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Abstract. The paper discusses the application of the adaptive interpolation algorithm to problems of chemical
kinetics and gas dynamics with interval uncertainties in reaction rate constants. The values of the functions
describing the reaction rate may differ considerably if they have been obtained by different researchers. The
difference may reach tens or hundreds of times. Interval uncertainties are proposed to account for these
differences in models. Such problems with interval parameters are solved using the previously developed
adaptive interpolation algorithm. On the example of modelling the combustion of a hydrogen-oxygen mixture,
the effect of uncertainties on the reaction process is demonstrated. One-dimensional nonequilibrium flow
in a rocket engine nozzle with different nozzle shapes, including a nozzle with two constrictions, in which
a standing detonation wave can arise, is simulated. A numerical study of the effect of uncertainties on the
structure of the detonation wave, as well as on steadyystate flow parameters, such as the ignition delay time and
the concentration of harmful substances at the nozzle exit, is performed.
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1. Introduction
In order to simulate gas-phase chemical transformations it is necessary to know the kinetic
mechanism and the rates of the reactions taking place. As a rule, the dependences that describe
the rates are obtained experimentally, often giving only approximate values [1]. The values of the
functions approximating the rate of the same reaction, but obtained by different researchers, may
differ by tens or hundreds of times. To account for these differences, we propose to use the interval
apparatus [2–5]. In this case interval parameters are introduced into the model and simulation results
are interval estimates for the values of interest.
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The previously developed adaptive interpolation algorithm [6–9] is used to solve such problemswith
interval parameters. The algorithm belongs to the methods that determine an explicit dependence of
the solution of the problem on the values of interval parameters. Two subgroups can be distinguished
in this group: methods using symbolic expressions [10–12] and methods representing the solution
as a polynomial with respect to interval parameters [13, 14]. The adaptive interpolation algorithm
belongs to the latter subgroup.
This algorithm has a theoretical justification. It consists in constructing a polynomial for each

moment of time which interpolates the dependence of the problem solution on the values of the
parameters in a given area of uncertainty. The interpolation polynomial is constructed on the basis
of a set of nodes that form a grid. At each step of the algorithm, values in the nodes of the grid are
updated, and then adaptation is made depending on the interpolation error. New nodes are added in
places with a large error, and nodes are removed in places with a small error. The classical version of
the algorithm uses interpolation on complete meshes, which limits its application to systems with
a small number of interval parameters. However, two approaches, sparse meshes [15–17] and tensor
trains [18, 19], have been applied in [20–22], which extend the application of the algorithm to dynamic
systems with a large number of interval parameters.
The paper deals with the problems of chemical kinetics and gas dynamics. The simulation of

combustion of a mixture of hydrogen and oxygen in the presence of interval uncertainties in the
reaction rate constants has been carried out. A one-dimensional mathematical model describing
chemical nonequilibrium flows in a nozzle of a given shape with uncertainties in the reaction rate
constants is presented. Results of a numerical study of the effect of uncertainties on the structure of
the detonation wave, as well as on steady-state flow parameters, such as the ignition delay time and
the concentration of harmful substances at the nozzle exit, are presented.

2. Model of chemical kinetics
Here is a description of the basic relations. A multicomponent system of a variable composition of 𝑁
substances, in which 𝑁𝑟 reactions takes place, has the form [23]:

𝑁
∑
𝑖=1

⃗𝑣(𝑟)𝑖 𝑀𝑖
𝑊(𝑟)
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𝑊(𝑟)

𝑁
∑
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𝑞
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𝑣
(𝑟)
𝑖 , 𝑟 = 1, 𝑁𝑟,

where 𝑀𝑖 — symbols for molecules or atoms of chemical components,
↔
𝑞
(𝑟)

— molecularity of

elementary reactions, 𝑟— ordinal number of reaction,
↔
𝑣
(𝑟)
𝑖 — stoichiometric coefficients, ⃖⃗𝑊 (𝑟) — the

forward and reverse 𝑟-reaction rates.
The rate ⃖⃗𝑊 (𝑟) is defined as the product of the reaction rate constant ⃖⃗𝐾(𝑟)(𝑇) and the volume

concentrations of the components:

⃖⃗𝑊 (𝑟) = ⃖⃗𝐾(𝑟)(𝑇)∏
𝑖
(𝜌𝛾𝑖)

⃖⃗𝑣(𝑟)𝑖 ,

where 𝛾𝑖 —molar-mass concentration of the 𝑖-th component, 𝜌— density.
The temperature dependence of the direct reaction rate constant is approximated by the generalised

Arrhenius formula:
⃗𝐾(𝑇) = 𝐴𝑇𝑛 exp (−𝐸𝑇) ,

where 𝐴, 𝑛, 𝐸 — some constant values for each specific reaction. It is in these quantities that the
uncertainty may be contained.
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The rate constants of reverse reactions are calculated using the equilibrium constant:

⃖𝐾(𝑟)(𝑇) = ⃗𝐾(𝑟)(𝑇) exp [
𝑁
∑
𝑖=1

( ⃖𝑣(𝑟)𝑖 − ⃗𝑣(𝑟)𝑖 ) (
𝐺0
𝑖 (𝑇)
𝑅𝑇 + ln 𝑅𝑇

𝑃0
)] ,

where 𝐺0
𝑖 (𝑇) — the standard molar Gibbs potential of the 𝑖-component, which is given by using

polynomials from the handbook [24], 𝑅— universal gas constant, 𝑃0 = 101325 Pa — standard pressure.
The rate of formation of the 𝑖-component is as follows:

𝑊𝑖 =
𝑁𝑟

∑
𝑟=1

( ⃗𝑣(𝑟)𝑖 − ⃖𝑣(𝑟)𝑖 ) (𝑊 (𝑟) −𝑊 (𝑟)), 𝑖 = 1, 𝑁.

All thermodynamic quantities for a mixture of ideal gases are expressed in terms of the standard
Gibbs molar potential. Here are some basic relations:

– Specific Gibbs potential: 𝐺 (𝑇, 𝑃, 𝛾) =
𝑁
∑
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– Entropy: 𝑆 (𝑇, 𝑃, 𝛾) =
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𝛾𝑖 [−
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– Enthalpy (caloric equation): 𝐻(𝑇, 𝛾) =
𝑁
∑
𝑖=1

𝛾𝑖 (𝐺0
𝑖 (𝑇) − 𝑇 𝑑𝐺0

𝑖 (𝑇)
𝑑𝑇

);

– Internal energy (caloric equation): 𝑈(𝑇, 𝛾) = 𝐻 (𝑇, 𝛾) − 𝑅𝑇
𝑁
∑
𝑖=1

𝛾𝑖;

– Isobaric heat capacity: 𝐶𝑝 (𝑇, 𝛾) =
𝜕𝐻(𝑇, 𝛾)

𝜕𝑇
;

– Molar heat capacity: 𝐶𝑣 (𝑇, 𝛾) = 𝐶𝑝 (𝑇, 𝛾) − 𝑅
𝑁
∑
𝑖=1

𝛾𝑖;

– Specific heat ratio: 𝜅 (𝑇, 𝛾) = 𝐶𝑝(𝑇, 𝛾)
𝐶𝑣(𝑇, 𝛾)

;

– Sound speed: 𝑎 (𝑇, 𝛾) =
√
𝜅 (𝑇, 𝛾) 𝑅𝑇

𝑁
∑
𝑖=1

𝛾𝑖;

– Equation of state for a mixture of ideal gases (thermal equation):

𝑃 = 𝜌𝑅𝑇
𝑁
∑
𝑖=1

𝛾𝑖;

where 𝛾 = (𝛾1, 𝛾2, ..., 𝛾𝑁).
The kinetic mechanisms from [25] (table 1) and [26] (table 2) have been considered to demonstrate

the uncertainties associated with the rate constants of chemical reactions. The equilibrium constant
was used to compare the reactions. Figure 1 shows the temperature dependences of the rate constants
for different mechanisms in accordance with [20]. The strongest mismatch of the curves is observed
for reactions 1, 3 and 8 frommechanism 2which was taken into account in the corresponding interval
coefficients (table 3).

Thus, the value in the Arrhenius formula becomes interval, and as a consequence the temperature
dependence of the rate constants also becomes interval.
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Table 1
The first combustion mechanism of the mixture H2 − O2

№ Reaction A, m, mol, s n E , K

1. O2 + H→ OH + O 2.0 × 108 0.0 8455

2. H2 + O→ OH + H 5.06 × 10−2 2.67 3163

3. H2 + OH→ H2O + H 1.0 × 102 1.6 1659

4. OH + OH→ H2O + O 1.5 × 103 1.14 50

5. H + H + M→ H2 + M 1.8 × 106 −1.0 0

6. O + O + M→ O2 + M 2.9 × 105 −1.0 0

7. H + OH + M→ H2O + M 2.2 × 1010 −2.0 0

Table 2
The second combustion mechanism of the mixture H2 − O2

№ Reaction A, m, mol, s n E , K

1. H2O + H→ OH +H2 8.4 × 107 0 10116

2. O2 + H→ OH + O 2.2 × 108 0 8455

3. H2 + O→ OH + H 1.8 × 104 1 4480

4. O2 + M→ 2O + M 5.4 × 1012 −1 59400

5. H2 + M→ 2H + M 2.2 × 108 0 48300

6. H2O + M→ OH + H + M 1018 −2.2 59000

7. HO + M→ O + H + M 8.5 × 1012 −1 50830

8. H2O + O→ 2OH 5.8 × 107 0 9059

Table 3
The interval part of the mixture combustion mechanism H2 − O2

№ Reaction A, m, mol, s n E , K

1. H2O + H→ OH +H2 [8.4 × 107, 4.2 × 108] 0 10116

3. H2 + O→ OH + H [1.8 × 104, 9 × 104] 1 4480

8. H2O + O→ 2OH [5.8 × 107, 2.9 × 108] 0 9059
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Figure 1. Comparison of different mixture combustion mechanisms H2 − O2

Let us simulate the combustionof amixture of hydrogen andoxygen in thepresence of uncertainties
in the reaction rate constants according to [20]. Consider a stoichiometric mixture of hydrogen and
oxygen at initial temperature 𝑇 = 1200 K, constant density 𝜌 = 0.122 kg / m3 and constant internal
energy𝑈 = 1.48MJ / kg. A chemical kinetics model is given by a system of six components (H2O, OH,
H2, O2, H, O) in which eight reactions occur (table 2 and table 3). Here, the ODE system is written as
follows:

𝑑𝛾𝑖
𝑑𝑡 =

1
𝜌

𝑁𝑟

∑
𝑟=1

( ⃗𝑣(𝑟)𝑖 − ⃖𝑣(𝑟)𝑖 ) (𝑊 (𝑟) −𝑊 (𝑟)), 𝑖 = 1, 𝑁

— and is complemented by the equation of conservation of internal energy of the system:

𝑈(𝑇, 𝛾) = 𝐻 (𝑇, 𝛾) − 𝑅𝑇
𝑁
∑
𝑗=1

𝛾𝑖.

For each calculation of the right-hand side of the ODE system, the internal energy equation is
solved relatively 𝑇 using Newton’s method.
Initial conditions: 𝛾H2 = 55.50868mol / kg, 𝛾O2 = 27.75434mol / kg, 𝛾H2O = 𝛾OH = 𝛾H = 𝛾O = 0

mol / kg.
To integrate the resulting rigid ODE system, the implicit Rosenbrock method with a frozen Jacobi

matrix was used [27]. Figure 2 shows the upper and lower estimates of the concentrations of all
components in the mixture. The uncertainty in the reaction rate constants leads to an uncertainty in
the ignition delay time between 22 and 29 µs.
Note that in this model the equilibrium state is reached regardless of the values of the reaction

rate constants. This is confirmed by the fact that after a certain point in time, the upper estimates
of the concentrations coincide with the lower estimates. In addition, note that the results obtained
are in agreement with those obtained earlier in [20], in which the differences in the above kinetic
mechanisms were accounted for in a different way.
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Figure 2. Dependence of mole-mass concentrations on time

Figure 3. Nozzle profile

3. Chemical non-equilibrium flow in a nozzle
When simulating the flow in a liquid rocket engine (LRE) nozzle, ambiguity in the kinetic constants
leads to uncertainties in allmacro-parameters, such as thrust, Mach number, etc. Also the parameters
of freezing values of concentrations of toxic combustion products become ambiguous, which is
important from the point of view of ecology. For such problems, it is a natural need to determine
interval estimates of solutions from known interval values of initial data. In practice, the simulation
of the flow in an LRE nozzle is reduced to solving rigid ODE systems, which can be reintegrated by an
adaptive interpolation algorithm.
A one-dimensional flow in the nozzle of a liquid rocket engine (figure 3) running on asymmetric

dimethylhydrazine (CH3)2N2H2 and nitrogen tetraxide N2O4 is considered. The pressure in the
combustion chamber is 𝑃 = 100 atm, the oxidant excess ratio is 𝛼 = 1, the enthalpy is𝐻 = 42.57 kJ / kg.
The concentrations in the combustion chamber were calculated from the condition of chemical
equilibrium. The chemical processes weremodelled by kinetic mechanism[28] involving 15 reactions
and where 12 components are participating (table 4). Interval uncertainties were introduced in the
rates of reactions 1 and 15.
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Table 4
Kinetic mechanism for the system C-O-H-N

№ Reaction A, m, mol, s n E , kJ / mol

1. CO + O + M↔ CO2 + M [3.5 × 102, 3.5 × 103] 0 1.06

2. OH + H + M↔ H2O + M 1.2 × 108 −1 0

3. O + N + M↔ NO + M 3.3 × 103 0 0

4. H + H + M↔ H2 + M 1.4 × 108 −1.5 0

5. O + O + M↔ O2 + M 5.5 × 105 −0.87 0

6. N + N + M↔ N2 + M 2.7 × 104 −0.5 0

7. H + O + M↔ OH + M 3.3 × 106 −0.5 0

8. H2 + OH↔ H2O + H 1.1 × 108 0 4.33

9. H2 + O↔ OH + H 1.3 × 107 0 4.96

10. O2 + H↔ OH + O 2.2 × 108 0 8.3

11. O2 + N2 ↔ NO + NO 5.2 × 107 0 53.85

12. NO + N↔ N2 + O 3 × 107 0 0.1

13. NO + O↔ O2 + N 1.1 × 107 0 20.97

14. OH + OH↔ H2O + O 1.0 × 107 0 0.6

15. CO + OH↔ CO2 + H [2.5 × 106, 2.5 × 107] 0 2.57

Gas flow without viscosity, thermal conductivity and diffusion is considered. Such gas flows in
channels with gentle walls in continuous flow regions are given by equations which have the following
divergent form:

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

𝜕
𝜕𝑡
𝜌𝐹 + 𝜕

𝜕𝑥
𝜌𝑢𝐹 = 0,

𝜕
𝜕𝑡
𝜌𝑢𝐹 + 𝜕

𝜕𝑥
(𝜌𝑢2 + 𝑃) 𝐹 = 𝑃 𝜕𝐹

𝜕𝑥
,

𝜕
𝜕𝑡
𝜌 (𝑒 + ᵆ2

2
) 𝐹 + 𝜕

𝜕𝑥
𝜌𝑢 (𝑒 + 𝑃

𝜌
+ ᵆ2

2
) 𝐹 = 0,

𝜕
𝜕𝑡
𝜌𝛾𝑖𝐹 +

𝜕
𝜕𝑥
𝜌𝑢𝛾𝑖𝐹 = 𝐹𝑊𝑖, 𝑖 = 1, 𝑁.

|
|
|
|
|
|
|
|
|

𝑊𝑖 =
𝑁𝑟

∑
𝑟=1

( ⃗𝑣(𝑟)𝑖 − ⃖𝑣(𝑟)𝑖 ) (𝑊 (𝑟) −𝑊 (𝑟)),

⃖⃗𝑊 (𝑟) = ⃖⃗𝐾(𝑟)(𝑇)∏
𝑖
(𝜌𝛾𝑖)

⃖⃗𝑣(𝑟)𝑖 ,

⃗𝐾(𝑇) = 𝐴𝑇𝑛 exp (−𝐸𝑇) .

Here first three equations are equations of conservation of mass (continuity), momentum and
energy respectively; last equations are equations describing change of chemical composition; 𝐹 =
𝐹(𝑥) - dependence of channel area on longitudinal coordinate; 𝑁- number of components in mixture.
The system of equations is closed by thermal and caloric equations of state: 𝜌 = 𝜌 (𝑇, 𝑃, 𝛾), 𝑒 =
𝑒 (𝑇, 𝑃, 𝛾).
The finite volume method with TVD monotonization was used for modeling the flow, and the

Harten-Lax-van Leer scheme was used for calculations of flows through cell boundaries. Since the
resulting ODE system is rigid, it was integrated in two steps: at each step of the Runge-Kutta second-
order method, which integrated the gas-dynamic equations, several steps were performed by the
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Figure 4. Mole-mass concentration distribution of the components in the nozzle

Figure 5. Macroparameter distribution in the nozzle

implicit Rosenbrock method with a frozen Jacobi matrix to integrate the chemical kinetics equations
in each cell.
Figure 4 shows the concentration distributions of some mixture components in the nozzle after

the flow has been established. Uncertainties in the reaction rate constants affect the freezing of the
mixture components, which in turn affects the environmental performance of the engine. The dashed
lines in this figure show a number of Monte Carlo runs. These are all contained in the resulting
estimates. Figure 5 shows the interval estimates of the macro parameters.
Unlike concentrations, uncertainties in rate constants have much less effect on Mach number,

temperature, pressure, etc.

4. Standing detonation wave
According to classical theory, a detonation wave (DW) propagating through an explosive mixture
is a combination of a shock wave (SW) and an adjacent thin zone in which exothermic chemical
reactions take place, ending in chemical equilibrium, with the zone of chemical transformations
propagating at the SW.
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Figure 6. Nozzle profile with two constrictions

In this section, we consider one-dimensional supersonic flow in a nozzle, which is characterized
by the occurrence of a standing detonation wave. Of interest is the case when a standing DW is
realized up to the critical section (CS) and then the flow accelerates again to supersonic velocity at the
transition through the CS. According to the classical theory [29], standing DW in the narrowing part of
the channel is unstable, so for its long-term stable existence the nozzle shape with two constrictions
is used. Mathematical model is a system of equations written in the previous section.
First consider a nozzle shape in which the first contraction is weakly pronounced (figure 6). The

range in which the radius at the expansion section is located is chosen from the solution of the
corresponding steady-state equilibriumproblem. In this range a standingDWis guaranteed, assuming
that all chemical transformations occur infinitely fast. In the previous problem it was obtained that
the uncertainties in the reaction rate constants affect the macro parameters insignificantly, and in
order to enhance their effect, the section of the nozzle where the DW should be established is made
very shallow.

Amixture of H2, O2, N2, Ar is fed to the nozzle inlet with velocity 𝑢 = 2750m / s, pressure 𝑃 = 1 atm
and temperature𝑇 = 400K in the ratio 42 ∶ 21 ∶ 78 ∶ 1 [30]. Four interval uncertainties are introduced
into the kinetic mechanism (table 5), which slow down the corresponding reactions by a hundred
thousand times.
The flow establishment was carried out in several stages. In the first stage, only supersonic flow of

unreacted gas was obtained. In the second stage, a SWwas artificially induced. At the moment when
it was at the required section of the nozzle, the non-interval kinetic mechanism was engaged. In the
third stage, after a standing DWhad been established, the interval kinetic mechanism was used.
Figure 7 shows the distributions of component concentrations in the nozzle. The presence of

uncertainties in the kinetic mechanism strongly affected the width of the interval concentration
estimates, in contrast to the width of the temperature estimates (figure 8). The concentration spikes
in the last three plots are not anomalous and are explained by the fact that basically all chemical
transformations take place in the DW region.

The following example takes a closer look at the structure of the standing DWand how it is affected
by small uncertainties in the reaction rate constants. As before, a nozzle with two constrictions is
used here (figure 9) and the same mixture of H2, O2, N2, Ar is fed to the inlet of the nozzle.
At the point where the DW is roughly to be established, a strong compaction of the computational

grid is performed so that the DW can be considered in detail. Given the constructed spatial grid,
the resulting ODE system contains over 30,000 equations. The nozzle inlet velocity 𝑢 = 2500m / s,
pressure 𝑃 = 1.38 atm and temperature 𝑇 = 391 K.We replace the four interval coefficients in table
5 with two according to table 6. Figure 10 shows the distributions of the interval estimates of the
concentrations of all substances in the nozzle in the vicinity of the standing DWfor several substances.
Figure 11 shows the distribution of Mach number and temperature in the nozzle. Practically

invisible, both temperature and Mach number are interval.
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Table 5
Kinetic mechanism for the system H2 − O2

№ Reaction A, m, mol, s n E , K

1. H2O + H↔ OH +H2 [8.4 × 102, 8.4 × 107] 0 10116

2. O2 + H↔ OH + O [2.2 × 103, 2.2 × 108] 0 8455

3. H2 + O↔ OH + H 1.8 × 104 1 4480

4. O2 + M↔ 2O + M 5.4 × 1012 −1 59400

5. H2 + M↔ 2H + M 2.2 × 108 0 48300

6. H2O + M↔ OH + H + M [1 × 1013, 1 × 1018] −2.2 59000

7. HO + M↔ O + H + M 8.5 × 1012 −1 50830

8. H2O + M↔ 2OH [5.8 × 102, 5.8 × 107] 0 9059

9. H +O2 + M↔ HO2 + M 3.5 × 104 −0.41 −565

10. H2 + O2 ↔ H + HO2 7.39 × 10−1 0.6 26926

11. H2O + O↔ H + HO2 4.76 × 105 2.43 28743

12. H2O +O2 ↔ OH + HO2 1.5 × 109 0.372 36600

13. 2OH↔ H + HO2 1.2 × 107 0.5 20200

14. OH +O2 ↔ O + HO2 1.3 × 107 0 28200

15. H +H2O2 ↔ H2 + HO2 1.6 × 106 0 1900

16. H +H2O2 ↔ H2O + OH 5 × 108 0 5000

17. 2HO2 ↔ H2O2 + O2 1.8 × 107 0 500

18. HO2 + H2O↔ H2O2 + OH 1.8 × 107 0 15100

19. OH + HO2 ↔ H2O2 + O 5.2 × 104 0.5 10600

Table 6
The modified reaction coefficients from table 5

№ Reaction A, m, mol, s n E , K

1. H2O + H↔ OH +H2 8.4 × 107 0 10116

2. O2 + H↔ OH + O 2.2 × 108 0 8455

6. H2O + M↔ OH + H + M 1 × 1018 −2.2 59000

8. H2O + M↔ 2OH 5.8 × 107 0 9059

16. H +H2O2 ↔ H2O + OH [2.5 × 108, 5 × 108] 0 5000

19. OH + HO2 ↔ H2O2 + O [5.2 × 104, 2.6 × 105] 0.5 10600
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Figure 7. Mole-mass concentration distribution of the components in the nozzle

Figure 8. Temperature distribution in the nozzle Figure 9. Nozzle profile with two
pronounced constrictions

When the x-axis is zoomed in 2500 times (inset in the graphs), the structure of the DWbecomes
visible. The temperature plot clearly shows the SW followed by a zone of exothermic chemical
reactions. Here there is a slight shift of the DV front and a slight increase in the ignition delay time.

5. Conclusion
A simulation of combustion of a hydrogen-oxygen mixture in the presence of uncertainties in the
reaction rate constants has been carried out. A mathematical model of nonequilibrium flows has
been developed, taking into account uncertainties in the values of reaction rate constants. Numerical
studies of the effect of uncertainties on the structure of the detonation wave, as well as on the
parameters of the steady-state flow, such as the ignition delay time and the concentration of harmful
substances at the nozzle exit, have been performed. It is obtained that the uncertainties mainly affect
the chemical composition at the nozzle exit and, to a lesser extent, the temperature, Mach number,
and detonation wave. All obtained results do not contradict the already known solutions and coincide
with the solutions obtained by the Monte Carlo method. The solved problems further confirm the
efficiency and universality of the adaptive interpolation algorithm developed earlier
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Figure 10. Distribution of component concentrations in the standing DW region

Figure 11. Mach number and temperature distribution in the standing DV region
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Интервальные модели неравновесных
физико-химических процессов
А. Ю. Морозов1, 2, Д. Л. Ревизников1, 2, В. Ю. Гидаспов2

1Федеральный исследовательский центр “Информатика и управление” Российской академии наук,
ул. Вавилова, д. 44, кор. 2, Москва, 119333, Российская Федерация
2Московский авиационный институт (национальный исследовательский университет), Волоколамское
шоссе, д. 4, Москва, 125993, Российская Федерация

Аннотация. В данной работе рассматривается применение алгоритма адаптивной инетрполяции к за-
дачам химической кинетики и газовой динамики с интервальными неопределенностями констант
скоростей реакций. Значения функций, описывающих скорость реакции, могут значительно различать-
ся, если они были получены разными исследователями. Разница может достигать десятков или сотен
раз. Для учета данных различий в моделях предлагается использовать интервальные неопределенности.
Решение таких задач с интервальными параметрами выполняется с помощью ранее разработанного ал-
горитма адаптивной интерполяции. На примере моделирования горения смеси водорода и кислорода
демонтируется влияние неопределенностей на процесс протекания реакций. Моделируется одномер-
ное неравновесное течение в сопле ракетного двигателя с разной формой сопла, включая сопло с двумя
сужениями, в котором может возникать стоячая детонационная волна. Выполняется численное ис-
следование влияния неопределенностей на структуру детонационной волны, а так же на параметры
установившегося течения, такие как время задержки воспламенения и концентрация вредных веществ
на выходе из сопла.

Ключевые слова: химическая кинетика, газовая динамика, интервальные параметры, интервальные
константы скоростей, сопло, ракетный двигатель, стоячая детонационная волна, алгоритм адаптивной
интерполяции


