Utilization of serpentinite waste for the production of magnesium compounds
- Авторы: Auyeshov A.P1, Arynov K.T1, Yeskibayeva C.Z1, Dzholdasova E.M1, Botabayev N.E1, Mishra В.М1, Kolesnikov A.S1
-
Учреждения:
- Выпуск: Том 8, № 5 (2025)
- Страницы: 135-150
- Раздел: Статьи
- URL: https://journals.rcsi.science/2618-7183/article/view/379666
- DOI: https://doi.org/10.58224/2618-7183-2025-8-5-8
- ID: 379666
Цитировать
Полный текст
Аннотация
Об авторах
A. P Auyeshov
ORCID iD: 0000-0002-3504-9117
K. T Arynov
ORCID iD: 0000-0002-1440-8248
Ch. Z Yeskibayeva
ORCID iD: 0009-0009-8440-1242
E. M Dzholdasova
ORCID iD: 0000-0001-5563-8990
N. E Botabayev
ORCID iD: 0000-0001-8999-7801
В. М Mishra
ORCID iD: 0000-0001-7897-1817
A. S Kolesnikov
ORCID iD: 0000-0002-8060-6234
Список литературы
- Punenkov S.E., Kozlov Yu.S. Chrysotile asbestos and resource conservation in the chrysotile-asbestos industry. Mining Journal of Kazakhstan. 2022. 2. P. 11 – 16.
- Dzhafarov N.N. Some features of the evaluation of chrysotile asbestos deposits. Mining and Geological Journal. Zhitikara. 2013. 3-4 (35-36). P. 8 – 10.
- Kalichenko I.I., Gabdullin A.N. Method for processing serpentinite. Patent RU 2292300, C01F5/02. Publ. 27.01.2007.
- Sagarunyan S.A., Arustamyan A.G., Agamyan E.S., Arakelyan A.M., Sagarunyan A.S. Method for complex processing of serpentinite. Patent RA 2953, C01B33/00, C09C1/00. Publ. 2014.
- Kozlov V.A., Baigenzhenov O.S., Zhusupov K.K., Shevelev V.V. Method for complex processing of chrysotile-asbestos production waste. Patent RK 29779. Publ. 15.04.2015.
- Gabdullin A.N., Kalinichenko I.I., Pecherskikh E.G., Semenishchev V.S. Waste-free nitric acid processing of serpentinite – waste of the asbestos enrichment industry. Proceedings of the II International Scientific and Practical Conference “Modern Resource-Saving Technologies: Problems and Prospects”. Odessa: ONU named after I.I. Mechnikov. 2012. P. 50 – 52.
- Beglaryan H., Isahakyan A., Zulumyan N., Melikyan S., Terzyan A. A study of magnesium dissolution from serpentinites composed of different serpentine group minerals. Minerals Engineering. 2023. 201. 108171. https://doi.org/10.1016/j.mineng.2023.108171
- Peng X., Liu W., Liu W., Wang Z., Yu Q. Optimization ofthe dissolution and crystallization of magnesium sulfate in serpentine acid leaching solution. Comprehensive Utilization of Mineral Resourses. 2023. (2). P. 33 – 40. https://doi.org/10.3969/j.issn.1000-6532.2023.02.007
- Sirota V., Selemenev V., Kovaleva M., Pavlenko I., Mamunin K., Dokalov V., Yapryntsev M. Preparation of crystalline Mg(OH)2 nanopowder from serpentinite mineral. International Journal of Mineral Processing. 2018. 28. P. 499 – 503. https://doi.org/10.1016/j.ijmst.2017.12.018
- Chen Y., Yang X., Wu L., Tong L., Zhu J. Recovery of Mg from H2SO4 Leaching Solution of Serpentine to Precipitate High-Purity Mg(OH)2 and 4MgCO3·Mg(OH)2·4H2O. Minerals. 2023. 13(3). P. 318. https://doi.org/10.3390/min13030318
- Kulikova S.A., Vinokurov S.E., Khamizov R.K., Vlasovskikh N.S., Belova K.Y., Dzhenloda R.K., Konov M.A., Myasoedov B.F. The use of MgO Obtained from Serpentinite in the Synthesis of a Magnesium Potassium Phosphate Matrix for Radioactive Waste Immobilization. Applied Sciences. 2021. 11 (1). P. 220. https://doi.org/10.3390/app11010220
- Teir S., Revitzer H., Eloneva S., Fogelholm C.-J., Zevenhoven R. Dissolution of natural serpentinite in mineral and organic acids. International Journal of Mineral Processing. 2007. 83 (1-2). P. 36 – 46. https://doi.org/10.1016/j.minpro.2007.04.001
- Rimstidt J.D., Brantley S.L., Olsen A.A. Systematic review of forsterite dissolution rate data. Geochimica et Cosmochimica Acta. 2012. 99. P. 159 – 178. https://doi.org/10.1016/j.gca.2012.09.019
- Auyeshov A., Arynov K., Yeskibayeva Ch., Satimbekova A., Alzhanov K. The Thermal Activation of Serpentinite from the Zhitikarinsky Deposit (Kazakhstan). Molecules. 2024. 29. 4455. https://doi.org/10.3390/molecules29184455
- Seliem M.K., Barczak M., Anastosopoulos I., Giannakoudakis D.A. A novel nanocomposite of activated serpentine mineral decorated with magnetic nanoparticles for rapid and effective adsorption of hazardous cationic dyes: Kinetics and equilibrium studies. Nanomaterials. 2020. 10. 684. https://doi.org/10.3390/nano10040684
- Slukovskaya M.V., Kremenetskaya I.P., Mosendz I.A., Ivanova T.K., Drogobuzhskaya S.V., Ivanova L.A., Novikov A.I., Shirokaya A.A. Thermally activated serpentine materials as soil additives for copper and nickel immobilization in highly polluted peat. Environmental Geochemistry and Health. 2023. 45. P. 67 – 83. https://doi.org/10.1007/s10653-022-01263-3
- Auyeshov A., Arynov K., Yeskibayeva Ch., Alzhanov K., Raiymbekov Y. Thermoacid Behavior of Serpentinite of the Zhitikarinsky Deposit (Kazakhstan). Molecules. Basel. Switzerland. 2024. 29. 3965. https://doi.org/10.3390/molecules29163965
- Agacayak T., Zedef V. Dissolution kinetics of a lateritic nickel ore in sulphuric acid medium. Acta Montanistica Slovaca. 2012. 17 (1). P. 13 – 21.
- Crundwell F.K. The dissolution and leaching of minerals: Mechanisms, myths and misunderstandings. Hydrometallurgy. 2013. 139. P. 132 – 148. https://doi.org/10.1016/j.hydromet.2013.08.003
- Pokrovsky O.S., Schott J. Kinetics and mechanism of forsterite dissolution at 25 °C and pH from 1 to 12. Geochimica et Cosmochimica Acta. 2020. 64 (19). P. 3313 – 3325. https://doi.org/10.1016/S0016-7037(00)00434-8
- Holgersson S., Drake H., Karlsson A., Krall L. Biotite dissolution kinetics at pH 4 and 6.5 under anaerobic conditions and the release of dissolved Fe(II). Chemical Geology. 2024. 662. 122204. https://doi.org/10.1016/j.chemgeo.2024.122204
- Yeskibayeva Ch., Auyeshov A., Arynov K., Dikanbayeva A., Satimbekova A. Nature of serpentinite interactions with low-concentration sulfuric acid solutions. Green Processing and Synthesis. 2024. 13. 9. https://doi.org/10.1515/gps-2024-0034
- Pilarska A., Wysokowski M., Markiewicz E., Jesionowski T.Synthesis of magnesium hydroxide and its calcinates by a precipitation method with the use of magnesium sulfate and poly(ethylene glycols).Powder Technology. 2013. 235. P. 148 – 157. https://doi.org/10.1016/j.powtec.2012.10.008
- Jia Y., et al. Effect of magnesium sulfate on the hydration and properties of Portland cement paste. Construction and Building Materials. 2017. 147. P. 810 – 818.
- De Silva P., Glasser F. P. Phase relations in the system MgO-MgCl2-H2O and the durability of magnesium oxychloride cements. Journal of the American Ceramic Society. 1993. 76 (5). P. 1153 – 1158.
- Hollingbery L. A., Hull T. R. The thermal decomposition of huntite and hydromagnesite – A review. Thermochimica Acta. 2010. 509 (1-2). P. 1 – 11.
- Li Z., Yu Q. Preparation and properties of magnesium oxychloride cement-based composites. Journal of Materials in Civil Engineering. 2011. 23 (3). P. 313 – 318.
Дополнительные файлы
