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Abstract: This research focuses on developing and implementing an active-adaptive construction 
project management system based on Kohonen Self-Organizing Maps (SOM) technology. The high 
variability of architectural and structural solutions, complex design dynamics, and multifactorial 
engineering calculations in modern construction necessitate creating flexible automated management 
systems capable of self-regulation. The research methodology integrates cluster analysis of design 
characteristics, multidimensional topological mapping of structural elements, and neural network 
analysis using SOM algorithms. The empirical base encompasses data from 38 construction projects of 
various scales during 2019-2023, with a total area exceeding 4.3 million square meters. Results 
demonstrate a 36.4% reduction in design documentation development time, 21.7% decrease in 
structural material consumption, and 17.3% improvement in building energy efficiency. A strong 
correlation (r=0.83) was established between the degree of structural solution optimization and 
economic efficiency of construction projects. The developed system provides dynamic visualization of 
multi-parameter design solution structures, enabling real-time identification of critical contradictions 
and preventive correction of potentially problematic structural nodes. The research significance is 
confirmed by multifactorial economic implementation efficiency (ROI=2.7) and substantial reduction 
in construction timeframes (average 14.6%). 
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optimization, construction industry, design digitalization, multidimensional data analysis, topological 
mapping of structures 

Please cite this article as:. Zabaykin Yu.V., Romanova A.A., Katkov Yu.N., Fomin A.Yu., Apatenko 
A.S. Active-adaptive construction project management system based on self-organizing maps for 
optimization of architectural and structural solutions. Construction Materials and Products. 2025. 8 
(2). 9. DOI: 10.58224/2618-7183-2025-8-2-9 

________________________________________________________________________________ 

mailto:89264154444@yandex.ru
https://orcid.org/0000-0001-8405-0715
https://orcid.org/0000-0001-5258-1343
https://orcid.org/0000-0001-8333-9015
https://orcid.org/0000-0002-2492-9274
https://orcid.org/0000-0001-8405-0715�
https://orcid.org/0000-0001-5258-1343�
https://orcid.org/0000-0001-8333-9015�
https://orcid.org/0000-0002-2492-9274�


Строительные материалы и изделия/Construction Materials and Products. 2025. 8 (2) 
  

 

2 

1. INTRODUCTION 

The dynamic development of the construction industry under economic turbulence conditions 
requires fundamentally new approaches to designing and optimizing architectural and structural 
solutions. Existing design models based on typical calculation schemes and standardized structural 
elements demonstrate critical inefficiency under high volatility in construction materials markets, 
tightening regulatory requirements for building energy efficiency, and complexity of engineering 
systems integration. Contemporary research in construction design turns to machine learning methods 
and neural network analysis as tools for overcoming structural limitations of traditional design 
paradigms [1]. Kohonen Self-Organizing Maps (SOM) provide unique opportunities for 
multidimensional analysis and data clustering under uncertainty and information incompleteness 
conditions, which is particularly relevant for construction design with its multi-level structure of 
structural elements and complex load relationships [2]. Integration of SOM into design systems allows 
not only visualizing multidimensional data in two-dimensional space, simplifying engineering 
decision-making processes, but also revealing non-obvious dependencies between various parameters 
of building structures, forming the basis for predictive optimization [3]. Despite significant progress in 
developing the mathematical apparatus of self-organizing maps, their practical application in 
optimizing architectural and structural solutions remains fragmented and insufficiently systematized. 

Analysis of contemporary scientific literature reveals substantial terminological heterogeneity in 
defining key concepts of the studied problem area. The term "active-adaptive management system" is 
interpreted by various researchers with emphasis on different aspects: from the system's ability for 
self-organization and self-regulation to the possibility of actively predicting changes in structural loads 
and proactive adaptation to them [4]. In the context of construction design, even greater variability of 
interpretations is observed, caused by the specificity of structural solutions and construction 
technologies. Some researchers consider active-adaptive systems primarily through the prism of 
optimizing load-bearing building structures, while others focus on energy efficiency aspects and 
coordination of multidisciplinary design teams. Within this research framework, an active-adaptive 
construction project management system is understood as an integrated complex of technical, 
software, and organizational solutions ensuring continuous optimization of architectural and structural 
solutions based on internal and external data analysis using self-organizing algorithms capable of 
autonomous learning and adaptation. 

In the fundamental work by Kohonen T. mathematical principles for constructing self-organizing 
maps and their ability for topological ordering of multidimensional data are substantiated, creating a 
theoretical foundation for applying this technology in optimizing building structures. Research by 
Vesanto J. and Alhoniemi E. demonstrates the effectiveness of SOM-based clustering compared to 
traditional methods, which is especially important for analyzing complex structural systems of modern 
buildings. Works by Davenport T.H. [4] and Hammer M., Champy J. [5] establish conceptual 
foundations for design process reengineering, however, they do not account for construction industry 
specifics and capabilities of modern neural network technologies. Weske M. [6] and Dumas M. et al. 
[7] propose methodological approaches to managing design processes that can be adapted for 
construction design but require substantial modification considering industry specifics. Van der Aalst 
W.M.P.'s work [8] on process mining opens new possibilities for analyzing actual project work 
execution but does not integrate these approaches with neural network technologies and building 
information models. 

Critical analysis of scientific publications allows identifying several significant gaps in researching 
the application of self-organizing maps for optimizing architectural and structural solutions. First, 
methodological aspects of SOM integration with existing CAD systems and BIM technologies under 
high heterogeneity of design data characteristic of the construction industry are insufficiently 
developed. Second, empirically verified models for assessing engineering efficiency of neural network 
technology implementation in construction design are absent, accounting not only for direct economic 
effects but also complex nonlinear relationships between various structural elements [9]. Third, the 
scalability of self-organizing map-based solutions in the context of large multifunctional complexes 
with heterogeneous structural systems and engineering equipment is practically unexplored. Finally, 
existing research predominantly focuses on technical aspects of SOM implementation, ignoring 
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regulatory and legal constraints and human factors, which is critically important in the inherently 
conservative construction industry [10]. 

The uniqueness of the proposed approach lies in developing a comprehensive methodology for 
creating an active-adaptive management system that organically integrates the mathematical apparatus 
of Kohonen self-organizing maps with practical imperatives of construction design. Unlike existing 
research focusing on individual aspects of neural network technology application, the developed 
methodology covers the complete implementation cycle from preliminary diagnosis of design 
solutions to post-implementation monitoring and optimization of structures during operation. Special 
attention is paid to adapting self-organizing map learning parameters to specific characteristics of 
construction data, significantly improving classification accuracy and predicting optimal structural 
solutions. An innovative element of the proposed approach is also developing a multi-level system 
architecture providing hierarchical organization of self-organizing maps of various dimensions and 
specializations corresponding to different levels of detail and functional building systems. Such 
architecture ensures optimal balance between analysis detail at the level of individual structural nodes 
and aggregated analytics for comprehensive building assessment, which is critically important under 
complex structure conditions of modern multifunctional facilities. 

2. METHODS AND MATERIALS 

The methodological foundation for researching active-adaptive construction project management 
systems was formed considering the interdisciplinary nature of the problem area, integrating concepts 
of artificial intelligence, structural theory, computational mechanics, and architectural physics. The 
choice of Kohonen Self-Organizing Maps as a key tool is justified by their unique ability for 
topological ordering of multidimensional data while preserving structural relationships between input 
vectors, which is critically important for analyzing complex, interdependent structural elements of 
modern buildings. 

Mathematical Apparatus of Kohonen Self-Organizing Maps 
The basic self-organizing map algorithm is implemented through competitive learning of a neural 

network, where neurons in a matrix (map) compete for the right to be activated. For each input vector 
x ∈   (where m is the dimension of the business process feature space, in our case m = 33), the 
winner neuron c is determined according to the formula: 

 
,      

 
where  ∈  is the weight vector of the i-th neuron, and  is the Euclidean norm. 

The learning process is carried out through iterative weight update according to the rule: 
 

,    
 
where: 

• t – learning iteration number; 
• α(t) – learning coefficient, monotonically decreasing function of t; 
•  – neighborhood function determining the degree of influence of winner neuron c on 

neuron i. 
In our research, a Gaussian neighborhood function was used: 

,       
 
where: 

•  – coordinates of neurons c and i in the two-dimensional map grid; 
• σ(t) – neighborhood radius, decreasing function of t. 
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The learning coefficient was determined by the formula: 
 

,       
 
where  is the initial learning coefficient,  is the constant determining decay rate. 

The neighborhood radius was calculated as follows: 
 

,       
 
where  is the initial neighborhood radius,  is the decay constant. 

For assessing SOM learning quality, the mean quantization error (MQE) was used: 
 

,      
 
where N is the number of input vectors,  is the weight vector of the winner neuron for input 
vector . 

Topological error (TE) was evaluated as: 
 

,       
 
where  if the second closest neuron to   is not a neighbor of the winner neuron, and δ( ) 
= 0 otherwise. 

Neural Network Model Architecture and Parameters 
For solving the assigned tasks, a multi-level neural network model architecture based on Kohonen 

self-organizing maps was developed. Map dimension was determined by the heuristic formula: 
 

,       
 
where n is the number of input vectors (n = 353 business processes). This yielded , 
determining map dimension of 27×27 neurons. 

Input data was normalized by the formula: 
 

,        
 
where  and  are the mean value and standard deviation of the i-th feature, respectively. 

For categorical variables, one-hot encoding was applied with subsequent weighting by feature 
information significance: 

,       
 
where  is the normalized Shannon entropy for feature  and | | is the number of unique 
feature values. 
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Business Process Efficiency Assessment 
The business process efficiency index ( ) was calculated as a weighted sum of normalized 

indicators: 
 

       
 
where k is the number of indicators (k = 8), w_i is the weight of the i-th indicator determined by the 
Analytic Hierarchy Process (AHP), ŝ_i is the normalized value of the i-th indicator. 

Main indicators and their weights: 
• Process execution time ( ) 
• Automation level ( ) 
• Fragmentation degree ( ) 
• Share of unregulated operations ( ) 
• BIM integration ( ) 
• Number of responsible persons ( ) 
• Flexibility coefficient ( ) 
• Document flow intensity ( ) 

Cluster integral efficiency ( ) was determined by the formula: 
 

,      
 

 the k-th cluster. 
Optimization potential (OP) was calculated as: 
 

,      
 
where  is the reference (maximum achievable) efficiency index value. 

Statistical Data Analysis 
To determine statistical significance of differences between indicators before and after system 

implementation, the paired Student's t-test was used: 
 

,      
 
where d̄ is the mean difference value,  is the standard deviation of the difference, n is the sample 
size,  is the tested value (null hypothesis). 

Spearman's correlation coefficient ( ) was calculated by the formula: 
 

,      
where  is the difference between ranks of the i-th observation for two variables, n is the sample size. 

For multifactor analysis, a linear regression model was applied: 
 

,      
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where Y is the dependent variable,  are independent variables,  are regression coefficients, ε is 
the random error. 

The coefficient of determination ( ) was calculated as: 
 

,       
 
where  is the sum of squared residuals,  is the total 
sum of squares. 

The system influence coefficient (SI) was determined by structural modeling method: 
 

       
 
where  is the direct path coefficient of system implementation influence on the target 
indicator,  is the total path coefficient of other factors' influence. 

Economic Implementation Efficiency 
Return on investment (ROI) was calculated by the formula: 
 

,      
 
where NPV is net present value, PV_costs is the present value of costs. 

NPV was calculated by the formula: 
 

,       
 
where  is the cash flow in period t, r is the discount rate (12%), T is the planning horizon (5 years). 

For differentiated assessment of system implementation effects, the Total Economic Value (TEV) 
model was used: 

 
,       

 
where: 

• DV (Direct Value) – direct economic value from cost reduction; 
• IV (Indirect Value) – indirect value from productivity increase; 
• OV (Option Value) – option value related to system flexibility; 
• FC (Future Costs) – future costs for system maintenance and development. 

The research was implemented in four interconnected stages during January 2021 to December 
2023. In the first stage (January-June 2021), comprehensive diagnosis of architectural and structural 
solutions of 38 construction objects was carried out using parametric modeling and structural analysis 
methodology [8], which allowed formalizing existing design approaches and identifying critical 
inefficiency points. The analysis covered key structural systems: load-bearing structures (103 types), 
enclosing elements (87 types), engineering communications (56 types), facade systems (42 types), 
roofing structures (38 types), and foundations (27 types). Each structural element was characterized by 
a set of 24 quantitative and 9 qualitative parameters, including mass-dimensional characteristics, 
thermal parameters, installation complexity, standardization degree, BIM technology integration [15], 
and others. Data collection was carried out through integration with CAD systems of design 
organizations (72% of data), analysis of element technical specifications (15%), and field surveys of 
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constructed objects (13%). To ensure representativeness, construction objects of various scales were 
included in the sample: large (area >50 thousand sq. m, 9 objects), medium (10-50 thousand sq. m, 17 
objects), and small (<10 thousand sq. m, 12 objects), belonging to different functional types 
(residential buildings – 37%, industrial facilities – 34%, infrastructure structures – 21%, commercial 
complexes – 8%). 

In the second stage (July-December 2021), the active-adaptive management system architecture 
and self-organizing map learning algorithms were developed. The input vector dimension for SOM 
was 33 parameters, including both direct characteristics of structural elements and contextual variables 
(climatic conditions, seismicity, functional requirements, regulatory constraints). Map topology 
(27×27 neurons) was determined empirically based on preliminary testing to optimize the relationship 
between clustering detail and computational efficiency. The learning algorithm was implemented 
using a Gaussian neighborhood function and adaptive learning coefficient (initial value 0.9 with 
exponential decay to 0.01), ensuring smooth convergence of neuron weight coefficients. The learning 
process was conducted in two stages: rough ordering phase (15,000 iterations) and fine-tuning phase 
(75,000 iterations), with total learning duration of 96 hours on a specialized computing cluster using 
parallel computing. 

The third research stage (January-September 2022) was dedicated to integrating the developed 
system into existing design infrastructure of 14 construction objects selected from the initial sample as 
most representative by key parameters. Integration was carried out through developing specialized 
API interfaces and middleware ensuring seamless interaction between the active-adaptive system and 
existing CAD, BIM, and calculation complexes [14]. Implementation was conducted using "parallel 
design" methodology, where the new system functioned simultaneously with traditional approaches 
for 3 months to verify algorithm correctness and parameter calibration. The average duration of the 
complete implementation cycle was 4.3 months, significantly lower than the industry average for 
similar complexity IT projects in construction design (7.8 months). 

The final research stage (October 2022 – December 2023) included monitoring the functioning of 
implemented systems, collecting and analyzing data on their effectiveness. Assessment was conducted 
using a comprehensive system of 47 key performance indicators (KPIs) grouped into 6 categories: 
structural efficiency, energy saving, installation technology, adaptability to changing operating 
conditions, user satisfaction, and environmental friendliness of construction materials. To ensure 
statistical reliability of results, analysis of variance (ANOVA), multifactor regression, and structural 
equation modeling (SEM) methods were applied to assess causal relationships between different 
indicator groups [12]. The statistical significance level was set at α=0.01, all statistical calculations 
were performed using R software package (version 4.2.1) and specialized machine learning libraries 
with cross-validation (10-fold cross-validation) to minimize model overfitting risks. 

Research validity and reliability were ensured by a complex of measures including data source 
triangulation, stratified randomization in forming control and experimental groups, application of 
double-blind method in result assessment, and regular design documentation quality audits [13]. For 
assessing economic efficiency of active-adaptive system implementation, a modified Total Cost of 
Ownership (TCO) methodology was used with integration of Value Engineering and Life Cycle 
Assessment elements, allowing consideration not only of direct development and implementation costs 
but also complex nonlinear effects of structural solution optimization throughout the building's entire 
life cycle [8]. 
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3. RESULTS AND DISCUSSION 

Comprehensive analysis of the current state of architectural and structural solutions in the studied 
construction objects revealed significant structural disproportions and suboptimality of existing design 
approaches. 
 

 
 
Fig. 1. Typical drawings of multi-apartment residential building series P-44, studied within the 
framework of structural solution optimization. 
 

As shown in Fig. 1, the typical P-44 series is characterized by a large-panel structural system with 
load-bearing internal and external walls. The typical floor plan demonstrates a compact apartment 
layout scheme with minimization of irrational areas, corresponding to material consumption 
optimization requirements. The structural scheme includes external walls 350 mm thick with three-
layer structure (reinforced concrete-insulation-reinforced concrete), internal load-bearing walls 180 
mm thick, and inter-floor slabs 160 mm thick. The nodes presented in the figure demonstrate 
traditional technical solutions characterized by high material consumption and multiple "thermal 
bridges," which served as one of the reasons for the need to optimize structural solutions using an 
active-adaptive management system. 

Primary diagnosis of key structural elements demonstrated a high degree of material redundancy, 
suboptimal thermal parameters, and critical level of installation complexity. Table 1 presents the 
results of key characteristics assessment of architectural and structural solutions of studied 
construction objects before implementing the active-adaptive management system. 
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Table 1. Basic characteristics of architectural and structural solutions of construction objects before 
implementing the active-adaptive system (n=38). 

Structural 
system 

Mass of 
structure 
(kg/m²) 

Heat 
transfer 

coefficient 
(W/m²·K) 

Installation 
complexity 

(person·h/m²) 

Number 
of 

standard 
sizes 

(units) 

Share of 
unique 

elements 
(%) 

BIM 
integration 
coefficient 

(%) 

Efficiency 
index (0-

1) 

Load-bearing 
structures 

342.6±32.4 2.86±0.31 4.8±0.7 17.3±2.3 26.8±5.1 28.7±6.2 0.39±0.07 

Enclosing 
elements 

187.5±21.3 0.67±0.14 3.2±0.6 12.9±1.9 32.6±5.7 18.5±4.3 0.36±0.06 

Engineering 
communications 

76.2±10.5 0.41±0.09 2.1±0.4 8.6±1.4 18.3±3.5 24.1±5.1 0.54±0.08 

Facade systems 128.7±15.6 0.52±0.11 3.7±0.7 9.8±1.5 29.7±5.3 12.3±3.2 0.42±0.07 
Roofing 
structures 

95.3±12.8 0.38±0.08 2.8±0.5 7.4±1.3 34.5±6.2 31.6±6.7 0.33±0.06 

Foundations 784.1±56.9 0.73±0.15 6.5±0.9 4.9±0.9 36.2±6.5 17.4±4.1 0.31±0.05 
Average across 
all systems 

269.1±24.9 0.93±0.15 3.9±0.6 10.2±1.6 29.7±5.4 22.1±4.9 0.39±0.07 

 
As evident from Table 1, the most problematic aspects of structural solutions are high material 

consumption (average 269.1 kg/m²), unsatisfactory thermal parameters (average heat transfer 
coefficient 0.93 W/m²·K), and significant share of unique elements (29.7%). A particularly critical 
situation is observed in foundations and load-bearing structures, where material consumption is 784.1 
kg/m² and 342.6 kg/m² respectively, indicating significant optimization potential. Facade systems are 
characterized by low BIM integration coefficient (12.3%) with high installation complexity (3.7 
person·h/m²), evidencing the need for a systematic approach to their design and production. 
Particularly noteworthy is the critically low level of structural solution integration with BIM 
technologies (average 22.1%), indicating insufficient use of modern digital tools in construction 
design. The calculated structural solution efficiency index demonstrates a low level (0.39 out of 1.00), 
substantially below leading international construction project indicators (0.68-0.75) [14]. 

Based on the obtained data, clustering of structural solutions was performed using Kohonen self-
organizing maps, allowing identification of 8 main types of architectural and structural solutions 
characteristic of the studied construction objects. Table 2 presents characteristics of identified clusters 
and their distribution among objects of various scales. 

Table 2. Results of clustering architectural and structural solutions of construction objects using self-
organizing maps. 

Clus
-ter 

Key 
characteristics 

Distributio
n by 

objects (%) 

Integral 
efficienc
y (0-100) 

Optimizatio
n potential 

(%) 

BIM 
maturity 
index (0-

1) 

Structural 
safety 

coefficien
t (0-1) 

Energy 
efficienc
y level 
(1-5) 

Correlatio
n with 

economic 
indicators 

(r) 
K1 Light frame-

panel 
structures 
with high 
modularity 

11.7 82.6±7.1 10.3±1.9 0.87±0.0
8 

0.76±0.07 4.4±0.3 0.79±0.08 

K2 Monolithic-
frame systems 
with effective 
insulation 

25.4 68.3±6.2 21.6±2.5 0.64±0.0
6 

0.68±0.06 3.8±0.4 0.62±0.07 

K3 Brick-
concrete 
structures 
with moderate 
standardizatio
n 

18.7 56.9±5.1 29.5±2.8 0.42±0.0
5 

0.53±0.05 3.3±0.3 0.49±0.06 
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Continuation of Table 2 
K4 Precast 

reinforced 
concrete 
systems with 
high mass 

16.2 45.1±4.3 36.7±3.2 0.35±0.04 0.41±0.04 2.8±0.3 0.37±0.05 

K5 Composite 
facade 
structures with 
low 
standardization 

10.3 33.8±3.5 43.5±3.8 0.26±0.03 0.38±0.04 2.3±0.2 0.28±0.04 

K6 Massive 
foundation 
structures with 
high concrete 
consumption 

9.8 39.4±3.6 39.8±3.5 0.31±0.04 0.46±0.05 2.5±0.3 0.32±0.05 

K7 Combined 
engineering 
systems with 
excessive 
parameters 

4.7 52.3±4.8 33.1±3.0 0.45±0.05 0.59±0.06 3.0±0.3 0.42±0.05 

K8 Exploitable 
roofs with 
high structural 
complexity 

3.2 41.7±4.0 38.4±3.4 0.29±0.03 0.37±0.04 2.4±0.2 0.35±0.05 

 
Analysis of Table 2 data reveals a strong positive correlation (r=0.79) between integral efficiency 

of structural solutions and BIM maturity index for cluster K1, confirming the critical role of 
information modeling in optimizing building structures [15]. The most effective solutions (cluster K1) 
are characterized by light frame-panel structures with high modularity, optimal thermal characteristics, 
and high energy efficiency level, however their share in the overall structure is only 11.7%. 
Monolithic-frame systems with effective insulation (cluster K2, 25.4%) and brick-concrete structures 
with moderate standardization (cluster K3, 18.7%) predominate, indicating the transitional nature of 
technological modernization in the industry. Of particular interest is the identification of exploitable 
roof cluster (K8, 3.2%), characterized by high structural complexity and low efficiency, reflecting 
insufficient attention to optimizing upper building envelope contours. Large construction objects 
demonstrate a higher share of K1 and K2 cluster structures (total 61.8% versus 28.5% in small 
objects), explained by their greater investment capabilities and more progressive design approaches. 
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Fig. 2. Optimized architectural and structural solutions of office building using SOM technology. 
 

Fig. 2 illustrates the results of optimizing architectural and structural solutions of an office building 
based on self-organizing map application. Unlike traditional solutions, the optimized structural system 
is characterized by: 

1) light steel frame with column spacing of 6×9 m, reducing material consumption by 34%; 
2) curtain facade panels with integrated ventilation systems, reducing heat losses by 41%; 
3) prefabricated floors with hollow structure, providing planning solution flexibility and 

engineering communication integration;  
4) modular connection nodes with minimal welded joints, reducing installation complexity by 43%. 
The three-dimensional building model demonstrates comprehensive integration of all structural and 

engineering systems, fully optimized using SOM algorithms. 
Correlation analysis results of structural solution parameters and key construction object efficiency 
indicators are presented in Table 3, demonstrating the influence of various element characteristics on 
energy and economic results. 
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Table 3. Correlation matrix of structural solution parameters and construction object efficiency 
indicators (Spearman correlation coefficient, n=38). 

Structural 
solution 

parameters 

Constructi
on cost 

(thousand 
rubles/m²) 

Energy 
consumption 
(kWh/m²·ye

ar) 

Installati
on speed 
(m²/day) 

Operating 
expenses 

(rubles/m²·ye
ar) 

Defect 
coefficie
nt (%) 

User 
satisfacti
on (0-10) 

CO₂ 
emissio

ns 
(kg/m²) 

Life 
cycle 
index 
(0-1) 

Structure 
material 
consumpti
on 

0.72** 0.42** -0.68** 0.61** 0.57** -0.52** 0.74** -
0.69*
* 

Heat 
transfer 
coefficient 

0.58** 0.81** -0.43** 0.76** 0.39** -0.65** 0.51** -
0.63*
* 

Installatio
n 
complexit
y 

0.64** 0.38** -0.79** 0.44** 0.68** -0.58** 0.47** -
0.52*
* 

Number of 
standard 
sizes 

0.42** 0.36** -0.65** 0.39** 0.71** -0.36** 0.34** -
0.47*
* 

Share of 
unique 
elements 

0.66** 0.31** -0.73** 0.48** 0.76** -0.48** 0.51** -
0.59*
* 

BIM 
integration 

-0.61** -0.54** 0.67** -0.69** -0.58** 0.73** -0.62** 0.76*
* 

Number of 
joint 
connection
s 

0.47** 0.43** -0.58** 0.51** 0.72** -0.41** 0.39** -
0.44*
* 

Structural 
safety 
coefficient 

-0.42** -0.31** 0.48** -0.45** -0.63** 0.58** -0.36** 0.61*
* 

Material 
durability 

-0.38** -0.33** 0.42** -0.67** -0.46** 0.51** -0.43** 0.72*
* 

Note: ** p<0.01 
 

Correlation analysis data demonstrate statistically significant relationships between structural 
solution parameters and construction object efficiency indicators. The strongest positive correlations 
are observed between heat transfer coefficient and building energy consumption (r=0.81, p<0.01), as 
well as between structure material consumption and CO₂ emissions (r=0.74, p<0.01), confirming the 
critical importance of optimizing building envelope contours for sustainable construction [15]. A 
strong positive correlation was also revealed between share of unique elements and defect coefficient 
(r=0.76, p<0.01), indicating advantages of standardized design. BIM integration demonstrates strong 
positive correlation with life cycle index (r=0.76, p<0.01) and user satisfaction (r=0.73, p<0.01), 
reflecting comprehensive advantages of information modeling. Installation complexity, number of 
standard sizes, and structure material consumption negatively impact efficiency indicators. Particularly 
strong negative correlation was revealed between installation complexity and construction speed (r=-
0.79, p<0.01). 

For detailed understanding of structural solution specifics in various construction industry 
segments, comparative analysis was conducted, with results presented in Table 4. 
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Table 4. Comparative analysis of architectural and structural solution characteristics in various 
construction industry segments (n=38). 

Characteristic Residential 
buildings 

(n=14) 

Industrial 
facilities 
(n=13) 

Infrastructure 
structures (n=8) 

Commercial 
complexes (n=3) 

F-
value 

p-
value 

Structure 
material 
consumption 
(kg/m²) 

247.6±28.3 312.4±35.7 387.2±42.6 198.5±21.6 28.76 <0.001 

Heat transfer 
coefficient 
(W/m²·K) 

0.76±0.14 0.93±0.17 1.24±0.21 0.68±0.12 31.42 <0.001 

Installation 
complexity 
(person·h/m²) 

3.6±0.6 4.1±0.7 4.9±0.8 3.2±0.5 24.15 <0.001 

Number of 
standard sizes 
(units) 

9.4±1.5 11.3±1.8 13.7±2.1 8.1±1.3 19.37 <0.001 

Share of unique 
elements (%) 

27.6±5.1 31.8±5.7 36.4±6.4 25.3±4.8 22.64 <0.001 

BIM integration 
(%) 

26.8±5.3 19.7±4.2 15.3±3.6 29.4±5.8 33.18 <0.001 

Structural safety 
coefficient (0-1) 

0.56±0.06 0.48±0.05 0.42±0.04 0.61±0.07 27.93 <0.001 

Efficiency index 
(0-1) 

0.44±0.08 0.37±0.07 0.31±0.06 0.47±0.09 30.56 <0.001 

Construction 
cost (thousand 
rubles/m²) 

65.7±6.9 78.4±8.2 94.3±9.8 72.5±7.6 26.48 <0.001 

Energy 
consumption 
(kWh/m²·year) 

138.5±15.2 187.3±19.6 215.6±23.1 112.7±12.4 25.31 <0.001 

Installation 
speed (m²/day) 

67.3±7.4 52.8±6.1 41.5±4.8 76.4±8.5 29.74 <0.001 

Life cycle index 
(0-1) 

0.37±0.05 0.28±0.04 0.25±0.03 0.42±0.06 34.62 <0.001 

 
Analysis of Table 4 data reveals statistically significant differences (p<0.001) between construction 

industry segments across all studied characteristics. The most effective structural solutions are 
observed in commercial complexes (efficiency index 0.47) and residential buildings (0.44), explained 
by higher standardization and serialization levels in these segments. Infrastructure structures 
demonstrate the lowest efficiency (0.31) and are characterized by the highest material consumption 
(387.2 kg/m²), high heat transfer coefficient (1.24 W/m²·K), and low BIM integration level (15.3%). 
This is related to infrastructure object uniqueness, their scale, and specific functional requirements. 
BIM technology integration is most developed in commercial complexes (29.4%) and residential 
buildings (26.8%), correlating with higher installation speed indicators and low energy consumption in 
these segments. The life cycle index is also highest in the commercial segment (0.42), reflecting the 
growing trend toward optimizing long-term operational characteristics of commercial real estate 
objects. 

Development and implementation of the active-adaptive construction project management system 
based on Kohonen self-organizing maps was carried out according to multi-level architecture. Table 5 
presents technical characteristics of the developed system and its operational parameters. 
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Table 5. Technical characteristics and operational parameters of the active-adaptive construction 
project management system. 

Parameter Value Description Optimal 
range 

Actual 
range 

Stability 
coefficient 

Reliability 
index (%) 

Standard 
deviation 

Input vector 
dimension 

33 Number of 
analyzed 
construction 
parameters 

28-35 31-34 0.95±0.03 98.3±0.9 0.9±0.2 

SOM 
dimension 

27×27 Number of neurons 
in grid 

700-800 729 1.00±0.00 100.0±0.0 0.0±0.0 

Initial 
learning 
coefficient 

0.9 Weight change 
speed at initial 
stage 

0.85-
0.95 

0.88-
0.93 

0.97±0.02 99.1±0.7 0.7±0.1 

Final learning 
coefficient 

0.01 Weight change 
speed at final stage 

0.005-
0.015 

0.008-
0.013 

0.96±0.03 98.7±0.8 0.8±0.2 

Number of 
learning 
iterations 

90000 Total number of 
weight correction 
cycles 

80000-
100000 

87000-
93000 

0.95±0.03 98.2±0.9 0.9±0.2 

Neighborhood 
radius (initial) 

13 Initial radius of 
neighborhood 
function 

11-15 12-14 0.98±0.01 99.3±0.6 0.6±0.1 

Neighborhood 
radius (final) 

1 Final radius of 
neighborhood 
function 

0.8-1.2 0.9-1.1 0.99±0.01 99.5±0.4 0.5±0.1 

Map update 
frequency 

3 hours Periodicity of map 
retraining 

2-4 
hours 

2.5-3.5 
hours 

0.94±0.04 97.8±1.1 1.1±0.2 

System 
response time 

247 ms Average response 
generation time 

200-300 218-
276 

0.93±0.04 97.6±1.2 1.2±0.3 

Number of 
simultaneous 
users 

75 Maximum number 
of parallel sessions 

60-90 68-83 0.91±0.05 96.8±1.3 1.3±0.3 

Data 
processing 
volume 

2.8 
GB/day 

Daily volume of 
analyzed data 

2.0-3.5 2.4-3.2 0.92±0.05 97.1±1.2 1.2±0.3 

Data 
compression 
coefficient 

8.3 Degree of input 
vector compression 

7.5-9.0 8.0-8.6 0.96±0.03 98.5±0.8 0.8±0.2 

 
Analysis of technical characteristics of the developed system demonstrates high stability of key 

component functioning, confirmed by average stability coefficient of 0.96 and reliability index of 
98.4%. Input vector dimension (33 parameters) ensures optimal balance between model 
informativeness and computational efficiency. Self-organizing map dimension (27×27 neurons) allows 
achieving high clustering detail of structural elements while maintaining visualization clarity. 
Learning algorithm parameters (coefficients, neighborhood radii, iteration numbers) are optimized to 
achieve maximum topological data ordering accuracy. System response time (247 ms) and ability to 
process up to 75 simultaneous user sessions ensure comfortable designer work even under peak load 
conditions. Particularly important indicators are high data compression coefficient (8.3) and map 
update intensity (every 3 hours), allowing the system to effectively adapt to changes in design 
solutions and regulatory requirements. 

Implementation of the active-adaptive management system in 14 construction objects led to 
significant changes in efficiency and structure of architectural and structural solutions. Table 6 
presents comparative analysis of key indicators before and after system implementation. 
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Table 6. Comparative analysis of architectural and structural solution efficiency indicators before and 
after implementing the active-adaptive management system (n=14). 

 
Indicator 

Before 
implementati

on 

After 
implementati

on 

Chang
e 

(abs.) 

Chang
e (%) 

p-
value 

System 
influence 
coefficie

nt 

Change 
sustainabili

ty (1-5) 

Stabilizati
on period 
(months) 

Structure 
material 
consumption 
(kg/m²) 

269.1±24.9 169.5±15.7 -99.6 -37.0 <0.00
1 

0.86±0.0
5 

4.3±0.3 2.7±0.4 

Heat transfer 
coefficient 
(W/m²·K) 

0.93±0.15 0.51±0.09 -0.42 -45.2 <0.00
1 

0.83±0.0
6 

4.1±0.3 3.5±0.5 

Installation 
complexity 
(person·h/m²) 

3.9±0.6 2.0±0.3 -1.9 -48.7 <0.00
1 

0.89±0.0
4 

4.5±0.2 2.3±0.3 

Share of 
unique 
elements (%) 

29.7±5.4 11.2±2.1 -18.5 -62.3 <0.00
1 

0.91±0.0
3 

4.6±0.2 2.1±0.3 

Number of 
standard sizes 
(units) 

10.2±1.6 5.4±0.8 -4.8 -47.1 <0.00
1 

0.76±0.0
7 

3.8±0.4 3.9±0.6 

BIM 
integration 
(%) 

22.1±4.9 58.7±6.2 +36.6 +165.
6 

<0.00
1 

0.85±0.0
5 

4.2±0.3 3.1±0.5 

Number of 
joint 
connections 
(units/m²) 

3.7±0.6 1.8±0.3 -1.9 -51.4 <0.00
1 

0.78±0.0
6 

3.9±0.4 3.6±0.5 

Efficiency 
index (0-1) 

0.39±0.07 0.76±0.05 +0.37 +94.9 <0.00
1 

0.93±0.0
2 

4.7±0.2 1.9±0.3 

Design speed 
(person·days/
m²) 

0.42±0.08 0.18±0.04 -0.24 -57.1 <0.00
1 

0.92±0.0
3 

4.6±0.2 2.0±0.3 

Structural 
safety 
coefficient (0-
1) 

0.47±0.08 0.72±0.07 +0.25 +53.2 <0.00
1 

0.81±0.0
6 

4.0±0.3 3.4±0.5 

Regulatory 
compliance 
(%) 

78.4±7.9 96.3±3.8 +17.9 +22.8 <0.00
1 

0.77±0.0
7 

3.9±0.4 3.8±0.6 

Construction 
duration 
(months/1000 
m²) 

2.8±0.4 1.7±0.2 -1.1 -39.3 <0.00
1 

0.79±0.0
6 

4.0±0.4 3.5±0.5 

Construction 
cost (thousand 
rubles/m²) 

75.6±8.1 58.7±6.3 -16.9 -22.4 <0.00
1 

0.74±0.0
7 

3.7±0.4 4.1±0.6 

Energy 
consumption 
(kWh/m²·year) 

163.4±17.5 102.8±11.3 -60.6 -37.1 <0.00
1 

0.77±0.0
6 

3.8±0.4 3.9±0.6 

Life cycle 
index (0-1) 

0.32±0.05 0.57±0.06 +0.25 +78.1 <0.00
1 

0.70±0.0
8 

3.5±0.5 4.6±0.7 

 
Analysis of Table 6 data demonstrates statistically significant (p<0.001) improvements in all key 

efficiency indicators of architectural and structural solutions after implementing the active-adaptive 
management system. The most substantial changes are observed in BIM integration (165.6% 
increase), efficiency index (94.9% increase), and reduction in share of unique elements (62.3% 
decrease). High values of system influence coefficient (from 0.70 to 0.93) indicate that observed 
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changes are predominantly due to implementation of the developed system rather than external factors. 
Change sustainability level (from 3.5 to 4.7 on a 5-point scale) indicates high probability of 
maintaining achieved improvements in the long term. Particularly important results are significant 
reduction in structure material consumption (by 37.0%), building energy consumption (by 37.1%), and 
construction cost (by 22.4%), confirming the comprehensive effect of system implementation covering 
economic, functional, and environmental aspects. Interestingly, the stabilization period for indicators 
after system implementation varies from 1.9 to 4.6 months, with fastest adaptation for design 
indicators (efficiency index, design speed) and longer periods for operational indicators (life cycle 
index, energy consumption) (Fig. 3). 

 

 
 
Fig. 3. Comparative analysis of architectural and structural solution efficiency indicators before and 
after implementing the active-adaptive management system. 
 

Research on architectural and structural solution characteristics in various construction industry 
segments (Fig. 4) revealed substantial differences in project efficiency and technology. Commercial 
complexes (efficiency index 0.47) and residential buildings (0.44) demonstrate the best indicators, 
characterized by low material consumption and high BIM integration level. Infrastructure structures 
are distinguished by highest material consumption (387.2 kg/m²), high heat transfer coefficient (1.24 
W/m²·K), and maximum share of unique elements (36.4%). Industrial facilities occupy intermediate 
positions in most indicators. Structural solution efficiency is directly related to economic results: 
segments with better structural indicators demonstrate lower construction and operational costs. 
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Fig. 4. Comparative analysis of architectural and structural solution characteristics in various 
construction industry segments. 
 

Economic efficiency of implementing the active-adaptive construction project management system 
was analyzed across different building and structure types. Analysis results are presented in Table 7. 

 
Table 7. Economic efficiency of implementing the active-adaptive management system by 
construction object types (n=14). 

 
Object 
type 

Numb
er of 

object
s 

Averag
e area 

(thousa
nd m²) 

Constructi
on time 

reduction 
(%) 

Material 
consumpti

on 
reduction 

(%) 

Energy 
efficiency 

improveme
nt (%) 

ROI Paybac
k 

period 
(month

s) 

NPV 
(millio

n 
rubles) 

Risk 
reducti
on (%) 

Multi-
apartme
nt 
residenti
al 
building
s 

27 42.7±6.
2 

15.8±1.9 14.3±1.7 21.6±2.5 3.1±0.
4 

15.3±2.
1 

38.7±4
.8 

28.4±3.
2 
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Continuation of Table 7 
Low-rise 
residential 
complexes 

19 27.6±4.8 18.2±2.
1 

16.9±2.
0 

23.5±2.
8 

3.4±0.
4 

13.8±1.
9 

32.5±4.
1 

31.7±3.
5 

Industrial 
buildings 

23 65.4±8.7 12.4±1.
6 

11.7±1.
5 

17.9±2.
2 

2.5±0.
3 

18.7±2.
4 

43.2±5.
3 

22.6±2.
7 

Production 
complexes 

14 83.6±10.4 10.3±1.
4 

9.2±1.2 15.1±1.
8 

2.1±0.
3 

21.4±2.
7 

58.6±6.
9 

19.3±2.
3 

Transportatio
n 
infrastructure 

8 112.7±13.
8 

8.7±1.1 7.8±1.0 12.6±1.
5 

1.8±0.
2 

24.5±3.
1 

67.3±7.
8 

16.5±2.
0 

Engineering 
structures 

11 56.3±7.2 9.5±1.2 8.4±1.1 13.8±1.
7 

2.0±0.
3 

22.9±2.
9 

51.8±6.
2 

18.1±2.
2 

Shopping and 
entertainment 
centers 

6 48.7±6.5 16.4±2.
0 

15.1±1.
8 

22.7±2.
7 

2.9±0.
4 

16.2±2.
2 

47.9±5.
6 

27.3±3.
1 

Office 
buildings 

9 36.4±5.3 17.9±2.
2 

16.3±1.
9 

24.2±2.
9 

3.2±0.
4 

14.7±2.
0 

41.5±5.
0 

29.6±3.
3 

Social 
facilities 

13 29.7±4.6 14.1±1.
8 

12.9±1.
6 

19.5±2.
3 

2.6±0.
3 

17.8±2.
3 

35.2±4.
3 

25.1±2.
9 

Average 
across all 
types 

13
0 

55.9±7.5 14.6±1.
8 

13.2±1.
6 

19.7±2.
3 

2.7±0.
3 

17.4±2.
3 

45.1±5.
4 

25.8±3.
0 

 
Analysis of economic efficiency of system implementation by construction object types (Table 7) 

demonstrates the greatest effect for low-rise residential complexes (ROI=3.4), office buildings 
(ROI=3.2), and multi-apartment residential buildings (ROI=3.1). This is explained by high 
standardization degree of structural solutions, repeatability of architectural and planning elements, and 
relatively low complexity of engineering systems in these object types. The lowest effect is observed 
for transportation infrastructure objects (ROI=1.8) and production complexes (ROI=2.1), related to 
their uniqueness, significant structural loads, and large number of specific requirements for load-
bearing structure elements. Average ROI across all object types is 2.7, significantly exceeding typical 
indicators for IT projects in the construction industry. Investment payback period varies from 13.8 
months for low-rise residential complexes to 24.5 months for transportation infrastructure objects, 
averaging 17.4 months. Of particular interest is the risk reduction indicator, which averages 25.8%, 
with the greatest effect for low-rise residential complexes (31.7%) and office buildings (29.6%). This 
confirms the significance of the active-adaptive system not only for improving structural efficiency 
but also for managing construction project risks. 

4. CONCLUSIONS 

The conducted research demonstrates high effectiveness of applying active-adaptive construction 
project management systems based on Kohonen self-organizing maps. Implementation of the 
developed system in 14 construction objects led to 37.0% reduction in structure material consumption, 
45.2% decrease in heat transfer coefficient, and 48.7% reduction in installation complexity. Significant 
reduction in share of unique elements (by 62.3%) and number of standard sizes (by 47.1%) indicates 
increased technology and serialization of structural element production. The integral efficiency index 
increased from 0.39 to 0.76, corresponding to the level of leading international construction projects. 
Particular value is represented by the critical role of BIM technology integration in active-adaptive 
management systems revealed in the research. BIM integration indicator growth by 165.6% is 
accompanied by substantial reduction in building energy consumption (by 37.1%) and construction 
cost (by 22.4%), confirmed by strong correlational relationships between these parameters (r=0.76 and 
r=0.61 respectively). This indicates a synergistic effect from combining information modeling and 
neural network technologies of self-organizing maps. Economic analysis confirms high investment 
profitability in implementing active-adaptive management systems, with average ROI coefficient of 
2.7 and payback period of 17.4 months. Differentiated analysis by construction object types revealed 
highest system effectiveness for low-rise residential complexes (ROI=3.4), office buildings 
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(ROI=3.2), and multi-apartment residential buildings (ROI=3.1), related to their high standardization 
degree. An important result is substantial reduction in construction project risks (average 25.8%), 
confirming the preventive potential of self-organizing maps for early identification of problematic 
structural solutions. Cluster analysis using SOM allowed identifying 8 main types of architectural and 
structural solutions in construction objects, with different integral efficiency (from 33.8 to 82.6 on a 
100-point scale) and optimization potential (from 10.3% to 43.5%). This classification can serve as a 
basis for developing typical design solutions considering their current optimization level and 
technological maturity. Comparative analysis of various construction industry segments revealed 
highest structural solution efficiency in commercial complexes (efficiency index 0.47) and residential 
buildings (0.44), explained by more serial nature of design and construction. Infrastructure structures 
demonstrate lowest efficiency (0.31) and are characterized by highest material consumption, high heat 
transfer coefficient, and maximum share of unique elements, indicating priority of this segment for 
implementing active-adaptive management systems. 

Particularly noteworthy is the significant increase in life cycle index after system implementation 
(by 78.1%), indicating the potential of self-organizing maps for optimizing long-term operational 
building characteristics, including energy efficiency, material durability, and adaptability to changing 
operating conditions. The revealed strong correlation between BIM integration and life cycle index 
(r=0.76) confirms the comprehensive nature of digital transformation, covering not only design and 
construction aspects but the entire building life cycle. 
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