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Введение 

Литературные персонажи образуют сложные 
сети, отражающие социокультурные нормы. Ко-
личественный их анализ стал возможен с развити-
ем цифровых гуманитарных методов: проект 
Google Ngrams показал, как миллионные корпуса 
выявляют культурные тренды [1]. Представление 
произведения как графа «персонажи – взаимодей-
ствия» даёт метрики сюжета и выявляет централь-
ных героев. 

Эффективность подхода подтверждена рядом 
работ. Elson et al. автоматически извлекли сети из 
английских романов XIX в. [2]; обзор Labatut & 
Bost систематизировал методы и задачи, решае-
мые графами персонажей [3]. Структурные при-
знаки графа позволили Holanda et al. классифици-
ровать жанры книг [4], а система Schmidt & 
Puppe визуализировала сети героев немецких ска-
зок, доказав применимость SNA к неструктуриро-
ванному тексту [5]. Анализ 162 манга-комиксов 
выявил «звёздную» структуру вокруг протагони-
ста и связь централизации с популярностью про-
изведения [6]. 

Однако кросс-культурные сопоставления пока 
редки: исследования обычно ограничиваются од-
ним языком (английский роман, японская манга и 
т.д.). Настоящая работа впервые применяет едино-
образный формализованный подход к четырём 
традициям – русской, китайской, японской и ко-
рейской. Эти языки различаются по способам ко-
дирования социального статуса: восточноазиат-
ские богаты honorific-формами, а русский исполь-
зует «ты/Вы» и имя-отчество. Сопоставление се-
тевых паттернов и лингвистических маркеров поз-
воляет показать, как разные культуры вербализу-
ют власть, дружбу и подчинение. 

Целью настоящего исследования является раз-
работка подхода к количественной реконструкции 
социальных ролей персонажей в литературных 
произведениях разных культур на основе методов 
компьютерной лингвистики и графовых нейросе-

тей. В фокусе – выявление статусов и взаимоот-
ношений персонажей (иерархия, главные и второ-
степенные действующие лица) через анализ тек-
стов оригиналов на четырех языках (русский, ки-
тайский, японский, корейский). 

Научная новизна. Впервые выполнен кросс-
культурный количественный анализ сетей литера-
турных персонажей с помощью графовых 
нейросетей. Если ранее социальные связи в тексте 
изучались преимущественно в рамках одной тра-
диции, то данное исследование сопоставляет дан-
ные сразу четырех языков, выявляя как универ-
сальные графовые паттерны (центральность героя, 
кластеризация вокруг групп), так и уникальные 
языковые маркеры ролей (системы вежливости, 
обращения). Новизна методики также в сочетании 
структурного анализа (GNN) с семантическим 
(LLM): модель не только вычисляет метрики гра-
фа, но и объясняет их на естественном языке, опи-
раясь на знания, извлеченные из текста. 

Материалы и методы исследований 
Методология. Формируется сопоставимый 

многоязычный корпус (~40 произведений) класси-
ческой прозы. Автоматическая обработка включа-
ет извлечение графа персонажей (узлы – персона-
жи, рёбра – взаимодействия) с помощью распозна-
вания имён и разрешения кореференций. Для ана-
лиза применяются Graph Neural Networks (GCN, 
GAT) и их развитие – графовые трансформеры, 
способные учитывать глобальные связи в сети. В 
экспериментальной части обучена модель класси-
фикации ролей персонажей (главный герой vs. 
второстепенный) на совокупности графов, а также 
реализована интеграция с большой языковой мо-
делью в схеме Retrieval-Augmented Generation 
(GraphRAG) для интерпретации результатов. 

Корпус и предобработка данных. Сформиро-
ван многоязычный корпус из 40 художественных 
произведений (примерно по 10 на каждую из це-
левых культур). В него вошли романы и повести 
XIX-XX вв., находящиеся в открытом доступе 
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(общественное достояние или лицензии, допуска-
ющие научное использование). Public Domain 
определяется как истечение 70 лет со дня смерти 
автора в России и большинстве стран Bern 
Convention. Для японских и корейских авторов 
проверка выполнялась по базе WIPO Lex; китай-
ские классические тексты до 1911 г. входят в PD 
de jure. 

Общий объём корпуса составляет ~7 миллио-
нов слов. Для обеспечения сопоставимости вы-
браны тексты схожих жанров (семейно-бытовые 

саги, приключенческие романы, эпос) и периодов. 
Например, русская часть включает романы Л. 
Толстого и Ф. Достоевского, китайская – класси-
ческий роман «Сон в красном тереме» и др. тексты 
рубежа династий Мин-Цин, японская – романы 
эпохи Мэйдзи (Нацумэ Сосэки и др.), корейская – 
произведения колониального периода и ранней 
республики. Сводные количественные характери-
стики многоязычного корпуса приведены в табл. 
1.

Таблица 1 
Статистика корпуса. 

Table 1 
Corpus statistics. 

Язык 
Language 

Произведений 
Works 

Токенов (млн) 
Tokens (million) 

Уникальных персона-
жей Unique Characters 

Русский Russian 10 2.26 472 
Китайский Chinese 10 1.87 431 
Японский Japanese 10 1.54 389 
Корейский Korean 10 1.61 407 

 
Каждый текст прошёл единообразную предоб-

работку. Сначала выполнялась токенизация и раз-
метка частей речи с помощью языково-
специфичных инструментов: для русского – стем-
мер и морфоанализатор pymorphy2, для китайско-
го – сегментатор Jieba, для японского – морфоло-
гический анализатор MeCab, для корейского – 
Komoran. Затем применялось распознавание име-
нованных сущностей (NER) для выделения имён 
персонажей. Мы использовали библиотеку Stanza 
(Stanford NLP) с предобученными моделями для 
каждого языка, дополненную списками собствен-
ных имён. В сложных случаях (китайские дву-
хиероглифные имена, японские кана-имена) до-
бавлялись шаблонные правила. Параллельно раз-
мечались границы прямой речи и атрибуты гово-
рящего – это критично для восстановления 
направленных взаимодействий «кто кому гово-
рит». 

Построение графа персонажей. На основе 
размеченного текста алгоритм автоматически 
строит граф взаимодействия персонажей. Узлы 
графа соответствуют уникальным персонажам (с 
учётом разрешения кореференций: например, 
«Наташа Ростова» и «Наташа» – один узел). Рёбра 
проводятся между узлами при наличии хотя бы 
одного существенного взаимодействия в тексте. 
Критериями взаимодействия служат: совместное 
появление в пределах одной сцены или диалога; 
факт прямого обращения одного персонажа к дру-
гому; явное указание на отношение (например, «X 
является отцом Y»). Каждому ребру присваивается 
вес, пропорциональный частоте взаимодействий 

(числу сцен, где пара co-появляется, суммарному 
объёму диалогов между ними и т.п.). Кроме того, 
рёбра ориентированы, если обнаружено направ-
ленное действие или речь: например, если персо-
наж A часто обращается к B, добавляется направ-
ленная дуга A→B с атрибутом «говорит». Вклю-
чение ориентированной информации позволяет 
учитывать асимметрию отношений (кто инициа-
тор контактов). В результате для каждого произ-
ведения получен взвешенный ориентированный 
граф , где  – число персонажей 
(обычно 30–100 для романа),  – совокупность 
связей между ними. 

Графовые признаки и моделирование. Полу-
ченные графы были проанализированы с помо-
щью методов теории сетей: вычислены степени 
узлов, коэффициенты кластеризации, центрально-
сти (по близости, посредничеству и др.). Брокер-
ская / посредническая центральность (betweenness 
centrality) измеряет, сколь часто вершина оказыва-
ется на кратчайшем пути между другими двумя 
вершинами. Формально: 

   

 где  – число кратчайших путей между  и , а 

 – число таких путей, проходящих через . 
Эти метрики служат первичным «портретом» 

персонажа. Так, степень узла отражает число пря-
мых взаимодействий – грубо, социальную актив-
ность героя. Центральность по посредничеству 
показывает, через кого проходят коммуникацион-
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ные пути в сюжете – потенциально выявляя свя-
зующих персонажей (например, тех, кто объеди-
няет разные группы). Предварительный сравни-
тельный анализ подтвердил ожидаемые различия: 
главные герои русских романов имели аномально 
высокую степень (иногда >50% от максимума), 
тогда как в китайском эпосе распределение степе-
ней более равномерное, с несколькими средними 
по важности фигурами. Такой разреженный харак-
тер сети в восточноазиатских текстах может отра-
жать ансамблевость повествования. 

Для более тонкого анализа социальных ролей 
задействованы Graph Neural Networks. Мы 
сформулировали задачу как классификацию уз-
лов графа на два класса: главные/ведущие персо-
нажи vs. второстепенные/эпизодические. В каче-
стве обучающей выборки вручную разметили око-
ло 200 персонажей (по ~5 из каждого текста, 
включая очевидных протагонистов и антагони-
стов). Каждый узел представляет набор признаков: 
помимо базовых сетевых метрик (степень, цен-
тральности), добавлены лингвистические атрибу-
ты – доля сцен с прямой речью данного персона-
жа, средняя длина его реплик, доля официальных 
обращений к нему другими (как индикатор ста-
тусности). Модель на основе GNN (конкретно, 2-х 
слойная Graph Convolutional Network) обучена 
предсказывать класс узла, учитывая признаки узла 
и агрегированную информацию от соседей [7]. 
Идея в том, что в графе литературного произведе-
ния главные герои образуют характерные тополо-
гические шаблоны [8]: часто они связаны друг с 
другом, имеют много связей и выступают «моста-
ми» между группами персонажей. Результаты на 
тестовых данных показали точность ~0.92 (F₁) в 
различении главных и второстепенных действую-
щих лиц – GNN уверенно превосходит простые 
пороговые критерии по степени узла (которые да-
вали ~0.8 F₁). Это согласуется с наблюдениями K. 
Shaikh и др., которые [9] отмечали эффективность 
GNN при классификации ролей персонажей рома-
на по графу взаимодействий. 

Интеграция языковой модели. Для интерпре-
тируемости результатов мы применили 
GraphRAG – расширение классического RAG, в 
котором источником знаний служит граф: при 
генерации LLM получает релевантный подграф и 
использует его топологию и атрибуты узлов, 
уменьшая риск «галлюцинаций». 

Для каждого главного героя формируется «под-
граф окружения» – все связанные персонажи с ти-
пами связей. Многоязычная LLaMA-2-7b, дообу-
ченная на русских и восточноазиатских данных, 
получает описание (напр.: «Иван Иванович связан 
с Марией – жена; Петром – слуга; князем N – 
начальник; в речи героя часто “Вы”…») и вопрос: 
«Какова его социальная роль?» Модель генерирует 
литературоведческое пояснение: «Иван – цен-
тральная фигура-патриарх, объединяющая семью 
и слуг; уважительное обращение подтверждает 
высокий статус». 

Ключевое достоинство GraphRAG – фактиче-
ская привязка ответа к графу, что, по данным не-
давних исследований [10], повышает точность 
трактовки сложных взаимосвязей. В нашем иссле-
довании LLM успешно выделяла культурные раз-
личия: главные героини русских романов имели 
меньше старших родственников и больше сверст-
ниц-подруг, тогда как в корейских текстах семей-
ная иерархия ярче выражена. 

Результаты и обсуждения 
Предварительные испытания на пилотном 

наборе (по одному роману на каждом языке) под-
твердили эффективность предложенного подхода. 
Графовая модель правильно идентифицирует цен-
тральных персонажей: например, узел с наиболь-
шей посреднической центральностью соответ-
ствует протагонисту в 4 из 4 случаев. Обнаружены 
кросс-культурные различия: русские и европей-
ские сюжеты склонны к «централизованным» се-
тям (один герой взаимодействует с большин-
ством), тогда как в восточноазиатских текстах 
наблюдаются более распределенные сети. Анализ 
речевых форм показал корреляцию между стату-
сом и языком: персонажи, к которым обращаются 
преимущественно уважительными формами 
(например, 일본어 «様», кор. «님», рус. «Вы»), как 
правило, занимают более высокое положение в 
графе. 

На основе описанных методов получены дан-
ные, позволяющие ответить на ключевые вопросы 
исследования. Во-первых, сетевая структура по-
вествования действительно различается между 
культурными традициями. Суммарные сетевые 
показатели по каждому языку представлены на 
рис. 1. 
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Рис. 1. Тепловая карта сетевых метрик персонажей. 
Fig. 1. Heat-map of character-network metrics. 

 
Русская классика отличается сильной центра-

лизацией: в большинстве произведений лишь 1-2 
героя значительно превосходят остальных по сте-
пени узла. В «Войне и мире» ядро образуют не-
сколько семей, но Пьер Безухов и князь Болкон-
ский имеют степени в 1,5 раза выше ближайших 
персонажей. В китайских «Речных заводях» кар-
тина иная: ≈ 15 разбойников формируют равно-
мерную сеть, ни один не доминирует – отражение 
коллективистского эпоса без единственного про-

тагониста. Японский «Кокоро» занимает проме-
жуточное положение: сеть сосредоточена на триа-
де «Учитель – Друг – Главный герой», остальные 
периферийны, а assortativity выше русской, по-
скольку ключевые узлы плотно взаимосвязаны. В 
русских романах, напротив, главный герой связы-
вает центральных и периферийных фигур, вопло-
щая мотив «лишнего человека». Сравнение сред-
них степеней двух групп показано на рис. 2. 

 

 
 

Рис. 2. «Средняя степень центральности: главные vs. прочие персонажи». 
Fig. 2. Average Centrality: Main vs. Supporting Characters. 
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Во-вторых, лингвистические маркеры соци-
альных ролей показали ожидаемые культурные 
отличия. В восточноазиатских сегментах корпуса 
была подсчитана доля honorific-форм в речи пер-
сонажей разного статуса. Honorific (яп. 敬語 keigo, 
кор. 존댓말 jondaetmal) – комплекс грамматиче-
ских и лексических средств, выражающих уваже-
ние или социальную дистанцию. Включает специ-
альные суффиксы имён (-さん, -様, -님), оконча-

ние глагола -습니다/-니다 в корейском и аналити-
ческие обороты в китайском (敬辞 jìngcí). 

В японских романах персонажи, обозначенные 
моделью GNN как высокостатусные (например, 
глава рода, начальник), использовали 敬語 (веж-
ливую речь) в среднем в 2.3 раза чаще, чем низко-
статусные (слуги, младшие) – подтверждая силь-
ную языковую стратификацию. В корейских 
текстах эта разница ещё выше (примерно в 3 раза 
по частоте окончаний -니다, -시오) [11]. Китай-
ский язык, не обладая развитой морфологией веж-
ливости, продемонстрировал другой индикатор: 
высокостатусных персонажей почти всегда назы-
вают титулом или фамилией с 敬称 («老爷», «大人

»), тогда как низших – по имени или прозвищу. В 
русском языке прямая речь менее формализована, 
однако графовый анализ выявил иной признак: у 
персонажей, которых все называют на «Вы» и по 
фамилии, степень узла обычно выше. Например, в 
романах Тургенева и Толстого все персонажи с 
титулами («князь X») – узлы топ-10 по централь-
ности, тогда как те, кого называют по имени без 
отчества, чаще периферийны. Таким образом, да-
же в русском, где грамматических honorific нет, 
социальная дистанция отражается в лексике обра-
щений и коррелирует с ролью в сюжете. 

Восточноазиатские тексты в нашем корпусе 
оказались более иерархич- ными: например, в ко-
рейской повести «Хон Гильдон» даже эпизодиче-
скому министру модель присвоила «высший ранг» 
– отражая культурную норму подчеркнутого ува-
жения. В русских романах, напротив, некоторые 
дворяне по статусу высоки, но их сетевые показа-
тели низки, – социальный ранг сам по себе не га-
рантирует нарративной центральности (вспомним 
«чиновников» у Гоголя). 

Интеграция с LLM оказалась полезна для ин-
терпретации: GraphRAG-схема формирует под-
граф персонажей, и модель на его основе генери-
рует пояснения уровня «гуманитарного коммента-
рия» [12]. Для «Сна в красном тереме» LLM кор-
ректно указала, что Цзя Жен хоть и глава семьи, 

но мало влияет на обмен информацией, подтвер-
ждая литературоведческий взгляд. 

Выводы 
1. Создан многоязычный корпус и pipeline, 

автоматически извлекающий графы персонажей; 
ресурс открыт для дальнейших исследований. 

2. Сетевой анализ выявил контраст: центра-
лизация русских романов vs. распределённость 
китайских и корейских эпосов; японские тексты 
занимают среднее положение. 

3. GNN над графом + лингвистические при-
знаки дают высокую точность классификации ро-
лей, показывая, что структурные метрики дей-
ствительно коррелируют с функцией героя. 

4. Honorific-анализ подтвердил, что в япон-
ском и корейском языках вежливые формы тесно 
связаны с позициями персонажей; в русском эф-
фект слабее, но тоже заметен. 

5. GraphRAG-объяснения превращают «су-
хие» метрики в человеко-читаемые выводы, об-
легчая применение метода филологам. 

Практическая значимость 
Разработанный подход может лечь в основу ин-
струментов цифровой герменевтики – систем под-
держки литературоведческого анализа. Автомати-
зированная идентификация ключевых персонажей 
и их социальных ролей пригодна для образова-
тельных приложений (визуализация сетей героев 
школьной программы) и в издательской аналитике 
(например, сравнение нарративов разных куль-
тур). Кроме того, предложенная интеграция GNN 
и LLM позволяет получать человеко-читаемые 
объяснения, что важно для интерпретации резуль-
татов в гуманитарном контексте. 

Ограничения исследования. Настоящая рабо-
та фокусируется на классической литературе, что 
обеспечивает сопоставимость, но ограничивает 
жанровое разнообразие. Методика извлечения 
персонажей пока чувствительна к качеству разре-
шения кореференции, особенно на китайском и 
японском языках (иерархическая структура имен). 
В дальнейшем планируется расширить корпус и 
дообучить модели NLP для повышения полноты 
графа. 

Перспектива. Дальнейшая работа включает 
автоматическое выявление архетипов (герой-
одиночка, «теневой лидер» и др.), расширение 
корпуса на другие культуры и переход к динами-
ческим графам для отслеживания эволюции ролей 
по ходу сюжета [13]. Таким образом, разработка 
сочетает ИИ-инструменты и филологические за-
дачи, закладывая основу цифровой сравнительной 
герменевтики. 
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