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Abstract: The article presents a study of the application of artificial intelligence algorithms in 

predicting the risk of early cracking in massive reinforced concrete structures using monolithic 

foundation slabs as an example. The current experience of using algorithms such as convolutional 

neural networks, deep learning tools (YOLOv5 model) for crack detection at various stages of the life 

cycle of massive reinforced concrete structures is analyzed. The causes of crack formation, physical 

and mechanical processes, including cement hydration are considered. 

A model has been developed that predicts the magnitude of the tensile stress level in monolithic 

foundation slabs during construction, based on CatBoost using Python, allowing to predict the risks of 

early cracking with an accuracy of up to 98%. 

The model was trained on synthetic data containing various design parameters and material properties, 

including the geometric dimensions of the slabs, the temperature on the upper surface, the heat transfer 

coefficient on the upper surface, the curing rate, the class of concrete and the characteristics of the soil 

base. Statistical analysis of the data was performed, a correlation matrix was constructed. Practical and 

predicted values of the model were visualized in the form of a scatter plot. The most significant 

parameters influencing the risk of early cracking in massive monolithic foundation slabs were 

obtained. The constructed model passed quality assessment according to three metrics: MAE=0.0011; 

MSE=4.038; MAPE=0.0014. 
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1. INTRODUCTION 

Formation of cracks in the early stages of concreting massive reinforced concrete structures (MRC) 

is one of the main problems faced by designers and builders. The causes of cracking are associated 

with physical and mechanical processes in the concrete itself and with external environmental factors, 

such as temperature changes and humidity. The early risk of cracking in MRC is associated with the 

cement hydration process, which leads to significant temperature gradients inside the structure. In 

works [1-3], methods for assessing the risks of crack development at the early stage of MRC 

hardening are considered, including the finite element method (FEM), as one of the most effective 

approaches for predicting such processes, since it allows for detailed modeling of the distribution of 

temperature fields, stresses and strains in complex reinforced concrete structures over time. The 

analysis of the risks of early cracking is devoted to works [4-6], in which calculations are made for the 

distribution of temperature fields and stresses in time and space to predict the temperature regime. In 

the work [7], using convolutional neural networks, violations of the integrity and compactness of the 

particle packing in the micro- and macrostructure of concrete of various types of structures, which 

subsequently affect the appearance of cracks, are analyzed. 

Today, artificial intelligence methods are considered as one of the most promising and innovative 

approaches to improving the process of monitoring the development of cracks at various stages of the 

life cycle of reinforced concrete structures. These methods make it possible to evaluate the properties 

of various structures in aggressive environments [8, 9]. However, the problem of assessing the risk of 

early cracking has not previously been solved by machine learning methods. In works [10-12], the 

issues of detecting already formed cracks are studied, in work [13] the problem of predicting the 

formation of inclined cracks in beams under shear is considered. Machine learning methods are used 

to solve many problems when examining reinforced concrete structures for suitability for further 

operation, including predicting strength under operational loads, detecting defects, etc. But artificial 

intelligence has not previously been used to predict the risk of early cracking during the construction 

of massive monolithic structures. However, artificial intelligence (AI) and machine learning (ML) 

methods have clear advantages over numerical methods due to higher forecast accuracy when 

processing large amounts of data and taking into account many factors, automation and optimization 

of parameters, and reduced calculation time. 

The research results and advantages of using AI to solve such problems can be seen in [14-16]. It 

should be noted that the ultra-high dimensionality of nonlinear computing capabilities of AI allows 

revealing the potential of nonlinear relationships between components. Various types of AI algorithms 

and the possibility of their combined use allow optimizing the features of the model, thereby 

increasing the accuracy of forecasting the characteristics of concrete, its mechanical and physical 

properties [17]. 

The issues of automation of crack detection, segmentation and measurement of parameters are 

described in [18] using deep learning (DL) tools, the YOLOv5 model. The data obtained as a result of 

the experiment indicate satisfactory performance of the constructed model. Similar works on objects 

(cracks) detection and segmentation, including classification, describe successful results using 

convolutional neural networks (CNN) [19-21]. The advantage of CNN is that it learns and extracts 

crack features from a large amount of data, which significantly improves crack recognition. The aim 

of this work is to train and apply CatBoost algorithms in predicting the risk of early cracking in 

massive reinforced concrete structures using monolithic foundation slabs as an example. 

2. METHODS AND MATERIALS 

As part of the study, to solve the problem of predicting the risk of early cracking during concreting 

of massive monolithic foundation slabs, data were generated on the following parameters: slab 

thickness (h, m); temperature on the upper surface (Tup , °C); heat transfer coefficient on the upper 

surface (hup , W/(m2 ∙ °C)); concrete compressive strength class B, MPa according to Russian design 

codes; hardening rate (1 – fast-hardening, 0 – slow-hardening); soil thermal conductivity coefficient 
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(λg, W/(m∙°C); soil specific heat  capacity (cg , J/kg∙°C); soil density (ρg , kg/m3) ; ratio of tensile 

stress to ultimate tensile strength (σ/Rt). 

Data generation was performed through numerous numerical experiments using the methodology 

described in [22]. 

The temperature field was determined from the solution of the differential equation of heat 

conduction in a one-dimensional formulation, which has the form: 

 
2

2
,

T T
W c

z t
 
 

+ =
 

 (1) 

 

where λ is the thermal conductivity coefficient, T is the temperature, W = 
Q

t




 is the density of 

internal heat sources (W/m3), ρ is the density of the material, c is the specific heat capacity, t is the 

time. 

The integral function of heat release was adopted in accordance with the work [23]: 

 

( ) 28

28
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 (2) 

 

where t is the time in days, Q28 is the total heat release at the time of 28 days in MJ/m3, the coefficients 

k and x determine the kinetics of heat release. 

The value of k based on experimental data was taken to be 0.145 for quick-hardening concrete and 

0.27 for slow-hardening concrete. The value of x was taken to be 0.485 for quick-hardening concrete 

and 0.715 for slow-hardening concrete. The value Q28 for class B25 concrete averages 130 MJ/m3 , 

and for class B45 concrete the average value is 190 MJ/m3 [24]. For concretes of intermediate classes, 

the value Q28 was determined by linear interpolation. 

On the upper surface of the foundation slab, the boundary condition for convective heat exchange 

was adopted, which had the form: 

 

( ) 0.up up

T
h T T

z



+ − =
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 (3) 

 

The foundation was modeled together with the soil mass, and for soil points at a sufficient distance 

from the foundation the temperature was considered to be given: 

 

( ) .g botT t T const= =  (4) 

 

For simplicity, the Tup value was taken to be equal to Tbot. The solution of the differential equation 

of heat conductivity was performed by the finite element method in the MATLAB environment 

according to the methodology given in work [25]. 

After determining the temperature field, the stress-strain state was calculated using the method 

given in [26]. 

The increase in stress Δσ = Δσx = Δσy in the foundation slab per moment in time Δt was determined 

using the formula: 
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where E is the modulus of elasticity of concrete, α is the coefficient of linear thermal expansion, ν is 

the Poisson's ratio of concrete, Δε is the increment of total deformation, which was calculated using 

the formula: 
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The modulus of elasticity of concrete was determined as a function of its prismatic strength Rb 

according to the formula of N.I. Karpenko [27]: 
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Cubic compressive strength of concrete R = 1.25Rb at time t was determined by the formula [24]: 
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where is R28 = B + 12 is the strength of concrete at the age of 28 days (MPa), T  = DM/t, t is the age of 

concrete in hours, DM is the degree of maturity of concrete, determined by the integral: 

 

( ) ( )
0

,

t

DM t T d =   (9) 

 

where T(τ) is the temperature of concrete at time τ. 

Tensile strength of concrete Rt was determined using the formula [24]: 

 
0.60.29 .tR R=  (10) 

Table 1 partially presents the analyzed data array. The total volume of the training dataset 

was 810,000 samples (Table 1). 
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Table 1. Generated dataset. 

No

. 

Slab 

thick

ness 

h, m 

Temper

ature on 

the 

upper 

surface 

Tup , °C 

Heat transfer 

coefficient 

on the upper 

surface hup, 
W/(m2∙ °С) 

Concr

ete 

class 

B, 

MPa 

 

Hardenin

g rate (1 

– quick-

hardenin

g, 0 – 

slow-

hardenin

g) 

Thermal 

conductiv

ity 

coefficien

t of soil, 

λg 

W/(m∙°C) 

Specific 

heat 

capacity 

of soil cg 

, J/kg∙°С 

Soil 

densit

y ρg, 

kg/m3
 

 

The ratio 

of tensile 

stress to 

ultimate 

strength 

σ/Rt  

1 0.7 5 2 25 0 0.56 1500 1000 0.226303 
2 0.98

75 
5 2 25 0 0.56 1500 1000 0.371894 

3 1.27
5 

5 2 25 0 0.56 1500 1000 0.523871 

4 1.56
25 

5 2 25 0 0.56 1500 1000 0.678099 

5 1.85 5 2 25 0 0.56 1500 1000 0.832095 
6 2.13

75 
5 2 25 0 0.56 1500 1000 0.98416 

7 2.42
5 

5 2 25 0 0.56 1500 1000 1.133126 

8 2.71
25 

5 2 25 0 0.56 1500 1000 1.278233 

9 3 5 2 25 0 0.56 1500 1000 1.419027 
10 0.7 5 2 25 0 0.56 1500 1625 0.213091 
11 0.98

75 
5 2 25 0 0.56 1500 1625 0.344861 

… 
80
99
91 

3 35 30 45 1 2.67 2500 2875 2.562853 

80
99
92 

0.7 35 30 45 1 2.67 2500 3500 0.692423 

80
99
93 

0.98
75 

35 30 45 1 2.67 2500 3500 1.042774 

80
99
94 

1.27
5 

35 30 45 1 2.67 2500 3500 1.353883 

80
99
95 

1.56
25 

35 30 45 1 2.67 2500 3500 1.623476 

80
99
96 

1.85 35 30 45 1 2.67 2500 3500 1.857393 

80
99
97 

2.13
75 

35 30 45 1 2.67 2500 3500 2.061308 

80
99
98 

2.42
5 

35 30 45 1 2.67 2500 3500 2.240443 

80
99
99 

2.71
25 

35 30 45 1 2.67 2500 3500 2.399862 

81
00
00 

3 35 30 45 1 2.67 2500 3500 2.54239 
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The first eight columns act as the model features, the 9th column is the output parameter (the ratio 
of the maximum tensile stress to the tensile strength). At the output, if the predicted value of the 
parameter of this ratio is less than 1, then crack resistance is ensured, and if it is greater, then cracks 
are formed. 

Fig. 1 shows the correlation between the variables. There is a complete or partial absence of a 

linear relationship between the parameters of the variation series for all quantitative features (<0.5), 

with the exception of the relationship between the features of the variation series "Slab thickness" and 

"Ratio of tensile stress to ultimate strength": ,   / 0.8
th R = . 

 

 
Fig. 1. Correlation matrix. 

 

The statistical characteristics of the initial data set are presented in the form of a table (Table 2). 

The main indicators are: sample size; sample mean; scattering variant; extremes of variable values. 

The set of these indicators helps to conduct a statistical analysis of variables, determine their scatter 

relative to their center, show the asymmetry of the distribution, and derive the laws of distribution of 

these variation series. 

Table 2. Table of statistical characteristics. 

index h Tup hup B rate λg ρg cg σ/Rt 

count 810000 810000 810000 810000 810000 810000 810000 810000 810000 

mean 1.85 20.0 16.0 35.0 0.5 1.61 2000 2250 1.41 

std 0.74 9.68 9.17 7.07 0.5 0.75 353.55 883,88 0.73 

min 0.7 5.0 2.0 25.0 0.0 0.56 1500 1000 0.14 

max 3.0 35.0 30.0 45.0 1.0 2.67 2500 3500 4.29 
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The total number of numerical experiments for all samples was 1408 variations. In developing the 

models, the CatBoost artificial intelligence methods were used, and regularization methods (Weight 

Decay, Decoupled Weight Decay Regularization, Augmentation), the Z – Score method was used to 

normalize the data. The problem was implemented in the Jupyter environment Notebook in Python. 

The method is based on the CatBoost mechanism, which uses the GradientBoostingRegressor 

algorithm. When selecting hyperparameters, the Optuna method was used which is an improved 

method for selecting hyperparameters. It includes gridsearch, random search and other methods. The 

model parameters used for training are shown in Table 3. 

 

Table 3. Parameters for the CatBoost model. 

 

No. Parameter Value 

1 iterations 500 – 1500 

2 depth 6, 8, 10 

3 learning_rate 0.01; 0.05; 0.1; 0.3; 0.5; 0.8 

3. RESULTS AND DISCUSSION 

The theoretical model on the basis of which the training was carried out was pre-tested on 

experimental data presented in works [28, 29]. In work [28], measurements of temperatures and 

stresses were carried out in a fragment of a massive monolithic wall, hardening under 100% 

deformation limitation. The compressive strength of concrete at the design age of 28 days was 80 

MPa. In Fig. 2, the solid line shows the graph of the change in tensile strength over time, constructed 

on the basis of formulas (8)-(10). The dashed line shows the data given in work [28]. The agreement 

of the results is very good. 

 

 
Fig. 2. Comparison of the kinetics of tensile strength gain according to the theoretical model with 

experimental data. 

 

In Fig. 3, the solid line shows the theoretical graph of stress change over time. The experimental points 

are also marked with markers. The discrepancy between the experiment and theory at the moment of 

crack formation in the sample is 17%, which can be considered quite acceptable. 
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Fig. 3. Comparison of theoretical stress values with experimental ones given in [28]. 

 

In paper [29], the results of measuring temperature stresses in the middle of a 2.1 m thick 

foundation slab using embedded string strain gauges are presented. Comparison of the experimental 

results with the results predicted by the theoretical model is shown in Fig. 4. Up to the 15 day point, 

the theoretical model predicts stresses well, and then, probably, a crack formed or the sensor failed. 

 

 
Fig. 4. Comparison of theoretical stress values with experimental ones given in [29]. 

 

CatBoost model optimal values obtained during machine learning model training are presented in 

Table 4. 
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Table 4. Optimal values of model parameters. 

 

Model Parameter Value 

CatBoost 

iterations 1408 

depth 10 

learning_rate 0.5 

 

Feature importance in CatBoost provides one way to calculate a feature importance score, which 

indicates how much the prediction will change if the value of a feature changes in the future. Feature 

importance is measured in units of change in the loss function [30]. The greater the value of Feature 

importance, the greater the influence of the feature on the quality of the model. Fig. 5 shows the 

implementation of the calculation of the importance assessment of features. 

 

 
Fig. 5. Evaluation of feature importance. 

 

A qualitative assessment of the model parameters is shown in Table 5. 

 

Table 5. CatBoost Quality Metrics. 

 

Parameter/ Metrics MAE MSE MAPE (%) R2 train R2 test 

σ/Rt 0.0011 4.038 0.0014 1.00 0.98 

 

The relationship between actual and predicted values for the CatBoost model is shown in Fig. 6. 



Строительные материалы и изделия/Construction Materials and Products. 2025. 8 (1) 

  
 

10 

 
Fig 6. Forecast error graph. 

4. CONCLUSIONS 

The built intelligent regression model, based on CatBoost using Python, is implemented in the 

Jupyter environment Notebook is capable of predicting the risk of early cracking in massive reinforced 

concrete structures in the form of monolithic foundation slabs with 98% reliability. Generated datasets 

obtained by means of a numerical experiment were used for training. The constructed models were 

assessed for quality by five metrics (MAE, MSE, MAPE), including the coefficients of determination 

for training and test samples. Graphs of forecast errors and assessment of the importance of model 

features were constructed. 

To test the model based on nonlinear optimization methods, it is necessary to conduct many 

experiments on different data sets to obtain reliable results. The most significant parameter of the 

model is the slab thickness (63%), the next most significant is the rate of concrete hardening of 

massive reinforced concrete structures (43%). Equal in importance were the following parameters: 

heat transfer coefficient and temperature on the upper surface of the monolithic foundation slab (43%). 

The concrete class parameter was 31% of the significance for the constructed model. For the thermal 

conductivity coefficient of soil, specific heat capacity of soil, soil density parameters, the significance 

was distributed accordingly: 11%; 8%; 2.8%. 

Further research is planned to expand the range of model parameters based on the results obtained 

and to consider concretes of higher strength classes [31]. 
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