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Abstract: This research focuses on developing and implementing an active-adaptive construction
project management system based on Kohonen Self-Organizing Maps (SOM) technology. The high
variability of architectural and structural solutions, complex design dynamics, and multifactorial
engineering calculations in modern construction necessitate creating flexible automated management
systems capable of self-regulation. The research methodology integrates cluster analysis of design
characteristics, multidimensional topological mapping of structural elements, and neural network
analysis using SOM algorithms. The empirical base encompasses data from 38 construction projects of
various scales during 2019-2023, with a total area exceeding 4.3 million square meters. Results
demonstrate a 36.4% reduction in design documentation development time, 21.7% decrease in
structural material consumption, and 17.3% improvement in building energy efficiency. A strong
correlation (r=0.83) was established between the degree of structural solution optimization and
economic efficiency of construction projects. The developed system provides dynamic visualization of
multi-parameter design solution structures, enabling real-time identification of critical contradictions
and preventive correction of potentially problematic structural nodes. The research significance is
confirmed by multifactorial economic implementation efficiency (ROI=2.7) and substantial reduction
in construction timeframes (average 14.6%).
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1. INTRODUCTION

The dynamic development of the construction industry under economic turbulence conditions
requires fundamentally new approaches to designing and optimizing architectural and structural
solutions. Existing design models based on typical calculation schemes and standardized structural
elements demonstrate critical inefficiency under high volatility in construction materials markets,
tightening regulatory requirements for building energy efficiency, and complexity of engineering
systems integration. Contemporary research in construction design turns to machine learning methods
and neural network analysis as tools for overcoming structural limitations of traditional design
paradigms [1]. Kohonen Self-Organizing Maps (SOM) provide unique opportunities for
multidimensional analysis and data clustering under uncertainty and information incompleteness
conditions, which is particularly relevant for construction design with its multi-level structure of
structural elements and complex load relationships [2]. Integration of SOM into design systems allows
not only visualizing multidimensional data in two-dimensional space, simplifying engineering
decision-making processes, but also revealing non-obvious dependencies between various parameters
of building structures, forming the basis for predictive optimization [3]. Despite significant progress in
developing the mathematical apparatus of self-organizing maps, their practical application in
optimizing architectural and structural solutions remains fragmented and insufficiently systematized.

Analysis of contemporary scientific literature reveals substantial terminological heterogeneity in
defining key concepts of the studied problem area. The term "active-adaptive management system" is
interpreted by various researchers with emphasis on different aspects: from the system's ability for
self-organization and self-regulation to the possibility of actively predicting changes in structural loads
and proactive adaptation to them [4]. In the context of construction design, even greater variability of
interpretations is observed, caused by the specificity of structural solutions and construction
technologies. Some researchers consider active-adaptive systems primarily through the prism of
optimizing load-bearing building structures, while others focus on energy efficiency aspects and
coordination of multidisciplinary design teams. Within this research framework, an active-adaptive
construction project management system is understood as an integrated complex of technical,
software, and organizational solutions ensuring continuous optimization of architectural and structural
solutions based on internal and external data analysis using self-organizing algorithms capable of
autonomous learning and adaptation.

In the fundamental work by Kohonen T. mathematical principles for constructing self-organizing
maps and their ability for topological ordering of multidimensional data are substantiated, creating a
theoretical foundation for applying this technology in optimizing building structures. Research by
Vesanto J. and Alhoniemi E. demonstrates the effectiveness of SOM-based clustering compared to
traditional methods, which is especially important for analyzing complex structural systems of modern
buildings. Works by Davenport T.H. [4] and Hammer M., Champy J. [5] establish conceptual
foundations for design process reengineering, however, they do not account for construction industry
specifics and capabilities of modern neural network technologies. Weske M. [6] and Dumas M. et al.
[7] propose methodological approaches to managing design processes that can be adapted for
construction design but require substantial modification considering industry specifics. Van der Aalst
W.M.P.'s work [8] on process mining opens new possibilities for analyzing actual project work
execution but does not integrate these approaches with neural network technologies and building
information models.

Critical analysis of scientific publications allows identifying several significant gaps in researching
the application of self-organizing maps for optimizing architectural and structural solutions. First,
methodological aspects of SOM integration with existing CAD systems and BIM technologies under
high heterogeneity of design data characteristic of the construction industry are insufficiently
developed. Second, empirically verified models for assessing engineering efficiency of neural network
technology implementation in construction design are absent, accounting not only for direct economic
effects but also complex nonlinear relationships between various structural elements [9]. Third, the
scalability of self-organizing map-based solutions in the context of large multifunctional complexes
with heterogeneous structural systems and engineering equipment is practically unexplored. Finally,
existing research predominantly focuses on technical aspects of SOM implementation, ignoring
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regulatory and legal constraints and human factors, which is critically important in the inherently
conservative construction industry [10].

The uniqueness of the proposed approach lies in developing a comprehensive methodology for
creating an active-adaptive management system that organically integrates the mathematical apparatus
of Kohonen self-organizing maps with practical imperatives of construction design. Unlike existing
research focusing on individual aspects of neural network technology application, the developed
methodology covers the complete implementation cycle from preliminary diagnosis of design
solutions to post-implementation monitoring and optimization of structures during operation. Special
attention is paid to adapting self-organizing map learning parameters to specific characteristics of
construction data, significantly improving classification accuracy and predicting optimal structural
solutions. An innovative element of the proposed approach is also developing a multi-level system
architecture providing hierarchical organization of self-organizing maps of various dimensions and
specializations corresponding to different levels of detail and functional building systems. Such
architecture ensures optimal balance between analysis detail at the level of individual structural nodes
and aggregated analytics for comprehensive building assessment, which is critically important under
complex structure conditions of modern multifunctional facilities.

2. METHODS AND MATERIALS

The methodological foundation for researching active-adaptive construction project management
systems was formed considering the interdisciplinary nature of the problem area, integrating concepts
of artificial intelligence, structural theory, computational mechanics, and architectural physics. The
choice of Kohonen Self-Organizing Maps as a key tool is justified by their unique ability for
topological ordering of multidimensional data while preserving structural relationships between input
vectors, which is critically important for analyzing complex, interdependent structural elements of
modern buildings.

Mathematical Apparatus of Kohonen Self-Organizing Maps

The basic self-organizing map algorithm is implemented through competitive learning of a neural
network, where neurons in a matrix (map) compete for the right to be activated. For each input vector
x € R™ (where m is the dimension of the business process feature space, in our case m = 33), the

winner neuron c¢ is determined according to the formula:

-

¢ = argmin|lx — w;
where w; € R™ is the weight vector of the i-th neuron, and || - [|2 is the Euclidean norm.
The learning process is carried out through iterative weight update according to the rule:

Wies1) = Wite) + @lt) - hoge - [2(8) — wip)

where:
e t—learning iteration number;
e a(t) — learning coefficient, monotonically decreasing function of t;
e Ry — neighborhood function determining the degree of influence of winner neuron ¢ on
neuron i.
In our research, a Gaussian neighborhood function was used:

I — %17
heite) = exp T

’

where:
e 1.1 € R* - coordinates of neurons ¢ and i in the two-dimensional map grid,;

e o(t) —neighborhood radius, decreasing function of t.
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The learning coefficient was determined by the formula:

al(t) = a® exp (—%)

7

where crg = 0.9 is the initial learning coefficient, 7y = 30000 is the constant determining decay rate.
The neighborhood radius was calculated as follows:

g(t)= o exp (—T—t:)

’

where gy = 13 is the initial neighborhood radius, T = 20000 is the decay constant.
For assessing SOM learning quality, the mean quantization error (MQE) was used:

1 ; 2
MQE = (5)- oyl wo
where N is the number of input vectors, w.(;) is the weight vector of the winner neuron for input
vector x;.

Topological error (TE) was evaluated as:

1 o
TE = (ﬁ) Il y8(x;)

where &(x;) = 1 if the second closest neuron to X; is not a neighbor of the winner neuron, and 3(x ;)

= 0 otherwise.

Neural Network Model Architecture and Parameters

For solving the assigned tasks, a multi-level neural network model architecture based on Kohonen
self-organizing maps was developed. Map dimension was determined by the heuristic formula:

gridgz. = T‘Gu?ld(S - -.-"H]
where n is the number of input vectors (n = 353 business processes). This yielded gridg-. & 27,

determining map dimension of 27%27 neurons.
Input data was normalized by the formula:

where }i; and o; are the mean value and standard deviation of the i-th feature, respectively.

For categorical variables, one-hot encoding was applied with subsequent weighting by feature

information significance:
H{X;)

Ww. = l -
‘ loga( x|

where H(X;) is the normalized Shannon entropy for feature X;, and |X;| is the number of unique
feature values.
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Business Process Efficiency Assessment
The business process efficiency index (Egp) was calculated as a weighted sum of normalized

indicators:
Egp = IF_,w,;- &
EBp — =fi=1} Wi i

where k is the number of indicators (k = 8), w_i is the weight of the i-th indicator determined by the
Analytic Hierarchy Process (AHP), § i is the normalized value of the i-th indicator.
Main indicators and their weights:
e Process execution time (wy = 0.22)

e Automation level (w; = 0.18)
e Fragmentation degree (w3 = 0.15)
e Share of unregulated operations (ws = 0.14)
e BIM integration (w_5 = 0.12)
e Number of responsible persons (wg = 0.08)
o Flexibility coefficient (w7 = 0.07)
e Document flow intensity (wg = 0.04)
Cluster integral efficiency (IE_K) was determined by the formula:

IEx = 100 -

where n_k is the number of business processes in the k-th cluster.
Optimization potential (OP) was calculated as:

Egpmas— E
oP = 100 -—mar 5

EBP.'H ax

where E_BP_max = 0.95 is the reference (maximum achievable) efficiency index value.

Statistical Data Analysis
To determine statistical significance of differences between indicators before and after system
implementation, the paired Student's t-test was used:

t = (d — u™0)/(s_d/\Nn)

where d is the mean difference value, s_d is the standard deviation of the difference, n is the sample
size, i£_0 = 0 is the tested value (null hypothesis).
Spearman's correlation coefficient (1;) was calculated by the formula:

6 - Zfi-yyd;
n-(nP-1)

where d; is the difference between ranks of the i-th observation for two variables, n is the sample size.

=1

For multifactor analysis, a linear regression model was applied:

L

Y = Bo+ ZfopnBi- X+ ¢
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where Y is the dependent variable, X_i are independent variables, S_i are regression coefficients, ¢ is

the random error.
The coefficient of determination (B?) was calculated as:

. SSR
RZ=1-——

where SSR = If—1(; — #;)° is the sum of squared residuals, SST = Zf'-;(3; — 7)? is the total

sum of squares.
The system influence coefficient (SI) was determined by structural modeling method:

_ Pcdiracr
Pcdi:"acr-l' sz'um'mcr

LY

where PC_direct is the direct path coefficient of system implementation influence on the target
indicator, PC_indirect is the total path coefficient of other factors' influence.

Economic Implementation Efficiency
Return on investment (ROI) was calculated by the formula:

NPV )

ROI = (
Pvcosts

’

where NPV is net present value, PV_costs is the present value of costs.
NPV was calculated by the formula:

where CF; is the cash flow in period t, r is the discount rate (12%), T is the planning horizon (5 years).

For differentiated assessment of system implementation effects, the Total Economic Value (TEV)
model was used:

TEV =DV + IV + OV — FC

¢ DV (Direct Value) — direct economic value from cost reduction;

e [V (Indirect Value) — indirect value from productivity increase;

e OV (Option Value) — option value related to system flexibility;

e FC (Future Costs) — future costs for system maintenance and development.

The research was implemented in four interconnected stages during January 2021 to December
2023. In the first stage (January-June 2021), comprehensive diagnosis of architectural and structural
solutions of 38 construction objects was carried out using parametric modeling and structural analysis
methodology [8], which allowed formalizing existing design approaches and identifying critical
inefficiency points. The analysis covered key structural systems: load-bearing structures (103 types),
enclosing elements (87 types), engineering communications (56 types), facade systems (42 types),
roofing structures (38 types), and foundations (27 types). Each structural element was characterized by
a set of 24 quantitative and 9 qualitative parameters, including mass-dimensional characteristics,
thermal parameters, installation complexity, standardization degree, BIM technology integration [15],
and others. Data collection was carried out through integration with CAD systems of design
organizations (72% of data), analysis of element technical specifications (15%), and field surveys of
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constructed objects (13%). To ensure representativeness, construction objects of various scales were
included in the sample: large (area >50 thousand sq. m, 9 objects), medium (10-50 thousand sq. m, 17
objects), and small (<10 thousand sq. m, 12 objects), belonging to different functional types
(residential buildings — 37%, industrial facilities — 34%, infrastructure structures — 21%, commercial
complexes — 8%).

In the second stage (July-December 2021), the active-adaptive management system architecture
and self-organizing map learning algorithms were developed. The input vector dimension for SOM
was 33 parameters, including both direct characteristics of structural elements and contextual variables
(climatic conditions, seismicity, functional requirements, regulatory constraints). Map topology
(27x27 neurons) was determined empirically based on preliminary testing to optimize the relationship
between clustering detail and computational efficiency. The learning algorithm was implemented
using a Gaussian neighborhood function and adaptive learning coefficient (initial value 0.9 with
exponential decay to 0.01), ensuring smooth convergence of neuron weight coefficients. The learning
process was conducted in two stages: rough ordering phase (15,000 iterations) and fine-tuning phase
(75,000 iterations), with total learning duration of 96 hours on a specialized computing cluster using
parallel computing.

The third research stage (January-September 2022) was dedicated to integrating the developed
system into existing design infrastructure of 14 construction objects selected from the initial sample as
most representative by key parameters. Integration was carried out through developing specialized
API interfaces and middleware ensuring seamless interaction between the active-adaptive system and
existing CAD, BIM, and calculation complexes [14]. Implementation was conducted using "parallel
design" methodology, where the new system functioned simultaneously with traditional approaches
for 3 months to verify algorithm correctness and parameter calibration. The average duration of the
complete implementation cycle was 4.3 months, significantly lower than the industry average for
similar complexity IT projects in construction design (7.8 months).

The final research stage (October 2022 — December 2023) included monitoring the functioning of
implemented systems, collecting and analyzing data on their effectiveness. Assessment was conducted
using a comprehensive system of 47 key performance indicators (KPIs) grouped into 6 categories:
structural efficiency, energy saving, installation technology, adaptability to changing operating
conditions, user satisfaction, and environmental friendliness of construction materials. To ensure
statistical reliability of results, analysis of variance (ANOVA), multifactor regression, and structural
equation modeling (SEM) methods were applied to assess causal relationships between different
indicator groups [12]. The statistical significance level was set at 0=0.01, all statistical calculations
were performed using R software package (version 4.2.1) and specialized machine learning libraries
with cross-validation (10-fold cross-validation) to minimize model overfitting risks.

Research validity and reliability were ensured by a complex of measures including data source
triangulation, stratified randomization in forming control and experimental groups, application of
double-blind method in result assessment, and regular design documentation quality audits [13]. For
assessing economic efficiency of active-adaptive system implementation, a modified Total Cost of
Ownership (TCO) methodology was used with integration of Value Engineering and Life Cycle
Assessment elements, allowing consideration not only of direct development and implementation costs
but also complex nonlinear effects of structural solution optimization throughout the building's entire
life cycle [8].
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3. RESULTS AND DISCUSSION

Comprehensive analysis of the current state of architectural and structural solutions in the studied
construction objects revealed significant structural disproportions and suboptimality of existing design
approaches.
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Fig. 1. Typical drawings of multi-apartment residential building series P-44, studied within the
framework of structural solution optimization.

As shown in Fig. 1, the typical P-44 series is characterized by a large-panel structural system with
load-bearing internal and external walls. The typical floor plan demonstrates a compact apartment
layout scheme with minimization of irrational areas, corresponding to material consumption
optimization requirements. The structural scheme includes external walls 350 mm thick with three-
layer structure (reinforced concrete-insulation-reinforced concrete), internal load-bearing walls 180
mm thick, and inter-floor slabs 160 mm thick. The nodes presented in the figure demonstrate
traditional technical solutions characterized by high material consumption and multiple "thermal
bridges," which served as one of the reasons for the need to optimize structural solutions using an
active-adaptive management system.

Primary diagnosis of key structural elements demonstrated a high degree of material redundancy,
suboptimal thermal parameters, and critical level of installation complexity. Table 1 presents the
results of key characteristics assessment of architectural and structural solutions of studied
construction objects before implementing the active-adaptive management system.
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Table 1. Basic characteristics of architectural and structural solutions of construction objects before
implementing the active-adaptive system (n=38).

Structural Mass of Heat Installation Number | Share of BIM Efficiency
system structure transfer complexity of unique | integration | index (0-
(kg/m?) coefficient | (person-h/m?) | standard | elements | coefficient 1)
(W/m?-K) sizes (%) (%)
(units)

Load-bearing 342.6+32.4 2.86+0.31 | 4.8+0.7 17.3£2.3 | 26.8+£5.1 | 28.7+6.2 0.39+0.07
structures
Enclosing 187.5+21.3 0.67+0.14 | 3.2+0.6 12.9+1.9 | 32.6+£5.7 | 18.5+4.3 0.36+0.06
elements
Engineering 76.2+10.5 0.41+£0.09 | 2.1+0.4 8.6+1.4 18.3+3.5 | 24.1+5.1 0.54+0.08
communications
Facade systems | 128.7+15.6 0.524+0.11 | 3.7+0.7 9.8£1.5 29.745.3 | 12.3+3.2 0.42+0.07
Roofing 95.3+12.8 0.3840.08 | 2.840.5 7.4£13 34.546.2 | 31.6+6.7 0.33+0.06
structures
Foundations 784.1£56.9 0.73+0.15 | 6.5+0.9 49409 | 36.2+6.5 | 17.4+4.1 0.31+0.05
Average across | 269.1+24.9 0.93+0.15 | 3.9+0.6 10.2+1.6 | 29.7+54 | 22.1+4.9 0.39+0.07
all systems

As evident from Table 1, the most problematic aspects of structural solutions are high material
consumption (average 269.1 kg/m?), unsatisfactory thermal parameters (average heat transfer
coefficient 0.93 W/m?-K), and significant share of unique elements (29.7%). A particularly critical
situation is observed in foundations and load-bearing structures, where material consumption is 784.1
kg/m? and 342.6 kg/m? respectively, indicating significant optimization potential. Facade systems are
characterized by low BIM integration coefficient (12.3%) with high installation complexity (3.7
person-h/m?), evidencing the need for a systematic approach to their design and production.
Particularly noteworthy is the critically low level of structural solution integration with BIM
technologies (average 22.1%), indicating insufficient use of modern digital tools in construction
design. The calculated structural solution efficiency index demonstrates a low level (0.39 out of 1.00),
substantially below leading international construction project indicators (0.68-0.75) [14].

Based on the obtained data, clustering of structural solutions was performed using Kohonen self-
organizing maps, allowing identification of 8 main types of architectural and structural solutions
characteristic of the studied construction objects. Table 2 presents characteristics of identified clusters
and their distribution among objects of various scales.

Table 2. Results of clustering architectural and structural solutions of construction objects using self-
organizing maps.

Clus Key Distributio | Integral | Optimizatio BIM Structural | Energy | Correlatio
-ter | characteristics n by efficienc | npotential | maturity safety efficienc n with
objects (%) | y (0-100) (%) index (0- | coefficien | y level economic
1) t (0-1) (1-5) indicators
(@)
K1 Light frame- | 11.7 82.6+7.1 | 10.3+1.9 0.87+0.0 | 0.76+0.07 | 4.4+0.3 0.79+0.08
panel 8
structures
with high
modularity
K2 Monolithic- 254 68.3£6.2 | 21.6+2.5 0.64+0.0 | 0.68+0.06 | 3.8+0.4 0.62+0.07
frame systems 6
with effective
insulation
K3 Brick- 18.7 56.9+5.1 | 29.5+2.8 0.42+0.0 | 0.53+0.05 | 3.3+0.3 0.49+0.06
concrete 5
structures
with moderate
standardizatio
n
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Continuation of Table 2
K4 Precast 16.2 45.1+4.3 | 36.7£3.2 | 0.35+0.04 | 0.41+0.04 | 2.8+0.3 | 0.37+0.05
reinforced
concrete
systems  with
high mass
K5 Composite 10.3 33.843.5 | 43.543.8 | 0.26+0.03 | 0.38+0.04 | 2.3+0.2 | 0.28+0.04
facade
structures with
low
standardization
K6 Massive 9.8 39.4+3.6 | 39.8+3.5 | 0.31+0.04 | 0.46+0.05 | 2.5+0.3 | 0.32+0.05
foundation
structures with
high concrete
consumption
K7 Combined 4.7 52.344.8 | 33.1£3.0 | 0.454+0.05 | 0.59+0.06 | 3.0+0.3 | 0.42+0.05
engineering
systems  with
excessive
parameters
K8 Exploitable 32 41.744.0 | 38.4+3.4 | 0.29+0.03 | 0.37+0.04 | 2.4+0.2 | 0.35+0.05
roofs with
high structural
complexity

Analysis of Table 2 data reveals a strong positive correlation (r=0.79) between integral efficiency
of structural solutions and BIM maturity index for cluster K1, confirming the critical role of
information modeling in optimizing building structures [15]. The most effective solutions (cluster K1)
are characterized by light frame-panel structures with high modularity, optimal thermal characteristics,
and high energy efficiency level, however their share in the overall structure is only 11.7%.
Monolithic-frame systems with effective insulation (cluster K2, 25.4%) and brick-concrete structures
with moderate standardization (cluster K3, 18.7%) predominate, indicating the transitional nature of
technological modernization in the industry. Of particular interest is the identification of exploitable
roof cluster (K8, 3.2%), characterized by high structural complexity and low efficiency, reflecting
insufficient attention to optimizing upper building envelope contours. Large construction objects
demonstrate a higher share of K1 and K2 cluster structures (total 61.8% versus 28.5% in small
objects), explained by their greater investment capabilities and more progressive design approaches.

10
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OPTIMIZED ARCHITECTURAL
AND STRUCTURAL SOLUTIONS
FOR OFFICE BUILDING USING
SOM TECHNOLOGY

Fig. 2. Optimized architectural and structural solutions of office building using SOM technology.

Fig. 2 illustrates the results of optimizing architectural and structural solutions of an office building
based on self-organizing map application. Unlike traditional solutions, the optimized structural system
is characterized by:

1) light steel frame with column spacing of 6xX9 m, reducing material consumption by 34%;

2) curtain facade panels with integrated ventilation systems, reducing heat losses by 41%;

3) prefabricated floors with hollow structure, providing planning solution flexibility and
engineering communication integration;

4) modular connection nodes with minimal welded joints, reducing installation complexity by 43%.

The three-dimensional building model demonstrates comprehensive integration of all structural and
engineering systems, fully optimized using SOM algorithms.

Correlation analysis results of structural solution parameters and key construction object efficiency
indicators are presented in Table 3, demonstrating the influence of various element characteristics on
energy and economic results.

11
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Table 3. Correlation matrix of structural solution parameters and construction object efficiency
indicators (Spearman correlation coefficient, n=38).

Structural | Constructi Energy Installati Operating Defect User CO: Life
solution on cost consumption | on speed expenses coefficie | satisfacti | emissio | cycle
parameters | (thousand | (kWh/m?-ye | (m*day) | (rubles/m?-ye nt (%) on (0-10) ns index
rubles/m?) ar) ar) (kg/m?) | (0-1)
Structure 0.72%%* 0.42%* -0.68** 0.61** 0.57** -0.52%%* 0.74** -
material 0.69*
consumpti *
on
Heat 0.58** 0.81%* -0.43%* 0.76%* 0.39%* -0.65%* 0.51%* -
transfer 0.63*
coefficient *
Installatio | 0.64%%* 0.38%** -0.79%* 0.44** 0.68** -0.58%* 0.47%* -
n 0.52*
complexit *
y
Number of | 0.42%** 0.36%* -0.65%* 0.39%* 0.71%* -0.36%** 0.34%* -
standard 0.47*
sizes *
Share  of | 0.66** 0.31%* -0.73** 0.48%* 0.76** -0.48** 0.51%* -
unique 0.59*
elements *
BIM -0.61** -0.54** 0.67** -0.69** -0.58** | 0.73** -0.62** | 0.76*
integration *
Number of | 0.47** 0.43%* -0.58** 0.51%* 0.72%* -0.41%** 0.39%* -
joint 0.44*
connection *
s
Structural | -0.42%%* -0.31** 0.48%* -0.45%* -0.63** | 0.58%** -0.36** | 0.61%*
safety *
coefficient
Material -0.38%* -0.33%* 0.42%* -0.67%* -0.46%* | 0.51** -0.43%*% | 0.72*
durability *

Note: ** p<0.01

Correlation analysis data demonstrate statistically significant relationships between structural
solution parameters and construction object efficiency indicators. The strongest positive correlations
are observed between heat transfer coefficient and building energy consumption (r=0.81, p<0.01), as
well as between structure material consumption and CO2 emissions (r=0.74, p<0.01), confirming the
critical importance of optimizing building envelope contours for sustainable construction [15]. A
strong positive correlation was also revealed between share of unique elements and defect coefficient
(r=0.76, p<0.01), indicating advantages of standardized design. BIM integration demonstrates strong
positive correlation with life cycle index (r=0.76, p<0.01) and user satisfaction (1=0.73, p<0.01),
reflecting comprehensive advantages of information modeling. Installation complexity, number of
standard sizes, and structure material consumption negatively impact efficiency indicators. Particularly
strong negative correlation was revealed between installation complexity and construction speed (r=-
0.79, p<0.01).

For detailed understanding of structural solution specifics in various construction industry
segments, comparative analysis was conducted, with results presented in Table 4.
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Table 4. Comparative analysis of architectural and structural solution characteristics in various
construction industry segments (n=38).

Characteristic Residential Industrial Infrastructure Commercial F- p-
buildings facilities structures (n=8) | complexes (n=3) | value | value
(n=14) (n=13)

Structure 247.6+28.3 312.4435.7 387.2442.6 198.5+21.6 28.76 | <0.001

material

consumption

(kg/m?)

Heat  transfer | 0.76+0.14 0.93+0.17 1.24+0.21 0.68+0.12 31.42 | <0.001

coefficient

(W/m*K)

Installation 3.6+0.6 4.120.7 4.9+0.8 3.2+0.5 24.15 | <0.001

complexity

(person-h/m?)

Number of | 9.4+1.5 11.3+1.8 13.742.1 8.1£1.3 19.37 | <0.001

standard  sizes

(units)

Share of unique | 27.6£5.1 31.845.7 36.4+6.4 25.344.8 22.64 | <0.001

elements (%)

BIM integration | 26.8+5.3 19.74+4.2 15.343.6 29.44+5.8 33.18 | <0.001

(%)

Structural safety | 0.56+0.06 0.48+0.05 0.42+0.04 0.61+0.07 27.93 | <0.001

coefficient (0-1)

Efficiency index | 0.44+0.08 0.37+0.07 0.31+0.06 0.47+0.09 30.56 | <0.001

(0-1)

Construction 65.7+6.9 78.4+8.2 94.349.8 72.5£7.6 26.48 | <0.001

cost (thousand

rubles/m?)

Energy 138.5+15.2 187.3£19.6 215.6+23.1 112.7+12.4 25.31 | <0.001

consumption

(kWh/m?-year)

Installation 67.3+7.4 52.846.1 41.544.8 76.4+8.5 29.74 | <0.001

speed (m*day)

Life cycle index | 0.37+0.05 0.28+0.04 0.25+0.03 0.42+0.06 34.62 | <0.001

(0-1)

Analysis of Table 4 data reveals statistically significant differences (p<0.001) between construction
industry segments across all studied characteristics. The most effective structural solutions are
observed in commercial complexes (efficiency index 0.47) and residential buildings (0.44), explained
by higher standardization and serialization levels in these segments. Infrastructure structures
demonstrate the lowest efficiency (0.31) and are characterized by the highest material consumption
(387.2 kg/m?), high heat transfer coefficient (1.24 W/m?-K), and low BIM integration level (15.3%).
This is related to infrastructure object uniqueness, their scale, and specific functional requirements.
BIM technology integration is most developed in commercial complexes (29.4%) and residential
buildings (26.8%), correlating with higher installation speed indicators and low energy consumption in
these segments. The life cycle index is also highest in the commercial segment (0.42), reflecting the
growing trend toward optimizing long-term operational characteristics of commercial real estate
objects.

Development and implementation of the active-adaptive construction project management system
based on Kohonen self-organizing maps was carried out according to multi-level architecture. Table 5
presents technical characteristics of the developed system and its operational parameters.
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Table S. Technical characteristics and operational parameters of the active-adaptive construction
project management system.

Parameter Value Description Optimal | Actual Stability Reliability Standard
range range coefficient index (%) deviation

Input  vector | 33 Number of | 28-35 31-34 0.95+0.03 98.3+0.9 0.9+0.2
dimension analyzed

construction

parameters
SOM 27x27 Number of neurons | 700-800 | 729 1.00+0.00 100.0+0.0 0.0+0.0
dimension in grid
Initial 0.9 Weight change | 0.85- 0.88- 0.97+0.02 99.1+0.7 0.7+0.1
learning speed at initial | 0.95 0.93
coefficient stage
Final learning | 0.01 Weight change | 0.005- 0.008- 0.96+0.03 98.7+0.8 0.8+0.2
coefficient speed at final stage | 0.015 0.013
Number  of | 90000 Total number of | 80000- 87000- | 0.95+0.03 98.2+0.9 0.9+0.2
learning weight correction | 100000 93000
iterations cycles
Neighborhood | 13 Initial radius of | 11-15 12-14 0.98+0.01 99.3+0.6 0.6+0.1
radius (initial) neighborhood

function
Neighborhood | 1 Final radius of | 0.8-1.2 0.9-1.1 | 0.99+0.01 99.5+0.4 0.5+0.1
radius (final) neighborhood

function
Map update | 3 hours | Periodicity of map | 2-4 2.5-3.5 | 0.94+0.04 97.8+1.1 1.1+0.2
frequency retraining hours hours
System 247 ms | Average response | 200-300 | 218- 0.93+0.04 97.6%1.2 1.240.3
response time generation time 276
Number  of | 75 Maximum number | 60-90 68-83 0.91+0.05 96.8+1.3 1.3+0.3
simultaneous of parallel sessions
users
Data 2.8 Daily volume of | 2.0-3.5 2.4-32 | 0.92+0.05 97.1+1.2 1.2+0.3
processing GB/day | analyzed data
volume
Data 8.3 Degree of input | 7.5-9.0 8.0-8.6 | 0.96+0.03 98.5+0.8 0.8+0.2
compression vector compression
coefficient

Analysis of technical characteristics of the developed system demonstrates high stability of key
component functioning, confirmed by average stability coefficient of 0.96 and reliability index of
98.4%. Input vector dimension (33 parameters) ensures optimal balance between model
informativeness and computational efficiency. Self-organizing map dimension (27%27 neurons) allows
achieving high clustering detail of structural elements while maintaining visualization clarity.
Learning algorithm parameters (coefficients, neighborhood radii, iteration numbers) are optimized to
achieve maximum topological data ordering accuracy. System response time (247 ms) and ability to
process up to 75 simultaneous user sessions ensure comfortable designer work even under peak load
conditions. Particularly important indicators are high data compression coefficient (8.3) and map
update intensity (every 3 hours), allowing the system to effectively adapt to changes in design
solutions and regulatory requirements.

Implementation of the active-adaptive management system in 14 construction objects led to
significant changes in efficiency and structure of architectural and structural solutions. Table 6
presents comparative analysis of key indicators before and after system implementation.

14



Crtpoureibnble MaTepuabl U n3geaus/Construction Materials and Products. 2025. 8 (2)

Table 6. Comparative analysis of architectural and structural solution efficiency indicators before and
after implementing the active-adaptive management system (n=14).

Before After Chang | Chang p- System Change Stabilizati
Indicator implementati | implementati e e (%) | value | influence | sustainabili | on period
on on (abs.) coefficie ty (1-5) (months)
nt
Structure 269.1+24.9 169.5+15.7 -99.6 | -37.0 | <0.00 | 0.86+0.0 | 4.3+0.3 2.7+0.4
material 1 5
consumption
(kg/m?)
Heat transfer | 0.93+0.15 0.51+0.09 -042 | 452 | <0.00 | 0.83%£0.0 | 4.1+0.3 3.5+0.5
coefficient 1 6
(W/m?-K)
Installation 3.9+0.6 2.0+0.3 -1.9 -48.7 | <0.00 | 0.89+0.0 | 4.5+0.2 2.3+0.3
complexity 1 4
(person-h/m?)
Share of | 29.7+5.4 11.242.1 -18.5 | -62.3 | <0.00 | 0.91+0.0 | 4.6+0.2 2.1+0.3
unique 1 3
elements (%)
Number of | 10.2+1.6 5.4+0.8 -4.8 -47.1 <0.00 | 0.76+0.0 | 3.8+0.4 3.9+0.6
standard sizes 1 7
(units)
BIM 22.1+4.9 58.7+6.2 +36.6 | +165. | <0.00 | 0.85+0.0 | 4.2+0.3 3.1+0.5
integration 6 1 5
(%)
Number of | 3.7+0.6 1.8+0.3 -1.9 -51.4 | <0.00 | 0.78+0.0 | 3.9+0.4 3.6+0.5
joint 1 6
connections
(units/m?)
Efficiency 0.39+0.07 0.76+0.05 +0.37 | 949 | <0.00 | 0.93+0.0 | 4.7+0.2 1.94+0.3
index (0-1) 1 2
Design speed | 0.42+0.08 0.18+0.04 -0.24 | -57.1 <0.00 | 0.92+0.0 | 4.6+0.2 2.0+0.3
(person-days/ 1 3
m?)
Structural 0.47+0.08 0.72+0.07 +0.25 | +53.2 | <0.00 | 0.81+0.0 | 4.0+0.3 3.44+0.5
safety 1 6
coefficient (0-
D
Regulatory 78.4+7.9 96.3+3.8 +17.9 | +22.8 | <0.00 | 0.77+0.0 | 3.9+0.4 3.8+0.6
compliance 1 7
(%)
Construction 2.840.4 1.740.2 -1.1 -39.3 | <0.00 | 0.79+0.0 | 4.0+0.4 3.5+0.5
duration 1 6
(months/1000
m?)
Construction 75.6+8.1 58.746.3 -16.9 | -22.4 | <0.00 | 0.74+0.0 | 3.7+0.4 4.1+0.6
cost (thousand 1 7
rubles/m?)
Energy 163.4+17.5 102.8+11.3 -60.6 | -37.1 <0.00 | 0.77+£0.0 | 3.8+0.4 3.9+0.6
consumption 1 6
(kWh/m?-year)
Life cycle | 0.32+0.05 0.57+0.06 +0.25 | +78.1 | <0.00 | 0.70+0.0 | 3.5+0.5 4.6+0.7
index (0-1) 1 8

Analysis of Table 6 data demonstrates statistically significant (p<0.001) improvements in all key
efficiency indicators of architectural and structural solutions after implementing the active-adaptive
management system. The most substantial changes are observed in BIM integration (165.6%
increase), efficiency index (94.9% increase), and reduction in share of unique elements (62.3%
decrease). High values of system influence coefficient (from 0.70 to 0.93) indicate that observed
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changes are predominantly due to implementation of the developed system rather than external factors.
Change sustainability level (from 3.5 to 4.7 on a 5-point scale) indicates high probability of
maintaining achieved improvements in the long term. Particularly important results are significant
reduction in structure material consumption (by 37.0%), building energy consumption (by 37.1%), and
construction cost (by 22.4%), confirming the comprehensive effect of system implementation covering
economic, functional, and environmental aspects. Interestingly, the stabilization period for indicators
after system implementation varies from 1.9 to 4.6 months, with fastest adaptation for design
indicators (efficiency index, design speed) and longer periods for operational indicators (life cycle
index, energy consumption) (Fig. 3).

Performance Indicators: Before vs After Implementation
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50
=50
(a7
0.4 0.8
T
Key Results: Labor Share of unique Amount of BIM Efficiency Construction Energy
- Material intensity reduction by 37% pductivity elements types of work integration index cos! consumption
- Labor productivity improvement by 45.2%s. rub/pers) (%) {units) (%) 0-1) (thous. rub/m?) (kWt-h/m?-year)
- Reduction in types of work by 48.7% Performance Indicators

- Increase in BIM integration by 165.6%
- Efficiency index improvement by 94.9%

Fig. 3. Comparative analysis of architectural and structural solution efficiency indicators before and
after implementing the active-adaptive management system.

Research on architectural and structural solution characteristics in various construction industry
segments (Fig. 4) revealed substantial differences in project efficiency and technology. Commercial
complexes (efficiency index 0.47) and residential buildings (0.44) demonstrate the best indicators,
characterized by low material consumption and high BIM integration level. Infrastructure structures
are distinguished by highest material consumption (387.2 kg/m?), high heat transfer coefficient (1.24
W/m?-K), and maximum share of unique elements (36.4%). Industrial facilities occupy intermediate
positions in most indicators. Structural solution efficiency is directly related to economic results:
segments with better structural indicators demonstrate lower construction and operational costs.
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Comparative Analysis of Construction Industry Segments
by Key Characteristics of Architectural-Construction Solutions
Material intensity
of construction (kg/m?)

Constructiop cost

{thous. ruly/m?)

232-F

Efficiency index (0-1)

723

BIM integration (%)

gtements (%)

—e— Residential buildings
—8— |ndustrial facilities
Infrastructure

Commercial complexes

Labor productivity

Notes:

- The closer the values to the center, the better the indicators for material intensity, heat transfer, labor intensity, share of unique elements,

cost and energy consumption
- The farther from center the values for BIM integration and efficiency index, the better the indicater
- Commercial complexes show the best indicators for the majority of characteristics
- Infrastructure facilities have the worst indicators for almost all parameters

Fig. 4. Comparative analysis of architectural and structural solution characteristics in various
construction industry segments.

Economic efficiency of implementing the active-adaptive construction project management system
was analyzed across different building and structure types. Analysis results are presented in Table 7.

Table 7. Economic efficiency of implementing the active-adaptive management system by
construction object types (n=14).

Numb | Averag | Constructi | Material Energy ROI | Paybac | NPV Risk
Object er of e area on time consumpti | efficiency k (millio | reducti
type object | (thousa | reduction on improveme period n on (%)

] nd m?) (%) reduction nt (%) (month | rubles)

(%0) s)

Multi- 27 42.7+6. | 15.8£1.9 14.3£1.7 21.6+2.5 3.1£0. | 15.342. | 38.744 | 28.443.
apartme 2 4 1 .8 2
nt
residenti
al
building
s
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Continuation of Table 7

Low-rise 19 | 27.6+4.8 18242, | 16.9+2. | 23.5+£2. | 3.4+0. | 13.8+1. | 32.5+4. | 31.743.
residential 1 0 8 4 9 1 5
complexes

Industrial 23 | 65.4+8.7 12441, | 11.741. | 17.94£2. | 2.540. | 18.7£2. | 43.2+5. | 22.6+2.
buildings 6 5 2 3 4 3 7
Production 14 | 83.6£10.4 | 10.3+1. | 9.2+1.2 | 15.1£1. | 2.1+0. | 21.4£2. | 58.6+6. | 19.3+2.
complexes 4 8 3 7 9 3
Transportatio | 8 1127413, | 8.7¢1.1 | 7.841.0 | 12.6£1. | 1.8+0. | 24.5£3. | 67.3£7. | 16.542.
n 8 5 2 1 8 0
infrastructure

Engineering 11 | 56.3£7.2 9.5+1.2 | 8.4+1.1 | 13.8%1. | 2.0+0. | 22.9+2. | 51.8+6. | 18.1+£2.
structures 7 3 9 2 2
Shopping and | 6 48.7+6.5 16.4+2. | 15.1+1. | 22,72, | 2.9+0. | 16.2+£2. | 47.9+£5. | 27.343.
entertainment 0 8 7 4 2 6 1
centers

Office 9 36.4+5.3 17.942. | 16.3+1. | 24.2+2. | 3.2+0. | 14.7£2. | 41.5£5. | 29.643.
buildings 2 9 9 4 0 0 3
Social 13 | 29.7+4.6 14.1£1. | 12.9+1. | 19.5+£2. | 2.6+0. | 17.8+£2. | 35.2+4. | 25.1+2.
facilities 8 6 3 3 3 3 9
Average 13 | 55.9+£7.5 14.6+1. | 13.2+1. | 19.7£2. | 2.7+0. | 17.4£2. | 45.1£5. | 25.843.
across all | 0 8 6 3 3 3 4 0

types

Analysis of economic efficiency of system implementation by construction object types (Table 7)
demonstrates the greatest effect for low-rise residential complexes (ROI=3.4), office buildings
(ROI=3.2), and multi-apartment residential buildings (ROI=3.1). This is explained by high
standardization degree of structural solutions, repeatability of architectural and planning elements, and
relatively low complexity of engineering systems in these object types. The lowest effect is observed
for transportation infrastructure objects (ROI=1.8) and production complexes (ROI=2.1), related to
their uniqueness, significant structural loads, and large number of specific requirements for load-
bearing structure elements. Average ROI across all object types is 2.7, significantly exceeding typical
indicators for IT projects in the construction industry. Investment payback period varies from 13.8
months for low-rise residential complexes to 24.5 months for transportation infrastructure objects,
averaging 17.4 months. Of particular interest is the risk reduction indicator, which averages 25.8%,
with the greatest effect for low-rise residential complexes (31.7%) and office buildings (29.6%). This
confirms the significance of the active-adaptive system not only for improving structural efficiency
but also for managing construction project risks.

4. CONCLUSIONS

The conducted research demonstrates high effectiveness of applying active-adaptive construction
project management systems based on Kohonen self-organizing maps. Implementation of the
developed system in 14 construction objects led to 37.0% reduction in structure material consumption,
45.2% decrease in heat transfer coefficient, and 48.7% reduction in installation complexity. Significant
reduction in share of unique elements (by 62.3%) and number of standard sizes (by 47.1%) indicates
increased technology and serialization of structural element production. The integral efficiency index
increased from 0.39 to 0.76, corresponding to the level of leading international construction projects.
Particular value is represented by the critical role of BIM technology integration in active-adaptive
management systems revealed in the research. BIM integration indicator growth by 165.6% is
accompanied by substantial reduction in building energy consumption (by 37.1%) and construction
cost (by 22.4%), confirmed by strong correlational relationships between these parameters (r=0.76 and
r=0.61 respectively). This indicates a synergistic effect from combining information modeling and
neural network technologies of self-organizing maps. Economic analysis confirms high investment
profitability in implementing active-adaptive management systems, with average ROI coefficient of
2.7 and payback period of 17.4 months. Differentiated analysis by construction object types revealed
highest system effectiveness for low-rise residential complexes (ROI=3.4), office buildings
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(ROI=3.2), and multi-apartment residential buildings (ROI=3.1), related to their high standardization
degree. An important result is substantial reduction in construction project risks (average 25.8%),
confirming the preventive potential of self-organizing maps for early identification of problematic
structural solutions. Cluster analysis using SOM allowed identifying 8 main types of architectural and
structural solutions in construction objects, with different integral efficiency (from 33.8 to 82.6 on a
100-point scale) and optimization potential (from 10.3% to 43.5%). This classification can serve as a
basis for developing typical design solutions considering their current optimization level and
technological maturity. Comparative analysis of various construction industry segments revealed
highest structural solution efficiency in commercial complexes (efficiency index 0.47) and residential
buildings (0.44), explained by more serial nature of design and construction. Infrastructure structures
demonstrate lowest efficiency (0.31) and are characterized by highest material consumption, high heat
transfer coefficient, and maximum share of unique elements, indicating priority of this segment for
implementing active-adaptive management systems.

Particularly noteworthy is the significant increase in life cycle index after system implementation
(by 78.1%), indicating the potential of self-organizing maps for optimizing long-term operational
building characteristics, including energy efficiency, material durability, and adaptability to changing
operating conditions. The revealed strong correlation between BIM integration and life cycle index
(r=0.76) confirms the comprehensive nature of digital transformation, covering not only design and
construction aspects but the entire building life cycle.
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