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Abstract: The article presents a study of the application of artificial intelligence algorithms in
predicting the risk of early cracking in massive reinforced concrete structures using monolithic
foundation slabs as an example. The current experience of using algorithms such as convolutional
neural networks, deep learning tools (YOLOV5 model) for crack detection at various stages of the life
cycle of massive reinforced concrete structures is analyzed. The causes of crack formation, physical
and mechanical processes, including cement hydration are considered.

A model has been developed that predicts the magnitude of the tensile stress level in monolithic
foundation slabs during construction, based on CatBoost using Python, allowing to predict the risks of
early cracking with an accuracy of up to 98%.

The model was trained on synthetic data containing various design parameters and material properties,
including the geometric dimensions of the slabs, the temperature on the upper surface, the heat transfer
coefficient on the upper surface, the curing rate, the class of concrete and the characteristics of the soil
base. Statistical analysis of the data was performed, a correlation matrix was constructed. Practical and
predicted values of the model were visualized in the form of a scatter plot. The most significant
parameters influencing the risk of early cracking in massive monolithic foundation slabs were
obtained. The constructed model passed quality assessment according to three metrics: MAE=0.0011;
MSE=4.038; MAPE=0.0014.
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1. INTRODUCTION

Formation of cracks in the early stages of concreting massive reinforced concrete structures (MRC)
is one of the main problems faced by designers and builders. The causes of cracking are associated
with physical and mechanical processes in the concrete itself and with external environmental factors,
such as temperature changes and humidity. The early risk of cracking in MRC is associated with the
cement hydration process, which leads to significant temperature gradients inside the structure. In
works [1-3], methods for assessing the risks of crack development at the early stage of MRC
hardening are considered, including the finite element method (FEM), as one of the most effective
approaches for predicting such processes, since it allows for detailed modeling of the distribution of
temperature fields, stresses and strains in complex reinforced concrete structures over time. The
analysis of the risks of early cracking is devoted to works [4-6], in which calculations are made for the
distribution of temperature fields and stresses in time and space to predict the temperature regime. In
the work [7], using convolutional neural networks, violations of the integrity and compactness of the
particle packing in the micro- and macrostructure of concrete of various types of structures, which
subsequently affect the appearance of cracks, are analyzed.

Today, artificial intelligence methods are considered as one of the most promising and innovative
approaches to improving the process of monitoring the development of cracks at various stages of the
life cycle of reinforced concrete structures. These methods make it possible to evaluate the properties
of various structures in aggressive environments [8, 9]. However, the problem of assessing the risk of
early cracking has not previously been solved by machine learning methods. In works [10-12], the
issues of detecting already formed cracks are studied, in work [13] the problem of predicting the
formation of inclined cracks in beams under shear is considered. Machine learning methods are used
to solve many problems when examining reinforced concrete structures for suitability for further
operation, including predicting strength under operational loads, detecting defects, etc. But artificial
intelligence has not previously been used to predict the risk of early cracking during the construction
of massive monolithic structures. However, artificial intelligence (Al) and machine learning (ML)
methods have clear advantages over numerical methods due to higher forecast accuracy when
processing large amounts of data and taking into account many factors, automation and optimization
of parameters, and reduced calculation time.

The research results and advantages of using Al to solve such problems can be seen in [14-16]. It
should be noted that the ultra-high dimensionality of nonlinear computing capabilities of Al allows
revealing the potential of nonlinear relationships between components. Various types of Al algorithms
and the possibility of their combined use allow optimizing the features of the model, thereby
increasing the accuracy of forecasting the characteristics of concrete, its mechanical and physical
properties [17].

The issues of automation of crack detection, segmentation and measurement of parameters are
described in [18] using deep learning (DL) tools, the YOLOV5 model. The data obtained as a result of
the experiment indicate satisfactory performance of the constructed model. Similar works on objects
(cracks) detection and segmentation, including classification, describe successful results using
convolutional neural networks (CNN) [19-21]. The advantage of CNN is that it learns and extracts
crack features from a large amount of data, which significantly improves crack recognition. The aim
of this work is to train and apply CatBoost algorithms in predicting the risk of early cracking in
massive reinforced concrete structures using monolithic foundation slabs as an example.

2. METHODS AND MATERIALS

As part of the study, to solve the problem of predicting the risk of early cracking during concreting
of massive monolithic foundation slabs, data were generated on the following parameters: slab
thickness (h, m); temperature on the upper surface (Typ , °C); heat transfer coefficient on the upper
surface (hyp , W/(m? - °C)); concrete compressive strength class B, MPa according to Russian design
codes; hardening rate (1 — fast-hardening, 0 — slow-hardening); soil thermal conductivity coefficient
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(Ag, W/(m-°C); soil specific heat  capacity (cq, J/kg-°C); soil density (pg, kg/m?) ; ratio of tensile
stress to ultimate tensile strength (o/Ry).

Data generation was performed through numerous numerical experiments using the methodology
described in [22].

The temperature field was determined from the solution of the differential equation of heat
conduction in a one-dimensional formulation, which has the form:

AW =po s, (1)

where A is the thermal conductivity coefficient, T is the temperature, W = % is the density of
internal heat sources (W/md), p is the density of the material, c is the specific heat capacity, t is the
time.

The integral function of heat release was adopted in accordance with the work [23]:

Q(t) = Qs -exp{k [k(?jﬂ ¥y

where t is the time in days, Qqs is the total heat release at the time of 28 days in MJ/m?, the coefficients
k and x determine the kinetics of heat release.

The value of k based on experimental data was taken to be 0.145 for quick-hardening concrete and
0.27 for slow-hardening concrete. The value of x was taken to be 0.485 for quick-hardening concrete
and 0.715 for slow-hardening concrete. The value Qs for class B25 concrete averages 130 MJ/m? ,
and for class B45 concrete the average value is 190 MJ/m?® [24]. For concretes of intermediate classes,
the value Qs was determined by linear interpolation.

On the upper surface of the foundation slab, the boundary condition for convective heat exchange
was adopted, which had the form:

152+QJT—T)=O. (3)

The foundation was modeled together with the soil mass, and for soil points at a sufficient distance
from the foundation the temperature was considered to be given:

T, (t)=T,, = const. (4)

g

For simplicity, the Ty, value was taken to be equal to Two. The solution of the differential equation
of heat conductivity was performed by the finite element method in the MATLAB environment
according to the methodology given in work [25].

After determining the temperature field, the stress-strain state was calculated using the method
given in [26].

The increase in stress Ac = Aox = Aoy in the foundation slab per moment in time At was determined
using the formula:

Ao(zyzEﬁiﬂ(Ag—a[T(LQ—T(Lt—AOJL (5)
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where E is the modulus of elasticity of concrete, a is the coefficient of linear thermal expansion, v is
the Poisson's ratio of concrete, Ag is the increment of total deformation, which was calculated using
the formula:

o[ E(24)[T(2)-T (2.t -At)]dz

Ag = ;
IOE(z,t)dz

(6)

The modulus of elasticity of concrete was determined as a function of its prismatic strength Ry
according to the formula of N.I. Karpenko [27]:

£=22000Rs 1o ©)
18+R,

Cubic compressive strength of concrete R = 1.25R;, at time t was determined by the formula [24]:

—0.55
- o] 02g (S0 | ®

where is Rys = B + 12 is the strength of concrete at the age of 28 days (MPa), T = DM, t is the age of
concrete in hours, DM is the degree of maturity of concrete, determined by the integral:

t

DM (t)= [T (z)d~, (9)

0

where T(t) is the temperature of concrete at time .
Tensile strength of concrete Ry was determined using the formula [24]:

R = 0.29R%6. (10)

Table 1 partially presents the analyzed data array. The total volume of the training dataset
was 810,000 samples (Table 1).
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Table 1. Generated dataset.

No | Slab | Temper | Heat transfer | Concr | Hardenin | Thermal | Specific | Soil The ratio
thick | ature on | coefficient ete g rate (1 | conductiv | heat densit | of tensile
ness | the on the upper | class | — quick- | ity capacity |y pg | Stress to
h, m | upper surface hyp, | B, hardenin | coefficien | of soil ¢q | kg/m® | ultimate

surface | W/(m? °C) MPa |g, 0 -—|t of soil, | J/kg°C strength
Tup, °C slow- Ag o/R:
hardenin | W/(m-°C)
g

1 0.7 5 2 25 0 0.56 1500 1000 | 0.226303

2 | 098 5 2 25 0 0.56 1500 1000 | 0.37189%4
75

3 | 1.27 5 2 25 0 0.56 1500 1000 | 0.523871
5

4 | 156 5 2 25 0 0.56 1500 1000 | 0.678099
25

5 | 185 5 2 25 0 0.56 1500 1000 | 0.832095

6 | 213 5 2 25 0 0.56 1500 1000 0.98416
75

7 | 242 5 2 25 0 0.56 1500 1000 | 1.133126
5

8 | 2.71 5 2 25 0 0.56 1500 1000 | 1.278233
25

9 3 5 2 25 0 0.56 1500 1000 | 1.419027

10 | 0.7 5 2 25 0 0.56 1500 1625 | 0.213091

11 | 0.98 5 2 25 0 0.56 1500 1625 | 0.344861
75

80 | 3 35 30 45 1 2.67 2500 | 2875 | 2.562853

99

91

80 | 0.7 35 30 45 1 2.67 2500 3500 | 0.692423

99

92

80 | 0.98 35 30 45 1 2.67 2500 3500 | 1.042774

99 | 75

93

80 | 1.27 35 30 45 1 2.67 2500 3500 | 1.353883

99 5

94

80 | 1.56 35 30 45 1 2.67 2500 3500 | 1.623476

99 | 25

95

80 | 1.85 35 30 45 1 2.67 2500 3500 | 1.857393

99

96

80 | 2.13 35 30 45 1 2.67 2500 3500 | 2.061308

99 | 75

97

80 | 2.42 35 30 45 1 2.67 2500 3500 | 2.240443

99 5

98

80 | 2.71 35 30 45 1 2.67 2500 3500 | 2.399862

99 | 25

99

81 3 35 30 45 1 2.67 2500 3500 2.54239

00

00
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The first eight columns act as the model features, the 9th column is the output parameter (the ratio
of the maximum tensile stress to the tensile strength). At the output, if the predicted value of the
parameter of this ratio is less than 1, then crack resistance is ensured, and if it is greater, then cracks
are formed.

Fig. 1 shows the correlation between the variables. There is a complete or partial absence of a
linear relationship between the parameters of the variation series for all quantitative features (<0.5),
with the exception of the relationship between the features of the variation series "Slab thickness" and

"Ratio of tensile stress to ultimate strength™: p,, ,; =0.8.

h Tup hup B rate Ag Py G o/Ry
' -1.0

h - 2.9e-14 3.8e-15 6e-16 7.3e-17 6.3e-18

Tup 4.9e-15 7.4e-14 -6.6e-15 - - . - 0.8
hup .8e- 4.9e-15 6.4e-15
B 6.4e-15 1.2e-16
rate - - 1.2e-16 -7.6e-17 -1.7e-16
?lg 4.8e-17 . = -4e-16 =7.68-17 -Ge-17 . -0.089
pg . - -8.5e-16 -1.7e-16 -9e-17 =2.3e-17 -0.029
g .3e-18 - - -7.5e-16 -l.8e-16 -5.2e-17 -2.3e-17

oth . . . . . 0 -0.089 -0.029 -0.071

Fig. 1. Correlation matrix.

The statistical characteristics of the initial data set are presented in the form of a table (Table 2).
The main indicators are: sample size; sample mean; scattering variant; extremes of variable values.
The set of these indicators helps to conduct a statistical analysis of variables, determine their scatter
relative to their center, show the asymmetry of the distribution, and derive the laws of distribution of
these variation series.

Table 2. Table of statistical characteristics.

index h Tuw hup B rate Ag Pg Cy o/Ri
count | 810000 | 810000 | 810000 | 810000 | 810000 | 810000 | 810000 | 810000 | 810000
mean | 1.85 20.0 16.0 35.0 0.5 1.61 2000 2250 1.41
std 0.74 9.68 9.17 7.07 0.5 0.75 353.55 | 883,88 | 0.73
min 0.7 5.0 2.0 25.0 0.0 0.56 1500 1000 0.14
max 3.0 35.0 30.0 45.0 1.0 2.67 2500 3500 4.29




CrpouTtensHble MaTepuaisl u usgeans/Construction Materials and Products. 2025. 8 (1)

The total number of numerical experiments for all samples was 1408 variations. In developing the
models, the CatBoost artificial intelligence methods were used, and regularization methods (Weight
Decay, Decoupled Weight Decay Regularization, Augmentation), the Z — Score method was used to
normalize the data. The problem was implemented in the Jupyter environment Notebook in Python.
The method is based on the CatBoost mechanism, which uses the GradientBoostingRegressor
algorithm. When selecting hyperparameters, the Optuna method was used which is an improved
method for selecting hyperparameters. It includes gridsearch, random search and other methods. The
model parameters used for training are shown in Table 3.

Table 3. Parameters for the CatBoost model.

No. Parameter Value

1 iterations 500 — 1500

2 depth 6, 8, 10

3 learning_rate 0.01; 0.05; 0.1, 0.3; 0.5; 0.8

3. RESULTS AND DISCUSSION

The theoretical model on the basis of which the training was carried out was pre-tested on
experimental data presented in works [28, 29]. In work [28], measurements of temperatures and
stresses were carried out in a fragment of a massive monolithic wall, hardening under 100%
deformation limitation. The compressive strength of concrete at the design age of 28 days was 80
MPa. In Fig. 2, the solid line shows the graph of the change in tensile strength over time, constructed
on the basis of formulas (8)-(10). The dashed line shows the data given in work [28]. The agreement
of the results is very good.

35 T T T T T T T

= = COIN Project data [28]
according to formulas (8)-(10)

25}

R, MPa

15T

05

0 10 20 30 40 50 60 70 80

t, hours
Fig. 2. Comparison of the kinetics of tensile strength gain according to the theoretical model with
experimental data.

0

In Fig. 3, the solid line shows the theoretical graph of stress change over time. The experimental points
are also marked with markers. The discrepancy between the experiment and theory at the moment of
crack formation in the sample is 17%, which can be considered quite acceptable.
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®  experiment [28]

3l theoretical model ®

_5 1 1 1 1 1
0 10 20 30 40 50

t, hours
Fig. 3. Comparison of theoretical stress values with experimental ones given in [28].

In paper [29], the results of measuring temperature stresses in the middle of a 2.1 m thick
foundation slab using embedded string strain gauges are presented. Comparison of the experimental
results with the results predicted by the theoretical model is shown in Fig. 4. Up to the 15 day point,
the theoretical model predicts stresses well, and then, probably, a crack formed or the sensor failed.

1500 T T T T

calculation
® experiment [29]

1000

500

o, kPa

-500

-1000 : : ‘
0 5 10 15 20 25 30

t, days
Fig. 4. Comparison of theoretical stress values with experimental ones given in [29].

CatBoost model optimal values obtained during machine learning model training are presented in
Table 4.
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Table 4. Optimal values of model parameters.

Model Parameter Value
iterations 1408
CatBoost depth 10
learning_rate 0.5

Feature importance in CatBoost provides one way to calculate a feature importance score, which
indicates how much the prediction will change if the value of a feature changes in the future. Feature
importance is measured in units of change in the loss function [30]. The greater the value of Feature
importance, the greater the influence of the feature on the quality of the model. Fig. 5 shows the
implementation of the calculation of the importance assessment of features.

rate

0 5 10 15 20 25 30 35
Fig. 5. Evaluation of feature importance.

A qualitative assessment of the model parameters is shown in Table 5.

Table 5. CatBoost Quality Metrics.

Parameter/ Metrics MAE MSE MAPE (%) R2train R?test
6/Ry 0.0011 4.038 0.0014 1.00 0.98

The relationship between actual and predicted values for the CatBoost model is shown in Fig. 6.
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Test for Catboost

4.0 4.’
3.5 - o

V4

2.5 ‘/

2.0 ‘r/

1.5 ‘/

1.0 A -

ol

004 : : : : : : i

T
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Predict

Fig 6. Forecast error graph.

Actual

4. CONCLUSIONS

The built intelligent regression model, based on CatBoost using Python, is implemented in the
Jupyter environment Notebook is capable of predicting the risk of early cracking in massive reinforced
concrete structures in the form of monolithic foundation slabs with 98% reliability. Generated datasets
obtained by means of a numerical experiment were used for training. The constructed models were
assessed for quality by five metrics (MAE, MSE, MAPE), including the coefficients of determination
for training and test samples. Graphs of forecast errors and assessment of the importance of model
features were constructed.

To test the model based on nonlinear optimization methods, it is necessary to conduct many
experiments on different data sets to obtain reliable results. The most significant parameter of the
model is the slab thickness (63%), the next most significant is the rate of concrete hardening of
massive reinforced concrete structures (43%). Equal in importance were the following parameters:
heat transfer coefficient and temperature on the upper surface of the monolithic foundation slab (43%).
The concrete class parameter was 31% of the significance for the constructed model. For the thermal
conductivity coefficient of soil, specific heat capacity of soil, soil density parameters, the significance
was distributed accordingly: 11%; 8%; 2.8%.

Further research is planned to expand the range of model parameters based on the results obtained
and to consider concretes of higher strength classes [31].
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