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Abstract. Timber, an ancient material widely used in construction, possesses unique properties but
exhibits relative brittleness, particularly in bending. To enhance the performance and reinforce
wooden structures, the incorporation of fiber-reinforced polymer (FRP) components has been
proposed as a viable solution. However, the timber-FRP system has received less attention compared
to the concrete-FRP system in literature, resulting in limited prediction models. Thus, the reliability of
these models requires further examination. This research presents an experimental investigation aimed
at evaluating the bond strength of timber members strengthened by FRPs, utilizing a pull-out test with
various FRP sheets and adhesives. The acquired data is combined with existing experimental data
from the literature to propose a novel probabilistic regression model. Furthermore, a comprehensive
reliability analysis of the timber-FRP system is conducted by gathering models previously presented
by researchers. These models are then compared with the newly developed probabilistic models.
Considering three loading levels and defining uncertainty in six influential variables, 192 first-order
reliability analyses are performed in two scenarios: one incorporating the model factor and the other
without it. The results reveal a significant decrease in the reliability index when uncertainties are
considered during member design. The existing models exhibit an average reliability index decrease
from 4.26 to 2.82. Additionally, as anticipated, the influence of the live/dead load ratio on determining
the reliability index diminishes in the presence of uncertainties.
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1. INTRODUCTION

Fiber reinforced polymer (FRP) components, characterized by high-strength fibers embedded in a
polymeric matrix, have gained significant attention due to their lightweight nature, ease of
implementation, and unique properties such as high tensile strength, corrosion resistance, and fatigue
resistance [1]. Consequently, engineers have increasingly utilized FRP in various types of structures,
including concrete, masonry, and timber structures. The most commonly employed types of FRP in
these applications are carbon (CFRP), glass (GFRP), and aramid (AFRP). The primary objective of
incorporating FRP is to enhance the strength and ductility of structural elements such as bridges,
dams, pipelines, and other components. Numerous FRP reinforcement systems have been developed
for masonry and concrete structures, as evidenced in the literature [2-6].

While timber is a renewable and recyclable construction material with widespread application,
certain inherent flaws require thorough investigation. These flaws include biological deterioration over
time and brittle behavior in flexural loading. Strengthening timber members with FRP and adhesive
represents a promising technique to mitigate these shortcomings and enhance the strength and stiffness
of timber structures. Previous studies have explored aspects such as the adhesion quality of timber-
FRP using various types of adhesives and FRP plates [7-10]. The thermal stability of the timber-FRP
system employing epoxy [11, 12], and the reinforcement of wooden beams through FRP sheets and a
prestressing system [13, 14]. Additionally, alternative materials such as nanoclay, glass, and carbon
fibers have been investigated to improve wood properties [5, 15].

Wood and FRP possess a fibrous structure that lends itself well to bonding with an adhesive matrix.
Unlike wood, FRP sheets do not experience a natural reduction in resistance over time. The evaluation
of timber-FRP bond quality typically involves two distinct setups. Modified versions of ISO 6238
(2001) and ASTM D905-03 (2003) tests have been employed by various researchers to assess the
shear strength of the bond between the FRP plate and the timber surface, providing a mean stress
value. However, these tests do not investigate the strain behavior of the FRP plates within the timber
interface. To address this limitation, other researchers have utilized single-shear and double-shear
bonding methods in the timber-FRP system, facilitating the monitoring of the FRP interface and
enabling the development of interface models [16-18].

The configuration of single and double shear tests represents the second failure mode of the bonded
interface and provides valuable experimental data, including bond strength, strain distribution, shear
stress distribution, and slip stress response. These results are crucial for numerical simulations of the
bonding interface and its failure [19, 20]. Extensive experiments have been conducted on the strength
and bonding behavior of FRP with concrete, with single shear testing being the prevalent
configuration [21, 22]. Researchers have also explored the strength and bonding behavior of FRP with
steel using single and double shear tests, although there have been fewer studies on steel-FRP
compared to concrete-FRP.

In concrete-FRP connections, debonding failure often occurs in the concrete layer due to the
adhesive typically being stronger than concrete. In steel-FRP connections, failure can occur in the
adhesive, the steel and adhesive interface, and the FRP and adhesive interface [23,24]. However,
experiments investigating FRP bonding to wood using single and double shear tests are limited,
leading to ongoing development of stress-slip models. Researchers investigated the behavior of FRP
externally bonded to timber. A novel theoretical model was developed to predict composite behavior
by 136 single shear FRP-to-timber joints as well as explored the behavior of bond mechanisms in FRP
composites externally bonded to timber [25, 26]. The study noted that the bond strength significantly
increased with increase in bond width and timber tensile strength. It also contained a numerical
simulation where a finite element analysis could effectively predict the composite behavior by
choosing appropriate constitutive models for materials.

Repairs involving the use of Fiber Reinforced Polymers (FRP) employ various connection systems.
One commonly utilized method is the wet layup technique, which entails the placement of dry fibrous
sheets or resin-impregnated fabrics in situ. This approach, introduces involves the adhesion of FRP
plates to the material's surface using a resin and primer layer, followed by on-site curing. Initially,
studies primarily focused on bonding FRP sheets to concrete elements [27-29]. Kaiser and Karbhari
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were the first to investigate the impact of uncertainties in composites produced through the wet layup
method [30, 31]. They identified potential defects in the system, such as fiber rupture, inappropriate
resin mixtures with impurities, in-situ fabrication errors, and the penetration of moisture or chemicals.
Despite the inherent uncertainties associated with this method, which lead to a wide range of variation
in results, the wet layup technique is frequently employed in repairs due to its flexibility for on-site
applications and cost-effectiveness compared to other methods [32, 33].

In the realm of construction materials, the application of machine learning and regression
techniques has revolutionized the way engineers analyze and predict material properties [34-36]. By
harnessing vast amounts of data on material composition, performance under different conditions, and
environmental factors, machine learning algorithms can uncover complex patterns that traditional
methods might overlook. Regression models, in particular, play a crucial role in predicting material
behaviors based on various input parameters [35, 37, 38]. Through these advanced techniques,
engineers can optimize material selection, anticipate potential weaknesses, and ensure structural
integrity. Moreover, by integrating reliability analysis into these predictive models, stakeholders can
gain deeper insights into the probability of material failure under different scenarios, thus enhancing
the robustness and safety of construction projects.

Reliability analysis has found applications in various fields of civil engineering, including FRP
composites. Atadero and Karbhari conducted a reliability-based design study to calibrate resistance
factors for externally-bonded FRP composites [39, 40]. They investigated the flexural rehabilitation of
reinforced concrete T-beam bridge girders using carbon fiber-reinforced composites as a case study.
Zhou and coworker performed a reliability-based design analysis on reinforced concrete beams,
considering different FRP configurations such as U-jacketing, side bonding, and complete wrapping
[41, 42]. They assessed the accuracy of existing models from the literature and identified the most
suitable model for each configuration. A reliability-based approach to investigate the seismic
performance of reinforced concrete frames with FRP laminates was applied considering environmental
conditions and specific loadings [43]. Reliability analysis of FRP composites subjected to wet-dry
cycles was conducted, focusing on the degradation of FRP laminates under harsh environmental
conditions [44]. They calculated reliability indices and demonstrated that wet-dry cycles adversely
affected tensile strength while minimally impacting the elastic modulus. Chang and his team examined
the effect of uncertainties in existing structures and FRP on structural repairs [45, 46]. They identified
that the most critical uncertainties in structural restoration are related to the area of steel reinforcement
and the strength of the existing structure. Zhang and workers, considering the uncertainties in their
model, investigated the probabilistic analysis of the concrete-FRP bond [47]. They proposed valuable
recommendations for structural strengthening, incorporating eight models from literature.

Existing models on the pullout strength of timber-FRP composites have employed various tools to
propose predictive models. Benedetti and colla calculated ultimate anchorage force with fracture
mechanics concepts using experimental datasets [48]. Also, Juvandes and Barbosa implemented a
bond analysis of timber structures strengthened with FRP systems [49]. They calibrated a previously-
proposed model to predict the maximum anchor strength of the composite. They also recommended
some design criteria. The authors used softwood in the timber-FRP composite and proposed a
predictive model with different variables [8, 50]. A new model to predict the stress and strain
distribution profiles along the interface of timber and FRP was developed [25, 51]. Palizi and Toufigh
used machine learning approach to propose a predictive model based on gene expression
programming. They also proposed other models to predict the bond stress reduction of timber-FRP
composites in acidic/alkaline conditions [37]. Based on the literature investigations, limited research
existed considering uncertainties of the variables in a model. While reliability analysis of FRP
composites has predominantly focused on concrete elements, there is a noticeable absence of
probabilistic studies pertaining to the timber-FRP system. Thus, there is a pressing need to initiate
studies in this direction.

This paper aims to examine the impact of uncertainties on the reliability of timber-FRP composites.
To accomplish this, a novel Bayesian model is introduced, incorporating data obtained from literature
sources and an experimental program. The effectiveness of the model will be evaluated, followed by
an investigation into the uncertainty effects on the reliability of existing deterministic models from
previous studies. Overall, the results of this study highlight the pressing need for robust prediction



CrpourebHble MaTepuabl U n3aeaus/Construction Materials and Products. 2025. 8 (3)

models within the timber-FRP system domain, especially considering their relatively limited
exploration compared to concrete-FRP systems. The proposed Bayesian model, which integrates both
empirical and literature-derived data, offers a promising approach to enhancing the reliability of
predictive tools in this field. Moreover, the identification of a significant decrease in reliability indices
when uncertainties are incorporated into member design underscores the importance of accounting for
uncertainties in structural assessments, thereby providing valuable insights for both practitioners and
researchers.

2. METHODS AND MATERIALS

It is demonstrated that the enhancement of mechanical properties in the timber-FRP system is
significant, and the bond strength quality is more than the same composite with concrete or steel [13].
Accordingly, the efficiency of this system for retrofitting is not hidden from anyone. Nevertheless, one
of the most common failures in this system is debonding of FRP composite adhesive where the total
capacity of FRP is not consumed, and the desired ductility of the structural system is not provided.
Hence, it is concluded that the adhesive's performance directly affects the composite's performance.
Various models based on empirical relationships or failure theories have been proposed in this regard.
However, a lack of efficient models still exists in the wood-FRP system compared to the concrete-FRP
system. Table 1 illustrates the proposed models for the wood-FRP system.

Table 1. Proposed models for bond strength timber-FRP system.
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where "% is the maximum applied load, t , and Ey are the width, thickness, and elasticity modulus

of FRP sheets. bW, tW, and Ew are the width, thickness, and elasticity modulus of timber, respectively.

G

frs is the tensile strength, “@ and ta are shear modulus of adhesive, and Lb and Le are bond length and

effective length of bond. * and t(max) represent the bond strength and the maximum shear stress of
the bond. 4, B, a, and CI-C8 are constants according to the main studies. 1 and 2 are empirically

equal to 0.7 and 10. The factor ke is a symbol of surface preparation and relies between 0.67 to 1.0.

The ku factor is the strengthening level that can be assumed as 1.0. YW and ¥a determine the direction

Cy , CW, and Cr are elastic stiffness, wood axial stiffness, and FRP axial

of the wood and the adhesive.
stiffness, respectively.

In this study, a comprehensive approach was adopted, comprising both experimental investigations
and literature review. The experimental phase involved the implementation of a series of tests aimed at
adding them to the collected data from previous studies, forming a robust dataset. Subsequently, this
combined dataset served as the foundation for the development of a novel predictive model.
Concurrently, various pre-existing models documented in the literature were meticulously collected
for the purpose of conducting a thorough reliability analysis. Through this analysis, the performance
and efficacy of these existing models were critically evaluated. The outcomes of the reliability
analysis were then compared to the newly developed probabilistic model, enabling a comprehensive
comparison of their predictive capabilities. This comparative analysis served as a means to ascertain
the effectiveness and superiority of the proposed model over existing alternatives, thereby contributing
to the advancement of predictive modeling methodologies.

3. RESULTS AND DISCUSSION

3.1. Test details

Table 2 summarizes the experimental program in this research. According to this table, one type of
wood, three types of FRP with two different thicknesses, and three types of adhesive were considered
for preparing the timber-FRP specimens for the pull-out test. Overall, three specimens were prepared
for each experiment, resulting in 54 specimens.
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Table 2. The experimental program.

Number of
Sample No. Timber FRP FRP thickness (mm) | Adhesive tested
samples

1 Carbon 0.16 30

2 Aramid 0.16 30

3 Glass 0.16 30

4 Carbon 0.32 30

5 Aramid 0.32 30

6 Glass 0.32 30

7 Carbon 0.16 300

8 Aramid 0.16 300

9 Glass 0.16 300

10 Hardwood 7 1on 0.32 300 3

11 Aramid 0.32 300

12 Glass 0.32 300

13 Carbon 0.16 330

14 Aramid 0.16 330

15 Glass 0.16 330

16 Carbon 0.32 330

17 Aramid 0.32 330

18 Glass 0.32 330

The timber sample was hardwood with 15 cm wide, 6 cm deep, and 30 cm long, according to Fig.
1. The bond length of FRP to wood was 15 cm, and the free surface to the end of the wood was 2 cm.
The configuration of the timber-FRP system is illustrated in Fig. 2. The specimens are provided with
the wet-layup process. Unidirectional fibers of carbon, aramid, and glass with single and double layers
(nominal thickness of 0.16 mm) were utilized for specimens. Three popular adhesives were used to
stick the FRPs to the timber blocks. The adhesives are epoxy-based from Sika type 30, 300, and 330.
The thickness of the adhesive is constant and equal to 0.5 mm approximately. However, it was
challenging to provide the exact value of the adhesive thickness due to the wet-layup process.

Fig. 1. Details of timber.
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Fig. 2. Configuration of the specimen.

The surface of the timber was cleaned before the composite production by compressed air and
acetone. The tests were performed after ten days of manufacturing the composite. They were stored at
room temperature of 25 degrees Celsius with 60% humidity. Fig. 3 expresses the test setup, which is a
universal testing machine. A slow rate of 0.15 mm/min was used for loading the specimen.

Fig. 3. Universal test setup.

3.2. Material properties

The elasticity modulus and compressive strength of timber were determined by a universal testing
machine according to BS 408:2003 (2006). A total of 10 timber samples were tested in parallel and
perpendicular directions of the grain. The results of timber properties are shown in Table 3.
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Table 3. Timber properties of the experiments.

. Y Elasticity modulus Compressive Strength
Material Grain direction (GPa) (MPa)
Parallel 7.19 (1.4) 34.98 (2.2)
Timber -
Perpendicular 0.21 (0.05) 2.9 (0.3)

Note: The parentheses are standard deviations.
To determine the tensile properties of different types of FRPs, tensile test was conducted [54]. Six
FRP samples with dimensions of 25 ¢cm and 2.5 cm were prepared by the wet-layup technique. The

resulting mechanical properties of all FRP types are expressed in Tables 4.

Table 4. FRP properties of the experiments.

. Aerial weight Tensile Strength Elasticity
CIE ser (2/m2) (MPa) il (CP)
AFRP Aramid 380 686 (12%) 65.1 (5%)
CFRP Carbon 250 591 (9%) 62.3 (7%)
GFRP Glass 360 513 (11%) 60.0 (7%)

Note: The parentheses are coefficient of variation.

The adhesive mechanical properties were tested according to BS EN ISO 527:1996 [55]. Five
samples were prepared according to the standard for each adhesive type. The results are presented in
Table 5.

Table 5. Adhesive properties of the experiments.

Adhesive Elasticity modulus (GPa) Tensile Strength (MPa)
30 9.22 (0.18) 29.5 (1.5)
300 3.62 (0.05) 51.6 (4.2)
330 4.51(0.19) 33.3(1.9)

Note: The parentheses are standard deviations.

3.3. Experimental Results
The ultimate load of each specimen was derived after the test. The values are shown in Table 6. In
this table three tests were performed on each sample and the average value was then calculated.
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Table 6. Experimental results.

Sample Ultimate load (N) Standard
number Test 1 Test 2 Test 3 Average deviation
1 22660 22350 23050 22687 350.8
2 18250 17990 18330 18190 177.8
3 15220 16030 14950 15400 562.0
4 33280 32980 33520 33260 270.6
5 30520 29850 30600 30323 411.9
6 27250 27460 27020 27243 220.1
7 20550 20880 19880 20437 509.5
8 17230 16560 19520 17770 1552.1
9 14330 13120 14980 14143 943.9
10 31550 30100 33250 31633 1576.7
11 28660 34360 27670 30230 3610.8
12 18880 18050 19250 18727 614.5
13 19990 20220 25310 21840 3007.3
14 16630 14950 17770 16450 1418.6
15 13860 12660 15660 13927 1701.0
16 29720 30320 28540 29527 905.6
17 26660 28880 24250 26597 2315.6
18 18200 19620 15330 17717 2185.5

According to the experiments, the dominant failure mode was debonding of the timber-FRP
interface. Before debonding, the load-slip relation was linear. The crack formation started at the end of
the joint and propagated to the unloaded end of the interface. Among adhesive types, type 30
demonstrated higher strength. Adhesive types 300 and 330 showed approximately similar strength;
however, type 300 resulted in slightly better strength. Among FRP types, AFRP provided more
strength than CFRP, and CFRP illustrated better strength performance than the GFRP. CFRP had
approximately 13.3% more strength than GFRP, and almost the similar relation observed between
AFRP and CFRP. It should be noted that AFRPs are more expensive than the two others and utilizing
them in a project should be based on a reasonable logic.

4. Bayesian Regression Model

The Bayesian linear regression analysis was performed to study the relationship between the output
and input variables. Generally, the following equation describes the relationship between the
dependent and independent variables:

Y:elfl(X) +92f2(X)++edfd(X) +E’ (1)

where Y is the target or dependent variable, d is the number of input parameters, Od is the d"

calculated regression coefficient, and fa(x) is the d™ independent variable. € is the model error. The
selection of independent variables is according to the mechanics of the problem and other experiments
from the literature. The results are refined by trial and error of considering different possible cases.

In Bayesian linear regression, prior and posterior probabilities are used to update the model

parameters. In this algorithm, the error of the model (%) has a normal distribution with the mean value

of zero and the variance of 0.2. Also, the model parameters have the T-distribution, which makes the
model capable of evaluating the uncertainty of the model parameters. A prominent privilege of
Bayesian regression is that the probability distribution of model parameters and the model error is
updated by adding new observations.
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Based on experiments performed in this study, and by combining this data with previous
experiments of other researchers [8,37]. A comprehensive dataset of 138 experiments was collected.
This dataset was employed to train a probabilistic model based on the Bayesian regression analysis.
For the regression analysis, 70% of data was randomly separated, and the training proceeded with this
data. However, the 30% remaining of the dataset was employed for validation after determining the
final model.

As previously mentioned, determining an accurate model is a trial-and-error process. In this regard,
different model forms must be defined at the beginning of the analysis. After evaluating the model's
accuracy with statistical indices, the next model form is proposed, and the same process is applied. In
the process of training the model, several model forms with different variables were tested according
to the author’s knowledge of effective parameters in bond strength. During the training, applying the
Buckingham = theorem to create unitless variables and make the model independent of variables
dimensions was tried. After examining these models and omitting the correlated variables due to the
same uncertainty source, and merging different effective parameters as a unique variable, the

following model was extracted as the best predictive model. According to this equation, an intercept
Eaq Aag Sad

besides three random variables including Ef as X1, #r as X2, and St as X3 are considered.

Eaa A.g Sad
B, :Et.At[Eifel+Aifez+Sifeg+e4+s] )
where Py is the ultimate failure load of the system, Et, Ead, and Et are the elasticity modulus of timber,

A

adhesive, and FRP, respectively. At, ad and Ar represent the area of timber, adhesive, and FRP. Sad

and St are the tensile stress of adhesive and FRP. The coefficients of 0, to 04 are the outputs of
regression analysis, each of which contains a mean value, a standard deviation with a normal

distribution, which will be discussed in detail. € is the model error, where in the Bayesian model has a

mean value of zero and a standard deviation value of ©. The standard deviation of the model error has
a normal distribution since there is uncertainty in this value (other data lead to a different value). The

mean values of 0, to 04 and the model error values are displayed in Table 7.

Table 7. The output of the Bayesian regression model.
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Note: COV is the coefficient of variation in %.

According to this table, the COV of all random variables was less than 0.2 percent, which was an
acceptable value. The R-factor was 0.92, demonstrating that the R-squared was 0.85. This value is
considered an acceptable prediction value since it is more than 0.7. The correlation matrix of the
variables is as follows:

1 0.362 —0.056—0.887
0362 1 —0.259—0.517
—0.056-0.259 1 —0.274 3)
—0.887-0.517-0.274 1

10
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The correlation of the three random variables is less than 0.5, demonstrating that the variables are
independent enough to be unique random variables. It is worth noting that models with almost the
same accuracy were derived during the trial and error procedure. However, the random variables in the
model forms were highly correlated and were not appropriate to be the best model form. Fig. 4 and 5
illustrate the model prediction versus the observations for training and validation data, respectively.
The R-squared for validation data is 0.88. Comparing this value with the training R-squared (0.85), no
over-fitting was observed in the training process. According to these figures, training and validation
data are well distributed around the bisector line.

0.0012
R?Z = 0.85

0.0010

0.0008
g f ® )& x x
% 0.0006 xphx
A xx x

0.0004 xR xxix

0.0002 =x x

0.0000

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010 0.0012

Observation
Fig. 4. The observation-prediction diagram of the target value for training data.
0.0012
0.0010
0.0008

0.0006

Prediction

0.0004

0.0002 x %

0.0000
0.0000 0.0002 0.0004 0.0006 0.0008 0.0010 0.0012

Observation

Fig. 5. The observation-prediction diagram of the target value for validation data.

Fig. 6 reveals the residual plots of random variables. Since the variance of residuals was equal over
the range of measured values, no heteroskedasticity was observed from this figure. Hence, the analysis

results were valid.

11
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Fig. 6. Residual plot of three random variables, a) x1, b) x2, and ¢) x3.

5. Reliability Analysis
Since all calculation methods include simplifications, uncertainty always exists in the model. To
define the model factor, the following equation can always be defined [56]:

n = exX Py 4)

m C
Ba" is the bond strength measure from experiments. By

€

where is the bond strength calculated by the

predictive models. “ is the model factor corresponding to any specific model. When the model
coefficient is greater than one, it indicates that the calculated resistance is smaller than the measured
value and vice versa; The closer the average of this coefficient is to one, the more accurate the model
will be. However, coefficients greater than one indicate that the presented model is conservative, and a
value less than one implies an unsafe condition.

The model coefficient was calculated for all data presented in the previous sections and for all five
introduced models. The average of &€ was determined between 0.58 (Palizi and Toufigh model) and
2.94 (Benedetti & Colla model). Based on the average results, Palizi and Toufigh's model was greater
than the measured resistance. In contrast, the prediction of the Benedetti and Kola model is much
smaller than the measured values. Likewise, in the probabilistic model extracted from the previous

12
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section, this parameter was calculated, and the value of 0.74 was specified, demonstrating the model's
acceptable accuracy.
In the reliability analysis, the limit state function for design problems is stated as follows:

G=R-D-L (5)

where G is the limit state function, R is the capacity, and D and L are the demand due to dead and live
loads, respectively. The resistance function R is generally the capacity of the structural members, such

as the moment capacity of a beam. In this research, the resistance function is expressed as the
m
experimental results % |

Sa=wxFh 6)

where 94 is the design load and ¥ is the reduction factor for determining an appropriate level of
reliability index. When the model factor is not available, the reduction factor can be assumed to be
between 0.2 to 0.8.

In this research, to achieve the reliability index of p=3 and based on the calculated coefficient in all
six models, the reduction factor was considered approximately equal to 0.6 by trial and error.
Considering that timber-FRP strengthening can be performed according to different loading scenarios,
three loading levels of 0.75, 1, and 1.25 have been selected based on the live to dead load ratio (1).

By referring to the literature, it was observed that normal, lognormal, and Weibull distributions
were the most used for the modulus of elasticity of adhesive and FRP and their yield stress. For the
present study, the lognormal distribution was employed due to its popularity and the small standard
deviation of the variables. In total, six parameters, including modulus of elasticity, thickness, length,
and width of FRP, along with the width and compressive strength of the timber, were considered as
the design space, which resulted in a sample space of the size 64 (2°). Due to three loading levels, the
number of reliability analyses was 192 (64 x 3). For each case, the first-order reliability analysis
(FORM) method was used to determine the reliability index with the aid of the Hausfer-Lind (1974)
method in order to reduce computational cost. The reliability index can be defined geometrically and
by finding the distance between the points defined by the expected values of the variables and the
closest point on the failure criterion, which can be expressed as follows:

= miny/Ge— TC 2 — ), )

where x is the vector of variables with no uncertainties in the limit state function. # is the mean vector
and C is the covariance matrix of the variables with uncertainties.

Overall, two groups of reliability indices were calculated. The first one was related to six models
(five models in Table 1 and one probabilistic model proposed in this study) without applying the
model coefficient. The second one was with the existence of the model coefficient. When the load
ratio is one, the reliability indices based on all six introduced models are determined according to
Tables 8 and 9. When the model's uncertainty was not considered in the analysis, the calculated
reliability showed the highest value among the two cases. The average reliability index was 4.26 in
this case. However, the determined results of the reliability index for all six models were significantly
different from each other. The highest average beta was related to model number 5, with an average
value of 6.52. This deterministic model was proposed using the genetic programming concept. Also,
model number six, the probabilistic model proposed in this research, ranked second with an average
reliability index of 6.24. By paying curious attention to the data of tables, the dispersion of the data for
each analysis was not very high, and they were in a specific range in this Bayesian model. Whereas, in
models 1 to 4, the difference between the results of each analysis was considerable.
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As expected, applying uncertainty to the models decreased the reliability index, and its average for
all six models approached 2.82. Hence, it can be conceived that neglecting uncertainties in a design
process can lead to very inappropriate results. Based on the results acquired, the effect of uncertainty
in only six main variables in this research was very significant.

Table 8. Reliability index in 64 cases without considering the model coefficient.

Analysis No. | model 1 model 2 model 3 model 4 model 5 model 6
1 2.11 4.19 5.90 432 5.76 5.64
2 3.56 3.59 5.85 4.58 5.55 5.49
3 2.32 5.06 5.83 4.44 5.62 5.76
4 2.46 3.26 5.75 4.96 5.79 5.92
5 2.95 3.11 5.11 4.76 6.26 6.11
6 3.33 3.88 5.18 4.89 6.35 6.18
7 3.70 4.78 5.22 4.55 6.46 6.21
8 2.19 4.11 5.39 4.61 6.42 6.17
9 2.81 4.06 4.44 4.77 6.78 6.15
10 243 3.55 4.96 4.36 6.59 6.35
11 2.39 3.18 5.02 4.39 5.96 6.32
12 1.95 3.26 4.40 4.44 5.90 6.38
13 1.86 4.05 431 4.29 6.06 6.41
14 1.92 4.09 5.3 5.05 6.01 6.5
15 2.63 4.11 5.23 5.11 6.09 6.46
16 2.81 3.96 5.13 5.21 7.11 6.49
17 3.35 3.62 5.17 5.25 7.18 6.56
18 3.44 3.35 5.33 5.15 7.25 6.49
19 3.02 3.45 4.51 5.18 7.34 6.76
20 2.50 3.40 4.60 4.96 7.27 6.91
21 2.11 3.63 4.73 4.92 7.50 6.85
22 2.62 4.22 4.77 4.98 7.62 6.81
23 3.18 3.55 5.8 4.88 7.66 6.97
24 1.73 3.064 5.85 4.39 7.6 7.01
25 3.13 3.78 591 4.75 7.58 7.32
26 4.42 3.11 5.99 4.99 7.71 8.09
27 4.53 3.26 4.84 5.10 7.95 7.96
28 4.60 2.98 4.88 5.14 7.93 7.92
29 4.21 4.16 4.95 5.02 8.05 7.62
30 2.09 4.04 4.96 5.06 8.08 8.56
31 1.96 432 5.39 4.55 8.11 8.52
32 1.88 4.38 5.46 4.67 8.01 7.90
33 1.91 4.45 5.55 4.78 7.54 6.13
34 3.40 4.50 5.64 4.82 7.52 6.01
35 1.87 4.64 5.11 4.92 7.59 5.92
36 2.80 4.68 5.16 4.36 7.56 5.69
37 2.76 4.70 5.22 4.21 7.63 5.36
38 2.77 422 5.00 4.25 6.32 5.34
39 2.85 432 5.03 4.28 6.58 5.2
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Continuation of Table 8

40 2.88 4.78 5.11 4.33 6.46 5.29
41 2.11 4.96 5.16 4.16 6.49 5.21
42 2.19 5.15 4.44 4.46 6.59 5.18
43 2.34 5.19 4.49 4.49 6.41 5.46
44 2.39 5.17 4.55 4.28 6.11 5.39
45 2.08 5.23 4.59 4.35 5.95 5.84
46 1.28 5.14 5.41 4.74 6.06 5.52
47 2.31 4.80 5.46 4.84 5.90 5.66
48 3.45 4.76 5.52 4.89 5.78 5.11
49 3.18 4.44 5.59 4.82 5.86 5.19
50 4.04 4.39 5.79 4.94 5.32 6.23
51 2.23 4.67 5.84 4.99 5.36 6.36
52 2.44 4.75 5.89 4.59 5.39 6.6
53 2.96 4.82 5.92 4.65 5.44 6.52
54 2.33 4.64 4.5 471 5.26 6.46
55 2.19 4.40 4.56 4.88 5.29 5.95
56 3.18 4.16 4.61 431 6.11 591
57 3.25 3.76 4.67 4.35 6.26 5.9
58 2.61 3.57 4.73 4.36 6.31 5.85
59 2.64 3.22 4.78 4.44 6.35 5.75
60 1.36 3.56 4.82 441 5.25 5.73
61 1.96 3.49 4.36 4.72 5.18 5.45
62 1.85 3.32 4.42 4.62 5.15 5.49
63 2.22 3.71 4.44 4.63 5.21 5.51
64 3.16 3.19 4.55 4.69 5.25 5.19
Mean 2.67 4.09 5.11 4.70 6.52 6.24
Total Mean | 4.26

Table 9. Reliability index in 64 cases considering the model coefficient.

Analysis No. | model 1 model 2 model 3 model 4 model 5 model 6
1 1.29 2.51 3.15 2.18 3.20 3.08
2 2.16 2.11 3.11 2.25 3.10 3.00
3 1.39 3.03 3.05 2.11 3.14 3.15
4 1.48 1.95 3.01 2.21 3.19 3.23
5 1.79 1.82 2.75 2.43 3.50 3.34
6 2.04 2.32 2.80 2.49 3.55 3.38
7 2.27 2.86 2.82 2.32 3.61 3.39
8 1.34 241 2.88 2.35 3.50 3.43
9 1.70 2.43 233 2.43 3.79 3.42
10 1.49 2.13 2.61 2.11 3.68 3.53
11 1.46 1.86 2.71 2.24 3.33 3.51
12 1.20 1.95 2.33 2.27 3.18 3.54
13 1.14 2.43 2.30 2.19 3.39 3.56
14 1.18 241 2.82 2.50 3.36 3.61
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Continuation of Table 9

15 1.60 2.46 2.83 2.61 3.45 3.59
16 1.72 2.37 2.77 2.66 3.93 3.65
17 2.06 2.14 2.79 2.68 3.97 3.69
18 2.08 2.01 2.80 2.57 4.01 3.65
19 1.85 2.07 2.44 2.64 4.06 3.80
20 1.51 1.97 249 2.53 4.02 3.88
21 1.27 2.17 2.50 243 4.14 3.85
22 1.61 241 2.58 2.54 4.21 3.83
23 1.95 2.13 3.14 249 4.23 3.92
24 1.06 2.18 3.04 2.24 4.20 3.89
25 1.90 2.16 3.19 2.30 4.19 4.07
26 2.71 1.86 3.24 2.55 4.26 4.49
27 2.78 1.91 2.56 2.60 4.39 4.42
28 2.82 1.66 2.64 2.62 4.38 4.40
29 2.58 2.49 2.68 2.56 4.45 4.23
30 1.28 242 2.68 2.58 4.46 4.76
31 1.20 2.59 291 2.32 4.48 4.84
32 1.15 2.62 2.86 2.38 4.43 4.49
33 1.17 2.61 3.00 2.35 4.17 3.48
34 2.04 2.69 3.05 2.46 4.15 341
35 1.11 2.56 2.70 2.51 4.19 3.36
36 1.72 2.49 2.79 2.22 4.18 3.23
37 1.69 2.81 2.82 2.05 4.22 3.05
38 1.70 2.53 2.61 2.17 3.57 3.00
39 1.75 2.59 2.66 2.18 3.72 2.92
40 1.65 2.86 2.76 2.21 3.65 3.01
41 1.29 2.90 2.79 2.04 3.67 2.96
42 1.34 3.01 2.40 2.28 3.72 2.94
43 1.40 3.11 243 2.29 3.62 3.10
44 1.47 3.10 2.35 2.01 3.45 3.06
45 1.28 3.08 248 2.22 3.27 3.32
46 0.79 3.08 2.92 242 3.33 3.14
47 1.42 2.87 2.95 248 3.24 3.22
48 2.09 2.85 2.85 249 3.18 2.90
49 1.95 2.61 3.02 2.55 3.22 2.95
50 2.48 2.58 3.02 2.52 2.92 3.54
51 1.37 2.80 3.16 2.51 2.95 3.61
52 1.50 2.84 3.18 2.34 2.96 3.75
53 1.82 2.89 3.20 2.37 2.99 3.70
54 1.40 2.71 2.35 2.40 2.89 3.57
55 1.34 2.63 2.46 2.49 291 3.29
56 1.95 2.49 249 2.11 3.36 3.27
57 1.92 2.25 2.52 2.22 3.44 3.26
58 1.60 2.08 248 2.14 3.47 3.23
59 1.62 1.93 2.58 2.27 3.49 3.18
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Continuation of Table 9

60 0.80 2.10 2.61 2.25 2.88 3.17

61 1.20 2.09 2.36 2.41 2.85 3.01

62 1.13 1.96 2.25 2.36 2.83 3.03

63 1.36 2.18 2.40 2.36 2.86 3.04

64 1.94 1.88 2.46 2.32 2.88 2.87

Mean 1.63 2.42 2.73 2.37 3.61 3.49
Total Mean 2.82

In Fig. 7, the reliability index from the FORM analysis is plotted in terms of the ratio of the live to
dead load defined earlier. As mentioned, three load ratios of 0.75, 1, and 1.25 were considered.
According to this figure, the level of the reliability index becomes much more uniform considering the
model coefficient and regardless of the model type. The reduction of the beta reliability index for the
case without considering the model coefficient was quite clear when the load ratio increased, and a
particular decreasing trend could be seen in its diagram. On the other hand, no particular trend was
captured considering the uncertainties, and the variation range of the index exhibited a uniform value

regardless of the model type. This result is consistent with the other study [57].

Fig. 7. The reliability index versus variation of load ratio, a) without considering the uncertainty, b)
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Table 10.
Design Road pavement structure Symbols
variant
1 1 — binder-treated pavement layer
—— /,1 2 — reinforced base layer
b- : = :: j/fﬂ GM - geosynthetic material
o LB ) .9 M
CONOY
o <
2 1 —reinforced base layer
GM — geosynthetic material
3 1, 2 — covering layers
3,4, 5 —Dbase layers
6 — reinforced additional base layer
GM - geosynthetic material
(R RS ey
T AP A
4. CONCLUSIONS

In this research, a probabilistic approach was employed to assess the models in the design process
of timber-FRP composites. First, an experimental program was implemented to investigate the bond
strength of the timber-FRP system. Afterward, the data of the experiments was combined with other
data from the literature, and a comprehensive set was collected. The dataset was then applied to
Bayesian regression analysis, and a probabilistic formulation was derived. Besides the new proposed
model, few existing deterministic models were collected from the literature to investigate all models'
reliabilities. The reliability index of all models was calculated under three different load ratios of 0.75,
1, and 1.25. The following highlights were achieved in this study:

e  According to the experimental study, AFRP had the best strength performance in timber-FRP
composites. However, GFRP was the weakest among all three tested FRPs (AFRP, CFRP, and
GFRP).

e  The experiments demonstrated that using hardwood instead of softwood caused the failure
mode of the timber-FRP pull-out test to be debonding of adhesive and FRP.

e Although three types of adhesives with approximately similar properties were employed in
this study, the adhesive type also affected the bond strength value.

e  The probabilistic-based models seemed more reliable since uncertainties have been considered
in the formulation process.

e  Considering the uncertainties in deterministic models, the reliability index decreased notably.
It should be noted that the uncertainty of only six variables was considered in this research.
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Increasing the load ratio in the limit state function decreased the reliability index when

uncertainties were not considered.

As expected, the load ratio effect in the reliability index was removed when the uncertainties

were considered.

These findings underscore the significance of accounting for uncertainties in the design and
analysis of timber-FRP composites. The probabilistic approach offers a more robust and reliable
framework, enhancing the understanding of the performance and reliability of these composites. By
considering uncertainties, engineers and practitioners can make informed decisions and develop more
accurate design guidelines for timber-FRP systems, ultimately ensuring their structural integrity and
performance in real-world applications.
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