑁) vs. 𝜆, when 𝜙 = 0.6, 𝜉0 = 0.5, 𝜉2 = 1.8, 𝜃 = 0.7, 𝛽 = 0.8, 𝛼 = 0.7
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Моделирование и оптимизация очереди𝑀/𝑀/1/𝐾
с одиночным рабочим отпуском, обратной связью
и таймерами нетерпимости в рамках𝑁-политики
Абир Кади1, Мохамед Буалем2, Нассим Туш2, Аймен Дехими1

1 Университет Беджаи, Лаборатория прикладной математики, 06000 Беджаи, Алжир
2 Университет Беджаи, Исследовательская группа LaMOS (Моделирование и оптимизация систем),
06000 Беджаи, Алжир

Аннотация. Этот труд представляет собой интенсивное исследование модели очереди с одним сервером
и конечной ёмкостью, с таймерами нетерпимости, зависящими от состояний сервера, с обратной свя-
зью и политикой одиночного рабочего отпуска, функционирующей в рамках дисциплины 𝑁-политики.
Мы рассматриваем сценарий, при котором сервер должен дождаться, пока количество клиентов не до-
стигнет 𝑁, чтобы начать обычный рабочий период; в противном случае сервер начнёт рабочий отпуск
или перейдёт в неактивное состояние, если количество клиентов увеличится. С помощью метода Мар-
ковской рекурсии были получены вероятности в установившемся состоянии. Различные показатели
производительности были визуально изображены для оценки различных конфигураций параметров си-
стемы. После построения ожидаемой функции стоимости модели используется алгоритм Оптимизация
серых волков (GWO) для определения оптимальных значений коэффициентов обслуживания 𝜇 и 𝜇_𝑣.
Приведены числовые примеры для проверки теоретических выводов, что позволяет глубже понять эту
сложную систему.

Ключевые слова: система очередей с нетерпимостью, 𝑁-политика, политика отпуска, обратная связь,
алгоритм GWO, оптимизация стоимости


