Utilization of serpentinite waste for the production of magnesium compounds

Обложка

Цитировать

Полный текст

Аннотация

The article presents the results of research on the complex processing of powdered man-made serpentinite waste formed during the enrichment of chrysotile raw materials in order to obtain high-purity magnesium compounds and assess the potential of their use in the production of building materials. The relevance of the work is due to the need to dispose of accumulated waste and expand the raw material base for the construction industry within the framework of the principles of circular economy. The developed technology includes the stages of acidic leaching of magnesium from PTW with sulfuric acid, neutralization and purification of the solution using thermally activated PTW (TA-PTW) and subsequent precipitation of the target products. It was found that thermal activation of waste at 750 °C leads to dehydroxylation and the formation of highly reactive phases, forsterite and periclase, which significantly increases their sorption activity. The optimal leaching regime is recognized as the use of 0.7 stoichiometrically normal amount of H₂so₄, which makes it possible to extract 82.5% of magnesium from the amount of acid introduced into the solution. The combined use of the initial and thermally activated PTW provides a degree of magnesium extraction of 52.3% of its total content in the system and effective purification of the magnesium sulfate solution from impurities of iron, aluminum, chromium and nickel. Sequential precipitation from the purified solution made it possible to obtain high–purity magnesium hydroxide with a calcium content of 0.0110%, and its subsequent calcination - magnesium oxide with a calcium content of 0.0187%. Special attention is paid to the prospects of practical application of synthesized compounds in the construction industry. It is shown that magnesium sulfate can be used as a modifying additive in cements and as a sealer for magnesia binders. Magnesium hydroxide is an effective flame retardant filler, and magnesium oxide is the main component for the production of flame–resistant and moisture-resistant magnesia binders and plates such as glass-magnesium sheets. Thus, the work demonstrates not only the technical feasibility of highly efficient processing of serpentinite waste, but also the significant resource potential of the resulting magnesium compounds for creating modern building materials with improved performance characteristics.

Список литературы

  1. Punenkov S.E., Kozlov Yu.S. Chrysotile asbestos and resource conservation in the chrysotile-asbestos industry. Mining Journal of Kazakhstan. 2022. 2. P. 11 – 16.
  2. Dzhafarov N.N. Some features of the evaluation of chrysotile asbestos deposits. Mining and Geological Journal. Zhitikara. 2013. 3-4 (35-36). P. 8 – 10.
  3. Kalichenko I.I., Gabdullin A.N. Method for processing serpentinite. Patent RU 2292300, C01F5/02. Publ. 27.01.2007.
  4. Sagarunyan S.A., Arustamyan A.G., Agamyan E.S., Arakelyan A.M., Sagarunyan A.S. Method for complex processing of serpentinite. Patent RA 2953, C01B33/00, C09C1/00. Publ. 2014.
  5. Kozlov V.A., Baigenzhenov O.S., Zhusupov K.K., Shevelev V.V. Method for complex processing of chrysotile-asbestos production waste. Patent RK 29779. Publ. 15.04.2015.
  6. Gabdullin A.N., Kalinichenko I.I., Pecherskikh E.G., Semenishchev V.S. Waste-free nitric acid processing of serpentinite – waste of the asbestos enrichment industry. Proceedings of the II International Scientific and Practical Conference “Modern Resource-Saving Technologies: Problems and Prospects”. Odessa: ONU named after I.I. Mechnikov. 2012. P. 50 – 52.
  7. Beglaryan H., Isahakyan A., Zulumyan N., Melikyan S., Terzyan A. A study of magnesium dissolution from serpentinites composed of different serpentine group minerals. Minerals Engineering. 2023. 201. 108171. https://doi.org/10.1016/j.mineng.2023.108171
  8. Peng X., Liu W., Liu W., Wang Z., Yu Q. Optimization ofthe dissolution and crystallization of magnesium sulfate in serpentine acid leaching solution. Comprehensive Utilization of Mineral Resourses. 2023. (2). P. 33 – 40. https://doi.org/10.3969/j.issn.1000-6532.2023.02.007
  9. Sirota V., Selemenev V., Kovaleva M., Pavlenko I., Mamunin K., Dokalov V., Yapryntsev M. Preparation of crystalline Mg(OH)2 nanopowder from serpentinite mineral. International Journal of Mineral Processing. 2018. 28. P. 499 – 503. https://doi.org/10.1016/j.ijmst.2017.12.018
  10. Chen Y., Yang X., Wu L., Tong L., Zhu J. Recovery of Mg from H2SO4 Leaching Solution of Serpentine to Precipitate High-Purity Mg(OH)2 and 4MgCO3·Mg(OH)2·4H2O. Minerals. 2023. 13(3). P. 318. https://doi.org/10.3390/min13030318
  11. Kulikova S.A., Vinokurov S.E., Khamizov R.K., Vlasovskikh N.S., Belova K.Y., Dzhenloda R.K., Konov M.A., Myasoedov B.F. The use of MgO Obtained from Serpentinite in the Synthesis of a Magnesium Potassium Phosphate Matrix for Radioactive Waste Immobilization. Applied Sciences. 2021. 11 (1). P. 220. https://doi.org/10.3390/app11010220
  12. Teir S., Revitzer H., Eloneva S., Fogelholm C.-J., Zevenhoven R. Dissolution of natural serpentinite in mineral and organic acids. International Journal of Mineral Processing. 2007. 83 (1-2). P. 36 – 46. https://doi.org/10.1016/j.minpro.2007.04.001
  13. Rimstidt J.D., Brantley S.L., Olsen A.A. Systematic review of forsterite dissolution rate data. Geochimica et Cosmochimica Acta. 2012. 99. P. 159 – 178. https://doi.org/10.1016/j.gca.2012.09.019
  14. Auyeshov A., Arynov K., Yeskibayeva Ch., Satimbekova A., Alzhanov K. The Thermal Activation of Serpentinite from the Zhitikarinsky Deposit (Kazakhstan). Molecules. 2024. 29. 4455. https://doi.org/10.3390/molecules29184455
  15. Seliem M.K., Barczak M., Anastosopoulos I., Giannakoudakis D.A. A novel nanocomposite of activated serpentine mineral decorated with magnetic nanoparticles for rapid and effective adsorption of hazardous cationic dyes: Kinetics and equilibrium studies. Nanomaterials. 2020. 10. 684. https://doi.org/10.3390/nano10040684
  16. Slukovskaya M.V., Kremenetskaya I.P., Mosendz I.A., Ivanova T.K., Drogobuzhskaya S.V., Ivanova L.A., Novikov A.I., Shirokaya A.A. Thermally activated serpentine materials as soil additives for copper and nickel immobilization in highly polluted peat. Environmental Geochemistry and Health. 2023. 45. P. 67 – 83. https://doi.org/10.1007/s10653-022-01263-3
  17. Auyeshov A., Arynov K., Yeskibayeva Ch., Alzhanov K., Raiymbekov Y. Thermoacid Behavior of Serpentinite of the Zhitikarinsky Deposit (Kazakhstan). Molecules. Basel. Switzerland. 2024. 29. 3965. https://doi.org/10.3390/molecules29163965
  18. Agacayak T., Zedef V. Dissolution kinetics of a lateritic nickel ore in sulphuric acid medium. Acta Montanistica Slovaca. 2012. 17 (1). P. 13 – 21.
  19. Crundwell F.K. The dissolution and leaching of minerals: Mechanisms, myths and misunderstandings. Hydrometallurgy. 2013. 139. P. 132 – 148. https://doi.org/10.1016/j.hydromet.2013.08.003
  20. Pokrovsky O.S., Schott J. Kinetics and mechanism of forsterite dissolution at 25 °C and pH from 1 to 12. Geochimica et Cosmochimica Acta. 2020. 64 (19). P. 3313 – 3325. https://doi.org/10.1016/S0016-7037(00)00434-8
  21. Holgersson S., Drake H., Karlsson A., Krall L. Biotite dissolution kinetics at pH 4 and 6.5 under anaerobic conditions and the release of dissolved Fe(II). Chemical Geology. 2024. 662. 122204. https://doi.org/10.1016/j.chemgeo.2024.122204
  22. Yeskibayeva Ch., Auyeshov A., Arynov K., Dikanbayeva A., Satimbekova A. Nature of serpentinite interactions with low-concentration sulfuric acid solutions. Green Processing and Synthesis. 2024. 13. 9. https://doi.org/10.1515/gps-2024-0034
  23. Pilarska A., Wysokowski M., Markiewicz E., Jesionowski T.Synthesis of magnesium hydroxide and its calcinates by a precipitation method with the use of magnesium sulfate and poly(ethylene glycols).Powder Technology. 2013. 235. P. 148 – 157. https://doi.org/10.1016/j.powtec.2012.10.008
  24. Jia Y., et al. Effect of magnesium sulfate on the hydration and properties of Portland cement paste. Construction and Building Materials. 2017. 147. P. 810 – 818.
  25. De Silva P., Glasser F. P. Phase relations in the system MgO-MgCl2-H2O and the durability of magnesium oxychloride cements. Journal of the American Ceramic Society. 1993. 76 (5). P. 1153 – 1158.
  26. Hollingbery L. A., Hull T. R. The thermal decomposition of huntite and hydromagnesite – A review. Thermochimica Acta. 2010. 509 (1-2). P. 1 – 11.
  27. Li Z., Yu Q. Preparation and properties of magnesium oxychloride cement-based composites. Journal of Materials in Civil Engineering. 2011. 23 (3). P. 313 – 318.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).