

ИЗВЕСТИЯ ТОМСКОГО ПОЛИТЕХНИЧЕСКОГО УНИВЕРСИТЕТА ИНЖИНИРИНГ ГЕОРЕСУРСОВ

Том 335, № 3, 2024 Издается с 1903 г.

BULLETIN OF THE TOMSK POLYTECHNIC UNIVERSITY GEO ASSETS ENGINEERING

Volume 335, no. 3, 2024 Published since 1903

ISSN (print) – 2500-1019 ISSN (on-line) – 2413-1830

ИЗВЕСТИЯ ТОМСКОГО ПОЛИТЕХНИЧЕСКОГО УНИВЕРСИТЕТА ИНЖИНИРИНГ ГЕОРЕСУРСОВ

Том 335, № 3, 2024

Издательство Томского политехнического университета 2024

РЕДАКЦИОННАЯ КОЛЛЕГИЯ

Семилетов И.П., гл. редактор, д-р геогр. наук (Россия) Оствальд Р.В., канд. хим. наук (Россия) Савичев О.Г., д-р геогр. наук (Россия) Покровский О.С., канд. геол.-минерал. наук (Франция) Старостенко В.И., д-р физ.-мат. наук (Украина) Конторович А.Э., д-р геол.-минерал. наук (Россия) Белозеров В.Б., д-р геол.-минерал. наук (Россия) Никитенков Н.Н., д-р физ.-мат. наук (Россия) Силкин В.М., д-р физ.-мат. наук (Испания) Коротеев Ю.М., д-р физ.-мат. наук (Россия) Уленеков О.Н., д-р физ.-мат. наук (Россия) Борисов А.М., д-р физ.-мат. наук (Россия) Коршунов А.В., д-р хим. наук (Россия) Пестряков А.Н., д-р хим. наук (Россия) Тойпель У., Dsc (Германия) Джин-Чун Ким, Dsc (Южная Корея) Заворин А.С., д-р техн. наук (Россия) Ханьялич К., Dsc (Нидерланды) Маркович Д.М., д-р физ.-мат. наук (Россия) Алексеенко С.В., д-р физ.-мат. наук (Россия) Воропай Н.И., д-р техн. наук (Россия) Кочегуров А.И., канд. техн. наук (Россия) Руи Д., PhD (Португалия) Зиатдинов Р.А., канд. физ.-мат. наук (Южная Корея) Спицын В.Г., д-р техн. наук (Россия) Муравьев С.В., д-р техн. наук (Россия) Пойлов В.З., д-р техн. наук (Россия) Лотов В.А., д-р техн. наук (Россия) Софронов В.Л., д-р хим. наук (Россия) Бузник В.М., д-р хим. наук (Россия) Захаров Ю.А., д-р хим. наук (Россия) Антипенко В.Р., д-р хим. наук (Россия) Голик В.И., д-р техн. наук (Россия) Абуталипова Е.М., д-р техн. наук (Россия) Полищук В.И., д-р техн. наук (Россия) Хамитов Р.Н., д-р техн. наук (Россия) Зюзев А.М., д-р техн. наук (Россия) Третьяк А.Я., д-р техн. наук (Россия) Арбузов С.И., д-р геол.-минерал. наук (Россия) Ковалев В.З., д-р техн. наук (Россия) Романенко С.В., д-р хим. наук (Россия) Кирьянова Л.Г., канд. филос. наук (Россия) Строкова Л.А., д-р геол.-минерал. наук (Россия) Мазуров А.К., д-р геол.-минерал. наук (Россия) Мостовщиков А.В., д-р техн. наук (Россия) Хакимьянов М.И., д-р техн. наук (Россия) Боярко Г.Ю., д-р экон. наук, канд. геол.-минерал. наук (Россия) Стрижак П.А., д-р физ.-мат. наук (Россия)

Входит в Перечень ВАК РФ – ведущих рецензируемых научных журналов и изданий, в которых должны быть опубликованы основные научные результаты диссертаций на соискание ученых степеней доктора и кандидата наук.

Глазырин А.С., выпуск. редактор, д-р техн. наук (Россия)

Подписной индекс в объединённом каталоге «Пресса России» – 18054

© ФГАОУ ВО НИ ТПУ, 2024

УВАЖАЕМЫЕ ЧИТАТЕЛИ!

Журнал «Известия Томского политехнического университета. Инжиниринг георесурсов» — рецензируемый научный журнал, издающийся с 1903 года.

Учредителем является Томский политехнический университет.

Журнал зарегистрирован Министерством Российской Федерации по делам печати, телерадиовещания и средств массовых коммуникаций – Свидетельство ПИ № ФС 77-65008 от 04.03.2016 г.

ISSN (print) – 2500-1019 ISSN (on_line) – 2413-1830

«Известия Томского политехнического университета. Инжиниринг георесурсов» публикует оригинальные работы, обзорные статьи, очерки и обсуждения, охватывающие последние достижения в области геологии, разведки и добычи полезных ископаемых, технологии транспортировки и глубокой переработки природных ресурсов, энергоэффективного производства и преобразования энергии на основе полезных ископаемых, а также безопасной утилизации геоактивов.

Журнал представляет интерес для геологов, химиков, технологов, физиков, экологов, энергетиков, специалистов по хранению и транспортировке энергоресурсов, ИТ-специалистов, а также ученых других смежных областей.

Тематические направления журнала «Известия Томского политехнического университета. Инжиниринг георесурсов»:

- Прогнозирование и разведка георесурсов
- Добыча георесурсов
- Транспортировка георесурсов
- Глубокая переработка георесурсов
- Энергоэффективное производство и преобразование
- энергии на основе георесурсов
- Безопасная утилизация георесурсов и вопросы геоэкологии
- Инженерная геология Евразии и окраинных морей

К публикации принимаются статьи, ранее нигде не опубликованные и не представленные к печати в других изданиях.

Статьи, отбираемые для публикации в журнале, проходят закрытое (слепое) рецензирование.

Автор статьи имеет право предложить двух рецензентов по научному направлению своего исследования.

Окончательное решение по публикации статьи принимает главный редактор журнала.

Все материалы размещаются в журнале на бесплатной основе.

Журнал издается ежемесячно.

Полнотекстовый доступ к электронной версии журнала возможен на сайтах www.elibrary.ru, scholar.google.com

ISSN (print) - 2500_1019 ISSN (on_line) - 2413_1830

BULLETIN OF THE TOMSK POLYTECHNIC UNIVERSITY GEO ASSETS ENGINEERING

Volume 335, № 3, 2024

EDITORIAL BOARD

Semiletov I.P., editor in chief, Dr. Sc. (Russia) Ostvald R.V., Cand. Sc. (Russia) Savichev O.G., Dr. Sc. (Russia) Pokrovsky O.S., Cand. Sc. (France) Starostenko V.I., Dr. Sc. (Ukraine) Kontorovich A.E., Dr. Sc. (Russia) Belozerov V.B., Dr. Sc. (Russia) Nikitenkov N.N., Dr. Sc. (Russia) Silkin V.M., PhD (Spain) Koroteev Yu.M., Dr. Sc. (Russia) Ulenekov O.N., Dr. Sc. (Russia) Borisov A.M., Dr. Sc. (Russia) Korshunov A.V., Dr. Sc. (Russia) Pestryakov A.N., Dr. Sc. (Russia) Teipel U., Dsc (Germany) Jin-Chun Kim, Dsc (South Korea) Zavorin A.S., Dr. Sc. (Russia) Hanjalic K., Dsc (Netherlands) Markovich D.M., Dr. Sc. (Russia) Alekseenko S.V., Dr. Sc. (Russia) Voropai N.I., Dr. Sc. (Russia) Kochegurov A.I., Cand. Sc. (Russia) Rui D., PhD (Portugal) Ziatdinov R.A., Cand. Sc. (South Korea) Muravyov S.V., Dr. Sc. (Russia) Spitsyn V.G., Dr. Sc. (Russia) Poilov V.Z., Dr. Sc. (Russia) Lotov V.A., Dr. Sc. (Russia) Sofronov V.L., Dr. Sc. (Russia) Bouznik V.M, Dr. Sc. (Russia) Zakharov Yu.A., Dr. Sc. (Russia) Antipenko V.R., Dr. Sc. (Russia) Golik V.I., Dr. Sc. (Russia) Abutalipova E.M., Dr. Sc. (Russia) Polishchuk V.I., Dr. Sc. (Russia) Khamitov R.N., Dr. Sc. (Russia) Zyuzev A.M., Dr. Sc. (Russia) Tretiak A.Ya., Dr. Sc. (Russia) Arbuzov S.I., Dr. Sc. (Russia) Kovalev V.Z., Dr. Sc. (Russia) Romanenko S.V., Dr. Sc. (Russia) Kiryanova L.G., Cand. Sc. (Russia) Strokova L.A., Dr. Sc. (Russia) Mazurov A.K., Dr. Sc. (Russia) Mostovshchikov A.V., Dr. Sc. (Russia) Khakimyanov M.I., Dr. Sc. (Russia) Boyarko G.Yu., Dr. Sc., Cand. Sc. (Russia) Strizhak P.A., Dr. Sc. (Russia)

AIMS AND SCOPES

Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering is peer-reviewed journal owned by Tomsk Polytechnic University.

The journal was founded in 1903.

The journal is registered internationally (ISSN 2413-1830) and nationally (Certificate PE no. FM 77-65008, March 04, 2016 from the RF Ministry of Press, Broadcasting and Mass Communicationss).

ISSN (print) – 2500-1019 ISSN (on-line) – 2413-1830

The journal publishes research papers in the field defined as "life cycle of georesources". It presents original papers, reviews articles, rapid communications and discussions covering recent advances in geology, exploration and extraction of mineral resources, transportation technologies and deep processing of natural resources, energy-efficient production and energy conversion based on mineral resources as well as on safe disposal of geo assets.

The journal will be of interest to geologists, chemists, engineers, physicists, ecologists, power engineers, specialists in storage and transportation of energy resources, IT specialists as well as to other specialists in the related fields.

Scope of the journal issue "Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering" in accordance with Geo Assets (GA) strategy includes:

- Geo Assets exploration and refining;
- Geo Assets mining and transportation:
- · Geo Assets deep processing;
- Energy-efficient production and conversion of energy based on Geo Assets:
- Safe disposal of Geo Assets and Geoecology issues;
- Geo-engineering of Eurasia and marginal sea;
- Economic and social aspects of using Geo Assets.

Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering publishes only original research articles. All articles are peer reviewed by international experts. Both general and technical aspects of the submitted paper are reviewed before publication. Authors are advised to suggest two potential reviewers who are familiar with the research focus of the article. Final decision on any paper is made by the Editor in Chief.

Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering is published monthly.

The publication of manuscripts is free of charge.

The journal is on open access on www.elibrary.ru, scholar.google.com.

Glazyrin A.S., managing editor, Dr. Sc. (Russia)

СОДЕРЖАНИЕ CONTENTS

Разработка поправочных коэффициентов для выбора сечений кабеля при прокладке в полимерном кабельном канале Шепелев А.О., Осипов Д.С., Ткаченко В.А.

Метод агрегирования предпочтений при определении пороговых значений яркости для распознавания объектов на оптических изображения объектов

Нгуен Д.К., Муравьев С.В.

Использование программного обеспечения Petroleum Experts Prosper для получения дополнительной добычи нефти путем анализа режима работы скважин

Коротков Р.Н., Овчаренко Д.М., Ерофеев В.И.

Новый меняющий цвет сорбционный материал для эффективного удаления тяжелых металлов из сточных вод

Камбарова Э.А., Бектенов Н.А., Базарбаева К.Ж., Мажибаев А.К., Болысбекова С.М., Гавриленко М.А.

Термовискозиметрические характеристики боросиликатных стекол для перспективной области легкоплавких составов, разрабатываемых для удаляемого малогабаритного плавителя дизайна Производственного объединения «Маяк» Шайдуллин С.М., Никулина А.Ю., Ремизов М.Б., Козлов П.В.

Сравнительный анализ двухмерного и трехмерного моделирования процессов теплопереноса при работе газового инфракрасного излучателя в помещении

Борисов Б.В., Вяткин А.В., Максимов В.И., Нагорнова Т.А.

Мальцев Л.И., Поджаров Ю.С.

Влияние кавитационной обработки водоугольных суспензий на средний размер капель в струе Гвоздяков Д.В., Зенков А.В.,

Перспектива разработки гидрогенного месторождения Семизбай Голик В.И., Разоренов Ю.И., Мицик М.Ф.

Условия формирования гидрохимического режима р. Вихорева и Усть-Вихоревского залива (Усть-Илимское водохранилище)

(Усть-Илимское водохранилище) Долгих П.Г., Полетаева В.И., Пастухов М.В.

Формы нахождения химических элементов в донных осадках в зонах разгрузки метансодержащих флюидов на шельфе моря Лаптевых Оберемок И.А., Гусева Н.В., Моисеева Ю.А., Пургина Д.В., Полтавская Н.А., Гершелис Е.В., Семилетов И.П.

> Формирование композитов с алюминиевой матрицей, армированных наночастицами карбида вольфрама

Никитин Д.С., Насырбаев А., Циммерман А.И., Шаненков И.И., Сайгаш А.С., Сивков А.А.

Источники, уровни накопления и экологическая опасность тяжелых металлов и металлоидов в почвах и фракции РМ10 г. Северобайкальска Сычева Д.Г., Кошелева Н.Е.

7 Development of correction coefficients for cable cross-sections selection in polymeric cable channel Shepelev A.O., Osipov D.S., Tkachenko V.A.

17 Preference aggregation method in determining brightness threshold values for object recognition on optical images
Nguyen D.C., Muravyov S.V.

31 Use of Petroleum Experts Prosper software to obtain additional oil production by analysis of well operation mode

Korotkov R.N., Ovcharenko D.M., Erofeev V.I.

40 New color changing sorption material for effective removal of heavy metals from wastewater
Kambarova E.A., Bektenov N.A., Bazarbaeva K.Zh., Mazhibayev A.K., Bolysbekova S.M., Gavrilenko M.A.

50 Thermoviscosimetric characteristics of borosilicate glasses with regard to the promising area of low-melting compositions currently being developed for the removable small-scale melter designed by Mayak Production Association Shaidullin S.M., Nikulina A.Yu., Remizov M.B., Kozlov P.V.

61 Comparative analysis of two-dimensional and three-dimensional modeling of heat transfer during operation of a gas infrared heater indoor Borisov B.V., Vyatkin A.V., Maksimov V.I., Nagornova T.A.

70 Effect of cavitation treatment of coal-water slurries on a droplet average size in a jet
Gvozdyakov D.V., Zenkov A.V.,
Maltzev L.I., Podzharov Yu.S.

81 Prospect of developing a hydrogenic deposit Semizbay Golik V.I., Razorenov Yu.I., Mizik M.F.

92 Conditions of formation of Vikhoreva river and Ust-Vikhorevsky bay hydrochemical regime (Ust-Ilimsk reservoir)

Dolgikh P.G., Poletaeva V.I., Pastukhov M.V.

108 Elemental speciation
of the sediments from cold methane seeps
on the Laptev Sea shelf
Oberemok I.A., Guseva N.V., Moiseeva Yu.A., Purgina D.V.,
Poltavskaya N.A., Gershelis E.V., Semiletov I.P.

124 Formation of composites
with an aluminum matrix reinforced
with tungsten carbide nanoparticles
Nikitin D.S., Nassyrbayev A., Tsimmerman A.I.,
Shanenkov I.I., Saigash A.S., Sivkov A.A.

137 Sources, accumulation levels and environmental hazard of heavy metals and metalloids in soils and PM10 fractions of Severobaykalsk Sycheva D.G., Kosheleva N.E.

Анализ и систематизация технических средств и технологий дополненной реальности в картографии

Пошивайло Я.Г., Батырова К.С.

Литолого-геохимическая характеристика и обстановки седиментации высокоуглеродистых отложений кембрия восточной окраины Сибирской платформы (бассейн р. Кюленке)

Вараксина И.В.

Осинская подсвита усольской свиты нижнего кембрия центральной и южной частей Непско-Ботуобинской антеклизы: строение, условия формирования и биостратиграфическая характеристика Токарев Д.А., Плюснин А.В., Терлеев А.А.,

Токарев Д.А., Плюснин А.В., Терлеев А.А., Староселец Д.А., Никулин Е.В., Афонин И.В., Агашева Е.А.

Prediction of penetration rate and optimization of weight on a bit using artificial neural networks Vu Hong Duong, Nguyen Minh Hoa, Nguyen Tien Hung, Nguyen The Vinh

Прогнозирование содержания сернистых соединений и общей серы в продуктах каталитического крекинга при переработке гидроочищенного и негидроочищенного нефтяного сырья

Назарова Г.Ю., Ивашкина Е.Н., Орешина А.А., Мальцев В.В.

Математическое моделирование функциональноградиентных пористых геометрически нелинейных микро/наноцилиндрических панелей Крысько А.В., Калуцкий Л.А., Захарова А.А., Крысько В.А.

Нештатная ситуация при строительстве подводного перехода методом наклонно-направленного бурения Хасанов Р.Р., Наставшев А.Е.

Влияние региональных инноваций на экологический след территорий Российской Федерации: кейс регионов Сибири и Поволжья Спицын В.В., Михальчук А.А., Чистякова Н.О., Татарникова В.В., Акерман Е.А.

154 Analysis and systematization of technical means and technologies of augmented reality in cartography Poshivaylo Ya.G., Batyrova K.S.

163 Lithological and geochemical characteristics and sedimentary environments of the Cambrian high-carbon deposits in the east of the Siberian platform (Kyulenke river basin)

Varaksina I.V.

Osinskaya subformation of the Usolsky formation of the Lower Cambrian of the central and southern parts of the Nepa-Botuoba anteclise: structure, formation conditions and biostratigraphical characteristics
Tokarev D.A., Plusnin A.V., Terleev A.A., Staroselets D.A., Nikulin E.V., Afonin I.V., Agasheva E.A.

192 Прогнозирование механической скорости бурения и оптимизация нагрузки на долото с использованием искусственных нейронных сетей Ву Хонг Зыонг, Нгуен Минь Хоа, Нгуен Тиен Хунг, Нгуен Тхе Винь

204 Prediction of sulfur compounds and total sulfur contents in catalytic cracking products of hydrotreated and non-hydrotreated feeds
Nazarova G.Yu., Ivashkina E.N.,
Oreshina A.A., Maltsev V.V.

216 Mathematical modeling of functionally graded porous geometrically nonlinear micro/nano cylindrical panels
Krysko A.V., Kalutsky L.A.,
Zakharova A.A., Krysko V.A.

230 Incident during construction of an underwater passage by directional drilling Khasanov R.R., Nastavshev A.E.

240 Regional innovations influence on the ecological footprint of the Russian Federation territories: case of the Siberia and Volga regions
Spitsyn V.V., Mikhalchuk A.A., Chistyakova N.O.,
Tatarnikova V.V., Akerman E.A.

УДК 621.315

DOI: 10.18799/24131830/2024/3/4209 Шифр специальности ВАК: 2.4.3

Разработка поправочных коэффициентов для выбора сечений кабеля при прокладке в полимерном кабельном канале

А.О. Шепелев[™], Д.С. Осипов, В.А. Ткаченко

Югорский государственный университет, Россия, г. Ханты-Мансийск

□ alexshepelev93@gmail.com

Аннотация. Актуальность исследования обусловлена необходимостью разработки поправочных коэффициентов для выбора сечений кабеля при прокладке в полимерном кабельном канале на территории Российской Федерации. В настоящее время отсутствуют рекомендации, закреплённые государственными стандартами для прокладки кабельных линий электропередачи в полимерных трубах. Цель: разработка поправочных коэффициентов к прокладке кабельных линий электропередачи в полимерных кабельных каналах. Объекты: кабельные линии электропередачи, проложенные под землей в полимерных кабельных каналах. Методы: численное моделирование комбинированным частотно-стационарным методом; определение поправочных коэффициентов на основе интерполяции результатов моделирования; оценка и анализ результатов сравнения прокладки кабелей в гофрированных и гладких полимерных трубах. Результаты. Расчеты длительно-допустимого тока нагрузки для кабелей, проложенных в полимерных кабельных каналах, показали эффективность использования данного метода прокладки кабельных линий. Использование труб с гладкими стенками позволяет гораздо эффективнее отводить тепло от кабелей в окружающую среду (в сравнении с гофрированной трубой), что дает возможность увеличить пропускную способность одного и того же кабеля примерно на 25 %, в зависимости от количества проложенных рядом труб. По результатам моделирования теплового режима гофрированной и гладкой полимерных труб можно сделать вывод о том, что гофрированная труба значительно осложняет отвод тепла от кабельной системы в окружающую среду (грунт). Данный факт вызван наличием воздушных промежутков в ребристой структуре гофрированной трубы. Промежутки, заполненные воздухом, выступают в качестве теплоизолирующего слоя, в отличие от гладкой трубы, в которой данный промежуток отсутствует. Разработанные коэффициенты позволят учесть влияние расположения кабелей на их допустимый ток уже на этапе проектирования, вследствие чего снизятся затраты на потери при передаче энергии из-за неправильно выбранного сечения кабеля и повышенной температуры.

Ключевые слова: моделирование, кабельная линия электропередачи, полиэтиленовая труба, длительно допустимая токовая нагрузка, поправочный коэффициент

Благодарности: Исследование выполнено в рамках государственного задания Министерства науки и высшего образования РФ (тема «Разработка моделей вейвлет анализа нестационарных режимов электрических сетей для повышения надежности и эффективности электроснабжения потребителей», код темы: FENG-2023-0005).

Для цитирования: Шепелев А.О., Осипов Д.С., Ткаченко В.А. Разработка поправочных коэффициентов для выбора сечений кабеля при прокладке в полимерном кабельном канале // Известия Томского политехнического университета. Инжиниринг георесурсов. – 2024. – Т. 335. – № 3. – С. 7–16. DOI: 10.18799/24131830/2024/3/4209

UDC 621.315

DOI: 10.18799/24131830/2024/3/4209

Development of correction coefficients for cable cross-sections selection in polymeric cable channel

A.O. Shepelev[™], D.S. Osipov, V.A. Tkachenko

Yugra State University, Khanty-Mansiysk, Russian Federation

□ alexshepelev93@gmail.com

Abstract. *Relevance.* The need to develop correction coefficients for selecting cable sections when laying in the polymeric cable channel in the Russian Federation. Currently, there are no recommendations fixed by the state standards for laying cable power lines in polymer pipes. *Aim.* To develop correction factors for laying cable power lines in the polymer cable channel. *Objects.* Cable transmission lines laid underground in polymer pipes. *Methods.* Numerical simulation of combined frequency-stationary method; determination of correction factors based on interpolation of model results; evaluation and analysis of comparison of cables in corrugated and smooth polymer pipes. *Results.* Calculations of the long-term current load for cables laid in the polymeric cable channel showed the effectiveness of this method of laying cable lines. The use of pipes with smooth walls makes it much more efficient to remove heat from cables into the environment (compared to a corrugated pipe), which allows you to increase the capacity of the same cable by about 25%, depending on the number of pipes laid nearby. Based on the results of the simulation of the thermal mode of corrugated and smooth polymer pipes, it can be concluded that corrugated pipe significantly complicates heat removal from the cable system to the environment (soil). This is due to the presence of air gaps in the ribbed structure of the corrugated pipe. The gaps filled with air act as a heat-insulating layer, unlike a smooth pipe in which this gap is absent. The developed coefficients will take into account the influence of the location of cables on their allowable current already at the design stage, which will reduce the cost of power transmission losses due to the wrong cable cross-section and high temperature.

Keywords: simulation, cable transmission line, polyethylene pipe, continuous permissible current, correction factor

Acknowledgements: The research was carried out within the national assignment by the Ministry of Science and Higher Education in the Russian Federation (theme "Model building for wavelet analysis of non-steady behavior in electric power systems for reliability growth effectiveness for electric power supply to a customer", theme code: FENG-2023-0005).

For citation: Shepelev A.O., Osipov D.S., Tkachenko V.A. Development of correction coefficients for cable cross-sections selection in polymeric cable channel. *Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering*, 2024, vol. 335, no. 3, pp. 7–16. DOI: 10.18799/24131830/2024/3/4209

Введение

Кабельные линии (КЛ) могут прокладываться в различных местах и различными методами. По итогу в проекте строительства будет выбран наиболее приемлемый метод прокладки КЛ в зависимости от взаимного расположения точек, которые соединяет кабель, и от произведенных технико-экономических расчетов.

Согласно терминам и определениям правил устройства электроустановок (ПУЭ) кабельным блоком называется кабельное сооружение с трубами (каналами) для прокладки в них кабелей с относящимися к нему колодцами [1].

Однако на сегодняшний день область применения полиэтиленовых (ПЭ) труб может быть гораздо шире, впрочем, как и сам материал, из которого они выполнены. Так, помимо привычных областей применения, ПЭ трубы могут быть использованы:

- для защиты кабелей от возможных внешних механических воздействий по всей длине трассы КЛ, при этом обеспечивая их практически абсолютную защиту;
- с целью увеличения длительно допустимой токовой нагрузки КЛ;
- при прокладке кабелей в сейсмоопасных зонах;
- при строительстве новых или реконструкции уже имеющихся КЛ в условиях плотной городской застройки.

К основным преимуществам электроснабжения потребителей с помощью КЛ электропередачи относятся:

1. Электрическая сеть, выполненная КЛ, наиболее компактна (особенно при прокладке в кабельной

- канализации). КЛ электропередачи способствуют сохранению городского ландшафта, что особенно актуально в исторических районах города.
- 2. Передача электрической энергии с помощью КЛ электропередачи имеет более высокий уровень надёжности. Данный факт связан с меньшим влиянием окружающей среды на линию электропередачи.
- 3. КЛ электропередачи имеют более низкий уровень электромагнитного излучения, чем воздушные линии электропередачи и, следовательно, оказывают меньшее влияние на окружающую среду и на электромагнитную обстановку в целом

КЛ электропередачи обладают меньшей пропускной способностью по сравнению с воздушными линиями электропередачи. Это непосредственно связанно с худшими условиями охлаждения КЛ, особенно в контексте многообразия способов прокладки и конструктивных особенностей кабелей. В то же время пропускная способность линий электропередачи зависит значительно от температуры токоведущих жил как для воздушных [2–4], так и для кабельных линий электропередачи [5–8].

Поэтому определение температурных режимов КЛ, прокладываемых в земле в полимерных кабельных каналах, является актуальной проблемой также и с точки зрения повышения надёжности электроснабжения потребителей [9–13].

При прокладке традиционным способом (укладка кабеля на песчаную подушку и непосредственно в песок) имеет место повышение влажности на поверхности защитных покровов. В случае прокладки

кабельных линий электропередачи в трубах обеспечивается дополнительная защита кабеля от деструктивного влияния влаги на его физикохимические свойства. В месте повышенной влажности возможно образование дефекта в изоляции и повышение количества частичных разрядов, что в конечно итоге может привести к пробою и к дальнейшему выходу КЛ электропередачи из строя [13, 14]. Но одним из положительных свойств полимерных труб является их устойчивость к воздействию коррозии, что позволяет прокладывать КЛ во влажных средах без предварительной и периодической покраски труб. ПЭ трубы не боятся высоких температур и морозов, устойчивы к механическим воздействиям и высокому внешнему давлению.

В настоящее время обычно для полимерных труб используют полиэтилен низкого давления (высокой плотности). Данный материал достаточно гибкий, имеет низкую стоимость, подходит для длительной эксплуатации и избавляет от расходов на соединение труб, так как в этом случае трубы соединяются специальными муфтами.

Теоретические основы расчета теплового поля кабельных линий электропередачи

В общем случае тепловое поля для КЛ описывается через дифференциальное уравнение теплопроводности:

$$\frac{\partial T}{\partial t} = \operatorname{div}(\chi \cdot \operatorname{grad}(T)) + \frac{q_V}{c_V},$$

где T — температура, K; t — время, c; q_V — объёмная плотность тепловыделения, $B \tau / m^3$; c_V — объёмная теплоёмкость, $Д ж / (K \cdot m^3)$; χ — температуропроводность, m^2 / c .

Величина температуропроводности рассчитывается по формуле:

$$\chi = \frac{\lambda}{c_{V}}.$$

С применением аналитических преобразований и эмпирических формул была создана методика оценки тепловых стационарных режимов КЛ МЭК 60287 [15], учитывающая все применяемые на практике конструкции КЛ. В основе данного стандарта лежит модель Нейера—МакГрафа [16], которую другие авторы адаптировали под различные конструкции кабельных изделий [17–19].

Определение длительно допустимого тока в методике МЭК производится по формуле:

$$I_{\text{доп}} = \sqrt{\frac{T_{\text{доп}} - T_0 - Q_o\left(0, 5R_{T1} + R_{T2} + R_{T3} + R_{T4}\right)}{\begin{bmatrix}R_{\text{ж}}R_{T1} + R_{\text{ж}}\left(1 + \Delta_1\right)R_{T2} + \\ +R_{\text{ж}}\left(1 + \Delta_1 + \Delta_2\right)\left(R_{T3} + R_{T4}\right)\end{bmatrix}}},$$

где $T_{\text{доп}}$ — допустимая рабочая температура кабеля, °C; T_0 — температура окружающей среды, °C; Q_{∂} — диэлектрические потери в изоляции на единицу длины, Вт/м; $R_{\mathcal{M}}$ — электрическое сопротивление жилы переменному току на единицу длины при максимальной рабочей температуре, Ом/м; R_{T1} , R_{T2} , R_{T3} , R_{T4} — тепловые сопротивления различных слоев конструкции кабеля и окружающей среды на единицу длины, К·м/BT; Δ_1 , Δ_2 — отношение общих потерь в металлическом экране и броне к сумме потерь в токопроводящей жиле.

МЭК 60287 учитывает множество факторов, влияющих на параметры кабельной системы в земле: конструкцию КЛ, поверхностный эффект, эффект близости, температурную зависимость активного сопротивления токопроводящих материалов, способы заземления экранов и др., но очевидно, что все факторы, влияющие на допустимый ток КЛ, учесть в практических расчетах невозможно. К тому же из-за большого количества коэффициентов и формул использование стандарта МЭК 60287 для применения при оценке пропускной способности затруднительно. Поэтому в настоящее время предлагают использовать ряд программных комплексов (ANSYS, COMSOL Multiphysics, ELCUT, CymCap), основанных на применении метода конечных элементов [20-25].

Температурные режимы кабельных линий напряжением 10 кВ, проложенных в полимерных трубах

Длительно допустимые токи кабелей, проложенных в полимерных трубах, рассчитаны при коэффициенте нагрузки K=1 для температуры окружающей среды $15~^{\circ}\text{C}$ – при прокладке в земле. При прокладке в земле (в полимерной трубе) токи рассчитаны при глубине закладки трубы 0,7~M и удельном тепловом сопротивлении почвы $1,2~\text{K}\cdot\text{M}/\text{BT}$, что соответствует коэффициенту теплопроводности равному $0,833~\text{BT}/\text{K}\cdot\text{M}$. Металлические экраны кабелей соединены с двух сторон кабелей и заземлены.

Фактический длительно-допустимый ток КЛ электропередачи определяется по выражению:

$$I_{\text{факт. доп}} = k_1 \cdot k_2 \cdot k_3 \cdot k_5 \cdot I_{\text{длит. доп}},\tag{1}$$

где k_1 — коэффициент, учитывающий температуру среды отличную от расчётной; k_2 — коэффициент, учитывающий удельное сопротивление почвы, определяется в соответствии с ПУЭ [1, таблица 1.3.23] (в эксперименте принимаем k_2); k_3 — коэффициент, учитывающий снижение токовой нагрузки при числе работающих кабелей в одной полимерной трубе; k_5 — коэффициент, учитывающий количество параллельно проложенных КЛ в земле (в трубах), определяется в соответствии с ПУЭ [1, таблица 1.3.26].

Для корректировки (учёта прокладки кабеля в полимерной трубе) величины длительно-допустимого тока выражение (1) необходимо скорректировать путём введения поправочного коэффициента k_4 . Данный коэффициент позволит оценить снижение длительнодопустимого тока для кабелей, проложенных в полимерном канале (трубе). Физический смысл представленного коэффициента заключается в снижении токовой загрузки кабеля, проложенного в полимерном канале, вызванной ухудшением теплоотдачи с поверхности кабеля в окружающую среду. Это связанно с тем, что кабель, находясь в замкнутом пространстве ограниченной трубой, передаёт свою теплоту через воздух, который обладает низкой теплопроводностью. Тогда выражение (1) с учётом коэффициента k_4 будет выглядеть следующим образом:

$$I_{\text{факт. доп}} = k_1 \cdot k_2 \cdot k_3 \cdot k_4 \cdot k_5 \cdot I_{\text{длит. доп}}. \tag{2}$$

Процесс нагрева будем рассматривать на примере кабеля АПвП 1×50/16 с изоляцией из сшитого полиэтилена с жилами, выполненными из алюминиевой проволоки на напряжение 10 кВ, проложенного в земле, в кабельном канале, в соответствии с требованиями ПУЭ (п. 2.3.84) [1].

Таблица 1. Структура кабеля АПвП 1×50/16 с изоляцией из сшитого полиэтилена изоляцией и свойства материалов

Table 1. Structure of APvP 1×50/16 cable with cross-linked polyethylene insulation and material properties

Материал Material	Внешний радиус, мм Outer radius, mm	Плотность, кг/м³ Density, kg/m³	Теплоёмкость, Дж/(кг°С) Heat capacity, J/(kg.°C)	Теплопроводность, Вт/(м·°C) Thermal conductivity, W/(m·°C)
Алюминий/Aluminium*	3,95	2700	920	237
Полупроводящий СПЭ Semi-conductive XLPE	4,55	950	2300	0,4
СПЭ/XLPE	7,95	950	2300	0,4
Полупроводящий СПЭ Semi-conductive XLPE	8,55	950	2300	0,4
Кабельная бумага Cable paper	8,75	1252	1370	0,167
Медь/Copper	10,85	8800	380	370
Кабельная бумага Cable paper	10,98	1252	1370	0,167
ПВХ/PVC	12,75	1250	1330	0,182
СПЭ (первичный полиэтилен высокой плотности) XLPE (primary high-density polyethylene)	160	950	2300	0,7**
Грунт/Ground	700	1900	830	0,833

*для кабеля с алюминиевыми токопроводящими жилами (for cables with aluminum conductors); **среднее значение из диапазона 0,7 \pm 0,2 Bm/(M·C) от завода-изготовителя (average value from 0,7 \pm 0,2 W/(m·°C) from manufacturer).

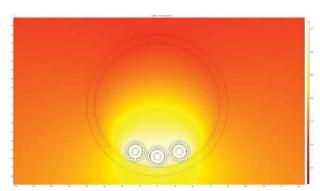
Процесс проведения эксперимента методом конечных элементов соответствует методике проведения расчёта, изложенной в МЭК 60287 [15]. В работе будут отражены расчеты только для кабелей с алюминиевыми токопроводящими жилами (ТПЖ). Коэффициент снижения токовой нагрузки при прокладке в плоскости взят с учётом того, что одна цепь КЛ электропередачи выполнена однофазными кабелями, а также учтены требования технических условий [26] и стандарта организации Федеральной сетевой компании — Россети [27], которые при такой прокладке рекомендуют снижать токовую нагрузку на коэффициент 0,9.

Численное моделирование процесса нагрева кабеля производится в программе COMSOL Multiphysics. Для решения поставленной задачи воспользуемся комбинированным частотностационарным методом решения. Такой подход в решении поставленной задачи позволит смоделировать переменные электромагнитные поля (в данном случае частотой 50 Гц) в установившемся режиме с учётом температурной зависимости активных сопротивлений. Структура рассматриваемого кабеля, свойства материалов, необходимые для конечноэлементного анализа, представлены в табл. 1.

Эксперимент 1. Одна труба с тремя однофазными кабелями с алюминиевыми ТПЖ на 10 кВ, проложенными в плоскости

В соответствии с данными завода изготовителя при прокладке в плоскости длительно-допустимый ток кабеля с алюминиевой ТПЖ $I_{\text{доп}}$ =195 А. Температура окружающей среды отлична от температуры прокладки кабеля — $\Theta_{\text{окр}}$ =20 °C, $\Theta_{\text{норм.среды}}$ =15 °C, и тогда k_1 =0,97. Количество кабелей, проложенных в одной трубе, равно 3. В соответствии с рекомендациями завода изготовителя кабельной продукции, если три однофазных кабеля проложены в одной трубе, то коэффициент k_3 =0,9. По выражению (1) длительно-допустимый ток равен:

$$I_{\text{thankT}} = 0.97 \cdot 1 \cdot 0.9 \cdot 195 = 170 \text{ A}.$$


В рамках эксперимента 1 было проведено два этапа: до корректировки величины протекающего тока и после корректировки. Поправочный коэффициент на величину длительно-допустимого тока для кабелей с алюминиевыми ТПЖ, k_4 , будет находиться в диапазоне от 0,84 до 0,96. Причём большие значения коэффициента имеют место для меньших сечений кабеля. Полученные в рамках эксперимента результаты представлены в табл. 2. На рис. 1 представлена картина температурного поля системы однофазных кабелей с изоляцией из сшитого полиэтилена сечением 50 мм² на напряжение 10 кВ, расположенных треугольником, после корректировки.

Значение длительно-допустимого тока кабеля, проложенного в полимерном канале с жилами, выполненными из алюминия, будет равно:

$$I_{\text{факт. доп}} = 0,97 \cdot 1 \cdot 0,9 \cdot 0,96 \cdot 195 = 163 \text{ A}.$$

Таблица 2. Результаты моделирования в эксперименте 1 **Table 2.** Modelling results in Experiment 1

Фаза опыта	Ток	Температура
Experiment phase	Current	Temperature
До корректировки/Before correction	170	94,9
После корректировки/After correction	163	89,8

Рис. 1. Температурное поле кабеля с алюминиевыми жилами и близлежащего грунта после корректировки (эксперимент 1)

Fig. 1. Temperature field of the cable with aluminum cores and adjacent ground after correction (case 1)

Представленные выше расчёты и значения коэффициента k_4 применимы только для кабелей с алюминиевыми жилами.

Для кабелей, проложенных треугольником, имеет место другая картина распределения температурного поля. Так как кабели касаются друг друга в двух точках, процессы теплопередачи будут проходить интенсивнее. В соответствии с ПУЭ данный способ прокладки возможен, а значит необходимо рассмотреть и его.

Эксперимент 2. Одна труба с тремя однофазными кабелями с алюминиевыми ТПЖ на 10 кВ, проложенными треугольником

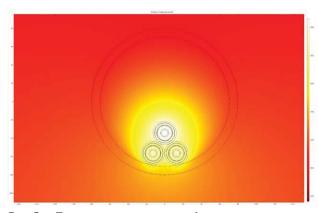
Рассмотрим случай для кабелей с алюминиевыми жилами, проложенными треугольником.

В соответствии с данными завода изготовителя при прокладке треугольником длительнодопустимый ток кабеля с алюминиевыми жилами $I_{\text{доп}}=170\,$ А. Представленное значение длительнодопустимого тока уже учитывает тот факт, что кабели находятся плотно друг к другу, и введение коэффициента k_3 не требуется. Температура окружающей среды отлична от температуры прокладки кабеля — $\Theta_{\text{окр}}=20\,$ °C, $\Theta_{\text{норм.среды}}=15\,$ °C, и тогда

 k_1 =0,97. По выражению (1) длительно-допустимый ток равен:

$$I_{\text{факт. доп}} = 0,97 \cdot 170 = 165 \text{ A.}$$

Эксперимент 2 проходил в два этапа: до корректировки величины протекающего тока и после корректировки. Поправочный коэффициент на величину длительно-допустимого тока для кабелей с алюминиевыми ТПЖ, k_4 , будет находиться в диапазоне от 0,769 до 0,89. Причём большие значения коэффициента имеют место для меньших сечений кабеля. Полученные в рамках эксперимента результаты представлены в табл. 3. На рис. 2 представлена картина температурного поля системы однофазных кабелей с изоляцией из сшитого полиэтилена сечением 50 мм 2 на напряжение 10 кВ, расположенных треугольником, после корректировки.


Тогда, в соответствии с выражением (2), длительно-допустимый ток равен:

$$I_{\text{факт. доп}} = 0,97 \cdot 0,89 \cdot 170 = 145 \text{ A}.$$

Таблица 3. Результаты моделирования в эксперименте 2 **Table 3.** Modelling results in Experiment 2

Фаза опыта	Ток Current		ература erature *
Experiment phase	Current	a	б
До корректировки/Before correction	165	107,3	96,9
После корректировки/After correction	145	89,6	82,2

*a) температура центрального кабеля/temperature of central cable; б) температура крайних кабелей/temperature of outer cables.

Рис. 2. Температурное поле кабеля с алюминиевыми жилами (треугольник) и близлежащего грунта после корректировки (эксперимент 2)

Fig. 2. Temperature field of the cable with aluminum cores (triangle) and adjacent ground after correction (case 2)

По результатам экспериментов 1 и 2 были получены поправочные коэффициенты для кабелей с алюминиевыми ТПЖ, проложенными в плоскости и треугольником. Полученные коэффициенты

представлены в табл. 4 в зависимости от способа прокладки и сечения токопроводящих жил.

Таблица 4. Поправочный коэффициент на длительнодопустимый ток кабеля с алюминиевыми жилами

Table 4. Correction factor for continuous allowable current of cables with aluminum conductors

Способ прокладки	Сечение/Cross-section							
Laying method	50	70	95	120	150	185	240	
Плоскость Plane	0,96	0,947	0,932	0,916	0,897	0,875	0,84	
Треугольник Triangle	0,89	0,877	0,862	0,84	0,825	0,804	0,769	

Стоит отметить, что представленные результаты справедливы только лишь для кабелей с алюминиевыми жилами, без металлической брони и напряжением 6–10 кВ. Применение данных коэффициентов для кабелей напряжением 20 кВ требует дополнительных исследований.

Однако на практике обычно рядом прокладывают несколько кабельных труб (от 1 до 4), поэтому рассмотрим дополнительный вариант с прокладкой КЛ параллельно. Расчёт произведём на примере трех параллельных полимерных каналов (трубах).

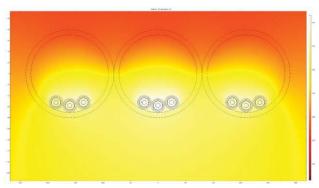
Эксперимент 3. Три трубы с тремя однофазными кабелями с алюминиевыми ТПЖ на 10 кВ, проложенными в плоскости

Рассмотрим случай для кабелей с алюминиевыми ТПЖ, проложенными в плоскости в трех параллельных полимерных трубах.

Количество кабелей, проложенных в одной трубе, равно 3. В соответствии с рекомендациями завода изготовителя кабельной продукции, если три однофазных кабеля проложены в одной трубе, то коэффициент k_3 =0,9. Так как в данном случае количество параллельных цепей три, необходимо скорректировать значение длительно-допустимого тока. Расстояние между цепями – 0,16 м (т. е. полимерные трубы соседних цепей располагаются вплотную). По выражению (1) длительно-допустимый ток равен:

$$I_{\text{bakt. Hom}} = 0.97 \cdot 1 \cdot 0.9 \cdot 0.86 \cdot 195 = 146 \text{ A}.$$

Проведение Эксперимента 3 проходило в две фазы, как и предыдущие два эксперимента. Поправочный коэффициент на величину длительнодопустимого тока для кабелей с алюминиевыми ТПЖ будет равен 0,82. Полученные в рамках эксперимента результаты представлены в табл. 5. На рис. 3 представлена картина температурного поля кабельной системы после корректировки фактического длительно-допустимого тока введением коэффициента k_4 при прокладке кабелей в плоскости.


Значение длительно-допустимого тока кабеля, проложенного в полимерной кабельной системе, с алюминиевыми ТПЖ, после корректировки будет равно:

$$I_{\text{dastr. IIOII}} = 0.97 \cdot 1 \cdot 0.9 \cdot 0.86 \cdot 0.82 \cdot 195 = 120 \text{ A.}$$

Таблица 5. Результаты моделирования в эксперименте 3

Table 5.Modelling results in Experiment 3

Фаза опыта	Ток	Температура
Experiment phase	Current	Temperature
До корректировки/Before correction	146	125,6
После корректировки/After correction	120	90,0

Рис. 3. Температурное поле кабеля с алюминиевыми жилами и близлежащего грунта после корректировки (эксперимент 3)

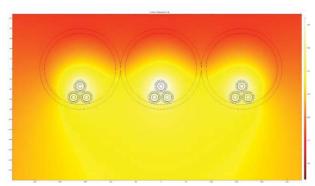
Fig. 3. Temperature field of the cable with aluminum cores and adjacent ground after correction (case 3)

Эксперимент 4. Три трубы с тремя однофазными кабелями с алюминиевыми ТПЖ на 10 кВ, проложенными треугольником

По выражению (1) длительно-допустимый ток равен:

$$I_{\text{than T MOII}} = 0.97 \cdot 0.86 \cdot 170 = 142 \text{ A}.$$

Эксперимент 4 проходил в две фазы. Поправочный коэффициент на величину длительно-допустимого тока для кабелей с алюминиевыми ТПЖ, k_4 , будет равен 0,8. Полученные в рамках эксперимента результаты представлены в табл. 6. На рис. 4 представлена картина температурного поля кабельной системы после корректировки фактического длительно-допустимого тока введением коэффициента k_4 при прокладке кабелей треугольником.


Значение длительно-допустимого тока кабеля, проложенного в полимерной кабельной системе, с жилами, выполненными из алюминия, после корректировки будет равно:

$$I_{\text{факт. поп}} = 0.97 \cdot 0.86 \cdot 0.8 \cdot 170 = 113 \text{ A}.$$

Таблица 6. Результаты моделирования в эксперименте 4 **Table 6.** Modelling results in Experiment 4

Фаза опыта	Ток Current		ература erature *
Experiment phase	Current	a	б
До корректировки/Before correction	142	128,8	122,2
После корректировки/After correction	113	89,8	85,6

*a) температура центрального кабеля/central cable temperature; б) температура крайних кабелей/temperature of outer cables.

Рис. 4. Температурное поле кабеля с алюминиевыми жилами (треугольник) и близлежащего грунта после корректировки (эксперимент 4)

Fig. 4. Temperature field of the cable with aluminum cores (triangle) and adjacent ground after correction (case 4)

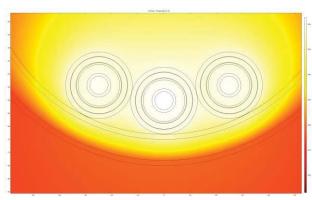
Результаты расчётов длительно-допустимого тока для кабелей с алюминиевыми жилами при различном количестве цепей представлены в табл. 7. При использовании данных табл. 7 при количестве цепей $n \ge 2$ коэффициент k_5 учитывать не требуется. Однако стоит отметить, что представленные данные справедливы только при прокладке труб вплотную друг к другу.

Таблица 7. Поправочные коэффициенты k4 для кабелей, проложенных в полимерных каналах

Table 7. Correction coefficient k4 for the cables in the polymer channel

Количество цепей		Сечение/Cross-section*								
Number of circuits	50	70	95	120	150	185	240			
1	0,96	0,947	0,932	0,916	0,897	0,875	0,84			
1	0,89	0,877	0,862	0,84	0,825	0,804	0,769			
2	0,833	0,82	0,804	0,788	0,769	0,747	0,712			
2	0,789	0,773	0,754	0,734	0,711	0,684	0,641			
3	0,705	0,698	0,688	0,679	0,668	0,655	0,635			
3	0,688	0,675	0,659	0,642	0,623	0,6	0,564			
4	0,658	0,65	0,64	0,63	0,619	0,605	0,583			
4	0,587	0,579	0,569	0,559	0,548	0,534	0,512			

*верхняя строчка – прокладка в плоскости; нижняя строчка – прокладка треугольником (top line – plane; bottom line – triangle).


Сравнение расчётных условий для выбора сечений кабельных линий электропередачи при прокладке в гофре и полимерном кабельном канале

В данном подразделе определим эффективность гладкой полимерной трубы, по сравнению с гофрированной. Для этого проведем один опыт для алюминиевого кабеля марки АПвП 1×50 на 10 кВ, проложенного в гофрированной трубе в плоскости. Для эксперимента выбрана гофрированная труба марки «Электрокор ПРО» диаметром 160 мм. Структура гофры представлена в виде трубы с воздушным зазором, который имеет место в трубах такого типа. Эффективность других соответствующих конфигураций КЛ будем считать аналогичной, полученной в ходе данного опыта. Все параметры проведения данного опыта соответствуют условиям проведения предыдущих опытов для кабеля с алюминиевыми ТПЖ в плоскости.

Для кабелей с алюминиевыми ТПЖ коэффициент k_4 будет равняться примерно 0,74 в гофрированной трубе. Значение длительно-допустимого тока кабеля, проложенного в полимерном канале (гофрированная труба), с жилами, выполненными из алюминия, будет равно:

$$I_{\text{thaket profil}} = 0,97 \cdot 1 \cdot 0,9 \cdot 0,74 \cdot 195 = 126 \text{ A}.$$

По результатам эксперимента, проведённого методом конечных элементов для теплового режима кабеля с алюминиевыми жилами сечением $50 \, \mathrm{mm}^2$, получается картина теплового поля (температуры), представленная на рис. 5.

Puc. 5. Температурное поле кабеля с алюминиевыми жилами, проложенного в гофрированной трубе

Fig. 5. Temperature field of the cable with aluminum cores laid in corrugated pipe

Максимальная температура нагрева составила в ходе расчета $89.6~^{\circ}$ С, что является допустимой температурой для кабелей с изоляцией из сшитого полиэтилена ($90~^{\circ}$ С).

Сравнительные результаты снижения токовой нагрузки от аналогичной при прокладке в кабельные траншеи приведены в табл. 8.

Таблица 8. Сравнительные результаты допустимого тока

 Table 8.
 Comparative results of permissible current

	ие допусті issible curr	имого тока ent value	допусти	снижения foro тока missible current ПЭ труба/грунт polyethylene pipe/ground	
при прокладке в грунте when laid in the ground	при прокладке в гофрированной трубе when laid in ribbed pipe	при прокладке в ПЭ when laid in a polyethylene pipe	гофра/грунт ribbed/ground	polyethylene	
	A			%	
170	126	163	25,9	4,1	

Заключение

Расчеты длительно-допустимого тока нагрузки для кабелей, проложенных в полимерном кабельном канале, показали эффективность использования данного метода прокладки кабельных линий. Использование труб с гладкими стенками позволяет гораздо эффективнее отводить тепло от кабелей в окружающую среду (в сравнении с гофрированной трубой), что дает возможность увеличить пропускную способность одного и того же кабеля

примерно на 25 %, в зависимости от количества проложенных рядом труб.

По результатам моделирования теплового режима гофрированной и гладкой полимерных труб можно сделать вывод о том, что гофрированная труба значительно осложняет отвод тепла от кабельной системы в окружающую среду (грунт). Данный факт вызван наличием воздушных промежутков в ребристой структуре гофрированной трубы. Промежутки, заполненные воздухом, выступают в качестве теплоизолирующего слоя, в отличие от гладкой трубы, в которой данный промежуток отсутствует. На рис. 5 хорошо видно, что тепловой поток не может распространяться вниз от кабельной системы, а распространяется только в вертикальном направлении (в самой гофрированной трубе). В гладкой трубе изза отсутствия воздушного зазора данный эффект не наблюдается, и по рис. 3, 4 виден хороший теплоотвод от кабельной системы.

По результатам произведённого моделирования видно, что снижение токовой нагрузки при прокладке в гофрированной трубе значительно выше, чем при прокладке кабеля в гладкой трубе. Разработанные коэффициенты позволят учесть влияние расположения кабелей на их допустимый ток уже на этапе проектирования, вследствие чего снизятся затраты на потери при передаче энергии из-за неправильно выбранного сечения кабеля и повышенной температуры.

Представленные в статье результаты могут быть полезны при проведении дальнейших экспериментальных исследований на реальных образцах кабелей для подтверждений полученных рекомендаций.

СПИСОК ЛИТЕРАТУРЫ

- 1. Правила устройства электроустановок: все действующие разделы ПУЭ-6 и ПУЭ-7. Новосибирск: Сиб. Унив. Изд-во, 2007. 854 с.
- 2. Никифоров Е.П. Предельно допустимые токовые нагрузки на провода действующих ВЛ с учетом нагрева проводов солнечной радиацией // Электрические станции. 2006. № 7. С. 56–59.
- 3. Girshin S.S., Shepelev A.O. Development of improved methods for calculating steady states of power systems taking into account the temperature dependence of the resistances of the overhead transmission lines // Power Technology and Engineering. −2020. − Vol. 54. − № 2. − P. 232–241. DOI: 10.1007/s10749-020-01196-w.
- 4. Kotni L. A proposed algorithm for an overhead transmission line conductor temperature rise calculation // International Transactions on Electrical Energy Systems Int. Trans. Electr. Energ. Syst. 2014. Vol. 24. P. 578–596. DOI: 10.1002/etep.1715.
- 5. Зайцев Е.С., Лебедев В.Д. Алгоритм оценки температуры жил трехфазных высоковольтных кабельных линий с изоляцией из сшитого полиэтилена // Электрические станции. 2016. № 9 (1022). С. 34–38.
- 6. Лебедев В.Д., Зайцев Е.С. Расчет температуры жилы однофазного высоковольтного кабеля с изоляцией из сшитого полиэтилена в режиме реального времени // Вестник ИГЭУ. − 2015. № 4. С. 11–16.
- 7. Hot spot temperature inversion for the single-core power cable joint / Ruan Jiang-jun, Liu Chao, Huang Dao-chun, Zhan Qing-hua, Tang Lie-Zheng // Applied Thermal Engineering. 2016. Vol. 104. P. 146–152. DOI: 10.1016/j.applthermaleng.2016.05.008.
- 8. Mathematical model of XLPE insulated cable power line with underground installation / O.V. Kropotin, V.A. Tkachenko, A.O. Shepelev, E.V. Petrova, V.N. Goryunov, A.A. Bigun // Przeglad Elektrotechniczny. − 2019. − Vol. 95. − № 6. − P. 77–80. DOI: 10.15199/48.2019.06.14.
- 9. Мониторинг силовых кабельных линий с адаптацией к условиям окружающей среды в режиме реального времени / В.В. Беляков, А.В. Малышев, Н.В. Кривошеев, В.К. Маршнер // ЭЛЕКТРО. 2008. № 5. С. 38–40.
- 10. Лавров Ю.А. Кабели высокого напряжения с изоляцией из сшитого полиэтилена. Требования экономичности, надежности, экологичности // Новости электротехники. − 2008. − № 2 (50). URL: http://www.news.elteh.ru/arh/2008/50/16.php (дата обращения: 14.09.2023).
- 11. Real time monitoring of power cables by fiberoptic technologies tests, applications and outlook / G.J. Anders, J.M. Braun, J.A. Downes, N. Fujimoto, M-H. Luton, S. Rizzetto // 6th International Conference on Insulated Power Cables (JiCable'03). Paris, 2003. P. 59–64.

- 12. Титков В., Дудкин С. Кабели высокого напряжения с изоляцией из сшитого полиэтилена. Требования экономичности, надежности, экологичности // Новости электротехники. 2012. № 3 (75). URL: http://www.news.elteh.ru/arh/2012/75/10.php (дата обращения: 14.09.2023).
- 13. Математическая модель прогнозирования пробоя изоляции на основе характеристик частичных разрядов / И.В. Комаров, Д.А. Поляков, К.И. Никитин, В.Ю. Мирошник // Омский научный вестник. 2021. № 1 (175). С. 46–49. DOI: 10.25206/1813-8225-2021-175-46-49.
- 14. Parpal J.L., Crine J.P., Dang C. Electrical aging of extruded dielectric cables: a physical model // IEEE Transactions on Dielectrics and Electrical Insulation. 1997. Vol. 4. № 2. P. 197–209. DOI: 10.1109/94.595247
- 15. ГОСТ Р МЭК 60287-1-1–2009. Кабели электрические. Расчет номинальной токовой нагрузки. Часть 1-1. Уравнения для расчета номинальной токовой нагрузки (100 %-ный коэффициент нагрузки) и расчет потерь. Общие положения. М.: Стандартинформ, 2009. 28 с.
- 16. Neher J.H., McGrath M.H. Calculation of the temperature rise and load capability of cable systems // AIEE Transactions. 1957. Vol. 76. Part 3. P. 755–772.
- 17. Pollak P. Neher–McGrath calculations for insulated power cables // IEEE Transactions on Industry Applications. 1985. Vol. IA–21. № 5. P. 1319–1323.
- 18. Anders G.J. Rating of cables on riser poles, in trays, in tunnels and shafts a review // IEEE Transactions on Power Delivery. 1996. Vol. 11. № 1. P. 3–11.
- 19. Sellers S.M., Black W.Z. Refinements to the Neher-McGrath Model for Calculating the Ampacity of Underground Cables // IEEE Transactions on Power Delivery. −1996. − Vol. 11. − № 1. − P. 12–30.
- 20. León F., Anders G.J. Effects of backfilling on cable ampacity analyzed with the finite element method // IEEE Transactions on Power Delivery. 2008. Vol. 23. № 2. P. 537–543.
- 21. Навалихина Е.Ю., Труфанова Н.М. Математическое моделирование тепловых и электромагнитных процессов при определении допустимых токовых нагрузок кабельных линий // Известия Томского политехнического университета. Техника и технологии в энергетике. 2014. № 4. Т. 325. С. 82–90.
- 22. Thermal analysis of underground power cables using two-dimensional finite element method / A.Kr. Naskar, N.Kr. Bhattacharya, S. Saha, S.N. Kundu // Condition Assessment Techniques in Electrical Systems (CATCON): 1st Int. Conf. India, Kolkata, 6–8 December 2013. P. 94–99. DOI: 10.1109/CATCON.2013.6737480.
- 23. Длительно допустимая токовая нагрузка силовых кабельных линий высокого напряжения в условиях трубно-блочной канализации / К.В. Волошин, Г.В. Грешняков, Д.В. Кизеветтер, В.В. Титков, П.Д. Тукеев, Е.А. Чесноков, В.В. Бушанова, И.О. Херсонцева // Электроэнергия. Передача и распределение. − 2023. − № 4 (79). − С. 108−113.
- 24. Титков В.В., Волошин К.В., Тукеев П.Д. Расчет температур для группы параллельно проложенных подземных силовых кабельных линий // Глобальная энергия. 2023. Т. 29. № 2. С. 7–18. DOI: 10.18721/JEST.29201.
- 25. Определение погонных электротехнических параметров нефтепогружного кабеля / А.С. Глазырин, Ю.Н. Исаев, С.Н. Кладиев, А.П. Леонов, И.В. Раков, С.В. Колесников, С.В. Ланграф, А.А. Филипас, В.А. Копырин, Р.Н. Хамитов, В.З. Ковалев, А.В. Лавринович // Известия Томского политехнического университета. Инжиниринг георесурсов. − 2021. − Т. 332. − № 6. − С. 186−197. DOI: 10.18799/24131830/2021/06/3249
- 26. ТУ 16.К71-335-2004 Кабели силовые с изоляцией из сшитого полиэтилена на напряжение 10, 20, 35 кВ. Технические требования. М: Изд-во, ОАО «ВНИИКП». 56 с.
- 27. Методические указания по применению силовых кабелей с изоляцией из сшитого полиэтилена на напряжение 10–35 кВ: CTO 56947007-29.060.20.020-2009. М.: OAO «ФСК ЕЭС», 2009. 47 с.

Информация об авторах

Александр Олегович Шепелев, кандидат технических наук, доцент Политехнической школы Югорского государственного университета, Россия, 628012, г. Ханты-Мансийск, ул. Чехова, 16. alexshepelev93@gmail.com; https://orcid.org/0000-0002-5757-9653

Дмитрий Сергеевич Осипов, доктор технических наук, руководитель Политехнической школы Югорского государственного университета, Россия, 628012, г. Ханты-Мансийск, ул. Чехова, 16. ossipovdmitriy@list.ru; https://orcid.org/0000-0002-0830-408X

Всеволод Андреевич Ткаченко, преподаватель Политехнической школы Югорского государственного университета, Россия, 628012, г. Ханты-Мансийск, ул. Чехова, 16. sevaatmail@gmail.com

Поступила в редакцию: 28.09.2023

Поступила после рецензирования: 27.10.2023

Принята к публикации: 25.01.2024

REFERENCES

- 1. Regulation of electrical installations: All existing sections of PUE-6 and PUE-7. Novosibirsk, Siberian University Publ., 2007. 854 p. (In Russ.)
- 2. Nikiforov E.P. Maximum permissible current loads on wires of existing overhead lines taking into account the heating of wires by solar radiation. *Elektricheskie stantsii*, 2006, no. 7, pp. 56–59. (In Russ.)
- 3. Girshin S.S., Shepelev A.O. Development of improved methods for calculating steady states of power systems taking into account the temperature dependence of the resistances of the overhead transmission lines. *Power Technology and Engineering*, 2020, vol. 54, no. 2, pp. 232–241. DOI: 10.1007/s10749-020-01196-w.
- 4. Kotni L. A proposed algorithm for an overhead transmission line conductor temperature rise calculation. *International Transactions on Electrical Energy Systems Int. Trans. Electr. Energ. Syst*, 2014, vol. 24, pp. 578–596. DOI: 10.1002/etep.1715.

- 5. Zaytsev E.S., Lebedev V.D. Algorithm for estimating the core temperature of three-phase high-voltage cable lines with cross-linked polyethylene insulation. *Elektricheskie stantsii*, 2016, no. 9, pp. 34–38. (In Russ.)
- 6. Lebedev V.D., Zaytsev E.S. Calculation of core temperature of single-phase high-voltage cables with XLPE insulation in real time. *Vestnik of Ivanovo State Power Engineering University*, 2015, no. 4, pp. 11–16. (In Russ.) DOI: 10.17588/2072-2672.2015.4.011-016.
- 7. Jiang-jun Ruan, Chao Liu, Dao-chun Huang, Qing-hua Zhan, Lie-Zheng Tang Hot spot temperature inversion for the single-core power cable joint. *Applied Thermal Engineering*, 2016, vol. 104, pp. 146–152. DOI: 10.1016/j.applthermaleng.2016.05.008.
- 8. Kropotin O.V., Tkachenko V.A., Shepelev A.O., Petrova E.V., Goryunov V.N., Bigun A.A. Mathematical model of XLPE insulated cable power line with underground installation. *Przeglad Elektrotechniczny*, 2019, vol. 95, no. 6, pp. 77–80. DOI: 10.15199/48.2019.06.14.
- 9. Belyakov V.V., Malyshev A.V., Krivosheev N.V., Marshner V.K. Real-time monitoring of power cable lines with adaptation to environmental conditions. *Elektro*, 2008, no 5, pp. 38–40. (In Russ.)
- 10. Lavrov Yu.A. High voltage cables with cross-linked polyethylene insulation. Requirements for economy, reliability, environmental friendliness. *Novosti elektrotehniki*, 2008, no. 2 (50). (In Russ.) Available at: http://www.news.elteh.ru/arh/2008/50/16.php (accessed: 14 September 2023).
- 11. Anders G.J., Braun J.M., Downes J.A., Fujimoto N., Luton M-H., Rizzetto S. Real time monitoring of power cables by fiberoptic technologies tests, applications and outlook. *6th International Conference on Insulated Power Cables* (JiCable'03). Paris, 2003. pp. 59–64.
- 12. Titkov V., Dudkin S. Cable lines 6–10 kV and above. Influence of laying methods on temperature. *Novosti elektrotehniki*, 2012, no. 3 (75). (In Russ.) Available at: http://www.news.elteh.ru/arh/2012/75/10.php (accessed: 14 September 2023).
- 13. Komarov I.V., Polyakov D.A., Nikitin K.I., Miroshnik V.Yu. Mathematical model of insulation breakdown prediction based on partial discharge characteristics. *Omsk Scientific Bulletin*, 2021, no. 1 (175), pp. 46–49. (In Russ.) DOI: 10.25206/1813-8225-2021-175-46-49.
- 14. Parpal J.L., Crine J.P., Dang C. Electrical aging of extruded dielectric cables: a physical model. *IEEE Transactions on Dielectrics and Electrical Insulation*, 1997, vol. 4, no. 2, pp. 197–209. DOI: 10.1109/94.595247.
- 15. SS R IEC 60287-1-1–2009. Electric cables. Calculation of the current rating. Part 1-1. Current rating equations (100 % load factor) and calculation of losses. General. Moscow, Standartinform Publ., 2009. 28 p. (In Russ.)
- 16. Neher J.H., McGrath M.H. Calculation of the temperature rise and load capability of cable systems. *AIEE Transactions*, 1957, vol. 76, P. 3, pp. 755–772.
- 17. Pollak P. Neher-McGrath calculations for insulated power cables. *IEEE Transactions on Industry Applications*, 1985, vol. IA–21, no. 5, pp. 1319–1323.
- 18. Anders G.J. Rating of cables on riser poles, in trays, in tunnels and shafts a review. *IEEE Transactions on Power Delivery*, 1996, vol. 11, no. 1, pp. 3–11.
- 19. Sellers S.M., Black W.Z. Refinements to the Neher–McGrath model for calculating the ampacity of underground cables. *IEEE Transactions on Power Delivery*, 1996, vol. 11, no. 1, pp. 12–30.
- 20. León F., Anders G.J. Effects of backfilling on cable ampacity analyzed with the finite element method. *IEEE Transactions on Power Delivery*, 2008, vol. 23, no. 2, pp. 537–543.
- 21. Navalikhina E.Yu., Trufanova N.M. Mathematical modeling of heat and electromagnetic processes when determining current capacity in cable lines. *Bulletin of the Tomsk Polytechnic University*, 2014, vol. 325, no. 4, pp. 82–90. (In Russ.)
- 22. Naskar A.Kr., Bhattacharya N.Kr., Saha S., Kundu S.N. Thermal analysis of underground power cables using two dimensional finite element method. 2013 IEEE 1st International Conference on Condition Assessment Techniques in Electrical Systems (CATCON). Kolkata, India, 2013. pp. 94–99. DOI: 10.1109/CATCON.2013.6737480.
- 23. Voloshin K.V., Greshnyakov G.V., Kizevetter D.V., Titkov V.V., Chesnokov E.A. Continuous permissible current load of HV power cable lines in conditions of the pipe-block canalization. *ELECTRIC POWER. Transmission and distribution*, 2023, no. 4 (79), pp. 108–113. (In Russ.)
- 24. Titkov V.V., Voloshin K.V., Tukeev P.D. Temperature calculation for a group of underground parallel power cable lines. *Global Energy*, 2023, vol. 29, no. 2, pp. 7–18. (In Russ.) DOI: 10.18721/JEST.29201.
- Glazyrin A.S., Isaev Y.N., Kladiev S.N., Leonov A.P., Rakov I.V., Kolesnikov S.V., Langraf S.V., Filipas A.A., Kopyrin V.A., Khamitov R.N., Kovalev V.Z., Lavrinovich A.V. Determination of running electrical characteristics of oil submersible cable. *Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering*, 2021, vol. 332, no. 6, pp. 186–197. (In Russ.) DOI: 10.18799/24131830/2021/06/3249
- 26. TU 16.K71-335-2004 Power cables with insulation of cross-linked polyethylene at 10, 20, 35 kV. Technical requirements. Moscow, JSC VNIIKP Publ., 56 p. (In Russ.)
- 27. Standard of the organization 56947007-29.060.20.020-2009. Guidelines for the use of power cables with 10–35 kV cross-linked polyethylene insulation. Moscow, JSC FGC UES, 2009. 47 p. (In Russ.)

Information about the authors

Alexander O. Shepelev, Cand. Sc., Associate Professor, Yugra State University, 16, Chekhov street, Khanty-Mansiysk, 628012, Russian Federation. alexshepelev93@gmail.com; https://orcid.org/0000-0002-5757-9653

Dmitry S. Osipov, Dr. Sc., Professor, Yugra State University, 16, Chekhov street, Khanty-Mansiysk, 628012, Russian Federation. ossipovdmitriy@list.ru; https://orcid.org/0000-0002-0830-408X

Vsevolod A. Tkachenko, Lecturer, Yugra State University, 16, Chekhov street, Khanty-Mansiysk, 628012, Russian Federation. sevaatmail@gmail.com

Received: 28.09.2023 Revised: 27.10.2023 Accepted: 25.01.2024 УДК 004.8:621.3

DOI: 10.18799/24131830/2024/3/4530 Шифр специальности ВАК: 2.3.1

Метод агрегирования предпочтений при определении пороговых значений яркости для распознавания объектов на оптических изображениях

Д.К. Нгуен, С.В. Муравьев⊠

Национальный исследовательский Томский политехнический университет, Россия, г. Томск ™muravvov@tpu.ru

Аннотация. Актуальность исследования обусловлена необходимостью автоматизации обработки больших объемов геофизической информации, извлекаемой из изображений, получаемых посредством аэрофотосъемки или космического дистанционного зондирования. Основным этапом обработки изображения с целью распознавания объектов является сегментация, состоящая в разделении изображения на две однородные четко различимые непересекающиеся области с известными границами. Простыми, но эффективными и поэтому популярными являются пороговые методы сегментации. *Цель:* описание результатов экспериментальных исследований применения ранее разработанного авторами робастного метода комплексирования интервалов агрегированием предпочтений для выбора пороговых значений при сегментации объектов на оптических изображениях. Объекты: изображения береговой линии, полученные с помощью спутников дистанционного зондирования Земли. Методы. Анализируемое изображение разбивается на равные полосы. По гистограмме яркости каждой полосы определяются характерный для нее интервал яркости. Для полученных интервалов яркости вычисляется результат комплексирования методом комплексирования интервалов агрегированием предпочтений, который используется в качестве порогового значения яркости при формировании сегментированного изображения. Результаты экспериментальных исследований 100 спутниковых изображений береговой линии показали, что предложенный метод обеспечил корректное разделение областей суши и моря на 84 изображениях, в то время как традиционные методы максимума энтропии, арифметического усреднения и Оцу показали корректные результаты только в, соответственно, 27, 76 и 73 случаях. Оценки метрик Precision, Recall и отклонения вычисленного порога от заведомо правильного значения показали доминирование предложенного метода над остальными протестированными методами по качеству сегментации.

Ключевые слова: сегментация изображения, порог яркости, комплексирование интервалов, агрегирование предпочтений, изображения дистанционного зондирования, береговая линия

Для цитирования: Нгуен Д.К., Муравьев С.В. Метод агрегирования предпочтений при определении пороговых значений яркости для распознавания объектов на оптических изображениях // Известия Томского политехнического университета. Инжиниринг георесурсов. – 2024. – Т. 335. – № 3. – С. 17–30. DOI: 10.18799/24131830/2024/3/4530

UDC 004.8:621.3

DOI: 10.18799/24131830/2024/3/4530

Preference aggregation method in determining brightness threshold values for object recognition on optical images

D.C. Nguyen, S.V. Muravyov[⊠]

National Research Tomsk Polytechnic University, Tomsk, Russian Federation

[⊠]muravyov@tpu.ru

Abstract. Relevance. The need to automate the processing large volumes of geophysical information extracted from images obtained through aerial photography or space remote sensing. The main stage of image processing for object recognition is segmentation. It consists in dividing the image into two homogeneous, clearly distinguishable non-overlapping areas with

known boundaries. Threshold segmentation methods are simple but effective and therefore popular. *Aim.* To describe the experimental studies results of application of the robust method of interval fusion with preference aggregation previously developed by the authors for selecting threshold values when segmenting objects in optical images. *Objects.* Coastline images taken by Earth remote sensing satellites. *Methods.* The analyzed image is divided into equal bands. Based on the brightness histogram of each band, its characteristic brightness interval is determined. For the obtained brightness intervals, the fusion result is calculated using the interval fusion with preference aggregation method. The latter is used as a threshold brightness value when forming a segmented image. *Results.* The results of experimental studies of 100 satellite images of the coastline showed that the proposed method provided correct separation of land and sea regions in 84 images. And the traditional methods of maximum entropy, arithmetic averaging and Otsu showed correct results only in 27, 76 and 73 cases, respectively. Evaluations of such the metrics as Precision, Recall and deviation of the calculated threshold from a known correct value showed the dominance of the proposed method over other tested ones in terms of segmentation quality.

Keywords: image segmentation, brightness threshold, interval fusion, preference aggregation, Earth remote sensing images, coastline

For citation: Nguyen D.C., Muravyov S.V. Preference aggregation method in determining brightness threshold values for object recognition on optical images. *Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering*, 2024, vol. 335, no. 3, pp. 17–30. DOI: 10.18799/24131830/2024/3/4530

Введение

Информация, извлекаемая из оптических изображений, получаемых посредством аэрофотосъемки и (или) космического дистанционного зондирования, является необходимой при поиске, освоении и эксплуатации месторождений полезных ископаемых, при геодезических и картографических исследованиях, при оценке и мониторинге природных ресурсов и т. п. [1]. В силу наличия больших объемов такой информации весьма актуальной является автоматизация ее обработки. Основным этапом обработки изображения с целью распознавания объектов является сегментация, состоящая в разделении изображения на две однородные четко различимые непересекающиеся области с известными границами [2].

Будем рассматривать анализируемое изображение как двумерный массив, представленный $(r \times q)$ матрицей $C = [c_{ij}]$ пикселей, состоящей из строк $i = 1, \ldots, r$ и столбцов $j = 1, \ldots, q$. Каждый элемент матрицы (пиксель c_{ij}) принимает значение интенсивности цвета t (или spkocmu) соответствующей точки изображения в формате RGB, т. е. $t = 0, \ldots, 255$.

В качестве источника данных о яркости пикселей будем пользоваться представлением анализируемого изображения с помощью *гистограммы яркости*, показывающей распределение количества пикселей по уровням интенсивности (или уровням серого цвета) оцифрованного изображения [3].

Самым простым, но достаточно эффективным и поэтому популярным является пороговый метод сегментации [2, 3], который разбивает множество пикселей изображения C на два подмножества: подмножество E пикселей, яркость которых превышает пороговое значение f, и подмножество P пикселей, яркость которых меньше порогового значения f. Это значит, что яркость пикселей выходного изображения D (т. е. результата сегмента-

ции) может принимать два значения – черное (1, фон) и белое (0, объект) в соответствии с формулой:

$$t(d_{ij}) = \begin{cases} 1, \text{ если } t(c_{ij}) \ge f, \\ 0, \text{ если } t(c_{ij}) < f, \end{cases}$$
 (1)

где $t(d_{ij})$ – яркость пикселя $d_{ij} \in D$; $t(c_{ij})$ – яркость пикселя $c_{ij} \in C$.

Очевидно, что результат сегментации изображения пороговым методом прямо зависит от выбора значения порога. Если порог выбран неправильно, то возможны две нежелательные ситуации: 1) часть пикселей объекта ошибочно относятся к фону и 2) часть пикселей фона ошибочно относятся к объекту. Это приводит к неточным и ненадежным результатам сегментации. Поэтому остаются актуальными попытки разработки способов выбора подходящего порога для обеспечения точных результатов сегментации.

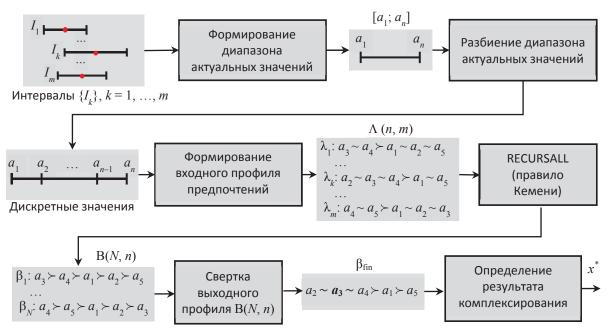
Целью данной статьи является описание результатов экспериментальных исследований применения ранее разработанного авторами робастного метода комплексирования интервалов агрегированием предпочтений (interval fusion with preference aggregation — IF&PA) [4] для выбора пороговых значений при распознавании объектов на фотоизображениях.

В качестве фотоизображений при проведении экспериментов будем использовать спутниковые снимки береговой линии. Точное и своевременное определение береговой линии играет важную роль в мониторинге прибрежных ресурсов и оценке воздействия на окружающую среду [5–9].

Для сравнения пороги выбирались также традиционными методами Оцу [10], усреднения и максимальной энтропии [11, 12] на тех же изображениях. Результаты тестирования показали, что точ-

ность результатов сегментации изображений с выбором порога методом IF&PA выше, чем у известных методов.

Метод комплексирования интервалов агрегированием предпочтений


Автоматический выбор пороговых значений для сегментации будем осуществлять предложенным и развиваемым научным коллективом проф. С.В. Муравьева (ТПУ) методом IF&PA [4, 13–15], который позволяет находить для заданной выборки неравноточных (т. е. имеющих разную дисперсию) значений $\{x_1, x_2, ..., x_m\}$ некоторой физической величины X оценку центра ее распределения. Эта оценка, которую будем называть результатом комплексирования x, характеризуется повышенными робастностью, точностью и достоверностью по сравнению с традиционными оценками, такими как среднее арифметическое, среднее взвешенное, выборочная медиана и др. [4, 13, 16]. Сформулируем кратко суть метода IF&PA, основные этапы которого представлены на рис. 1.

Рассмотрим набор из m замкнутых интервалов $\{I_k\}_{k=1}^m$ на вещественной числовой оси, где каждый интервал характеризуется средней точкой x_k , ниженей границей x_k - ε_k и верхней границей x_k + ε_k , так что I_k = $[x_k$ - ε_k, x_k + $\varepsilon_k]$; $x_k, \varepsilon_k \in \mathbf{R}$.

Ключевая идея метода состоит в преобразовании каждого из m исходных интервалов $\{I_k\}$, $k=1,\ldots,m$, в p интервалу n дискретных значений из множества $A=\{a_1,\ a_2,\ ...,\ a_n\}\in \mathbf{R}$. Ранжированием называется бинарное o интервалов $\lambda=a_2 \succ a_1 \succ ... \succ a_s \sim a_t \succ ... \succ a_p \sim a_q$, где символы $\lambda=a_2 \succ a_1 \succ ... \succ a_s \sim a_t \succ ... \succ a_p \sim a_q$, где символы $\lambda=a_2 \succ a_1 \succ ... \succ a_s \sim a_t \succ ... \succ a_p \sim a_q$, где символы $\lambda=a_2 \succ a_1 \succ ... \succ a_s \sim a_t \succ ... \succ a_p \sim a_q$, где символы $\lambda=a_1 \succ a_1 \succ ... \succ a_s \sim a_t \succ ... \succ a_t \succ ... \succ a_t \succ a_t$

Для представления исходных интервалов ранжированиями сформируем диапазон актуальных значений (ДАЗ), представляющий собой множество $A=\{a_1,\,a_2,\,...,\,a_n\}$ строго упорядоченных дискретных значений $a_1< a_2< ...< a_n$. Наименьшая нижняя граница для всех интервалов выбирается в качестве нижней границы ДАЗ a_1 , т. е. a_1 =min $\{x_k$ - ϵ_k |k=1, ..., $m\}$; в качестве верхней границы a_n берется наибольшая верхняя граница для этих интервалов, т. е. a_n =max $\{x_k$ - ϵ_k |k=1, ..., $m\}$.

Для получения элементов a_2 , a_3 , ..., a_{n-1} разбиваем полученный интервал $[a_1, a_n]$ на n-1 подынтервалов, длина (норма) которых равна $h=(a_n-a_1)/(n-1)$. Тогда i-й элемент ДАЗ определяется как $a_i=a_{i-1}+h$, i=2, ..., n.

Puc. 1. Этапы метода IF&PA **Fig. 1.** Stages of the IF&PA method

Множество A строго упорядоченных дискретных значений a_i , $i=1,\ldots,n$, используется для формирования *профиля предпочтений* $\Lambda(m,n)=\{\lambda_1,\lambda_2,\ldots,\lambda_m\}$, состоящего из ранжирований, представляющих интервалы I_k . Обозначим через A_k множество всех элементов из A, принадлежащих интервалу I_k , τ . е. $A_k=\{a_i|a_i\in I_k\wedge a_i\in A\}$. Ясно, что его дополнение \overline{A}_k будет включать все остальные элементы из A, τ . е. $\overline{A}_k=\{a_i|a_i\notin I_k\wedge a_i\in A\}$. Тогда для любого интервала I_k , $k=1,\ldots,m$ имеем разбиение множества A на два класса эквивалентности A_k и \overline{A}_k , \overline{A}_k , $\overline{A}_k \cap \overline{A}_k=\varnothing$.

Ранжирование λ_k , наведенное интервалом I_k , удовлетворяет следующим четырем условиям для i, j=1, ..., n:

$$a_i \in A_k \land a_i \notin A_k \Longrightarrow a_i \succ a_i;$$
 (2)

$$a_i, a_j \in A_k \lor a_i, a_j \notin A_k \Longrightarrow a_i \sim a_j;$$
 (3)

$$a_i \notin A_k \land a_i \in A_k \Longrightarrow a_i \prec a_i;$$
 (4)

$$a_i, a_i \in A_k$$
 соседние элементы $\Rightarrow j \equiv i+1$. (5)

Необходимость условия (5) определяется тем, что последовательность элементов множества A является строго монотонной, т. е. $a_i < a_{i+1}$ для всех $i \in \mathbb{N}_n$. Класс $A_k \subseteq A$ может включать наборы только следующих друг за другом элементов из A без пропусков, т. е. список индексов этих элементов должен соответствовать отрезку натурального ряда. Заметим, что структура любого ранжирования, удовлетворяющего условиям (2)–(5), определяется выражением $\lambda_k = A_k \succ \overline{A}_k$, т. е. каждое такое ранжирование содержит единственный символ строгого порядка \succ и n–2 символов толерантности \sim .

Для полученного профиля $\Lambda(m, n)$ осуществляется поиск всех возможных ранжирований консенсуса $\{\beta_1, \beta_2, ..., \beta_N\}$ по правилу агрегирования Кемени [15, 17, 18]. Для этой цели используется рекурсивный алгоритм ветвей и границ собственной разработки RECURSALL [19]. Каждое ранжирование консенсуса β_k , k=1, ..., N, является оптимальным решением задачи о ранжировании Кемени [18, 20, 21], представляющим собой строгий порядок элементов из A, а их множество образует выходной профиль B(N, n).

Профиль B(N, n) преобразуется в единственное итоговое ранжирование консенсуса $\beta_{\rm fin}$ по правилу свёртки, описанному в [15, 20]. В качестве результата комплексирования x^* принимается наиболее предпочтительное дискретное значение в итоговом ранжировании консенсуса $\beta_{\rm fin}$.

Если β_{fin} содержит более одного наилучшего дискретного значения, то в качестве естественного

представителя таких значений используется выборочная медиана, рассчитываемая для числа ν наилучших элементов по известной формуле:

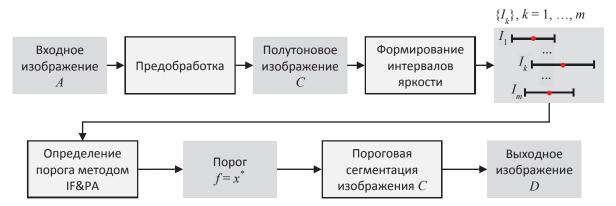
$$x^* = \begin{cases} a_{(\nu+1)/2}, & \text{если } \nu \text{ нечетно;} \\ (a_{\nu/2} + a_{1+\nu/2})/2, & \text{если } \nu \text{ четно.} \end{cases}$$
 (6)

Заметим, что задача о ранжировании Кемени является NP-трудной [22], т. е. для нее не существует точный алгоритм с полиномиальным временем (пропорциональным размерности n=|A| задачи) решения. Одна из разумных рекомендаций в этой ситуации состоит в том, чтобы выбирать число n<20, подходящее для большинства практических применений и обеспечивающее нахождение точного ранжирования консенсуса за приемлемое время [15, 20]. В данной работе авторы используют n=11 при среднем времени решения порядка нескольких миллисекунд.

Пороговая сегментация с применением метода IF&PA

Для того чтобы выявить пороговое значение яркости (1), отвечающее наиболее близкому к истинному различию между сегментируемыми областями, исходное изображение необходимо разделить на несколько частей, каждая из которых будет характеризоваться своим распределением интенсивности пикселей. Для этого будем разбивать анализируемое полутоновое изображение C на 15 горизонтальных полос равной высоты [23]. По гистограммам полос будем определять соответствующие интервалы $\{I_k\}$ яркости образующих их пикселей. По этим интервалам с помощью процедуры IF&PA будем вычислять робастное значение порога яркости, которое будем использовать для сегментации (формирования выходного изображения D).

Процесс выполнения сегментации изображения с определением порога методом IF&PA представлен на рис. 2.


Определение нижней I_k^{low} и верхней I_k^{up} границ интервала яркости $I_k = [I_k^{\text{low}}, I_k^{\text{up}}]$ для каждой k-й полосы, k = 1, 2, ..., m, осуществляется по соответствующей гистограмме. Для этого на k-й гистограмме формируются пять зон по степени интенсивности тона: черная, темная, средняя, светлая и белая [23]. Ширина каждой зоны определяется как

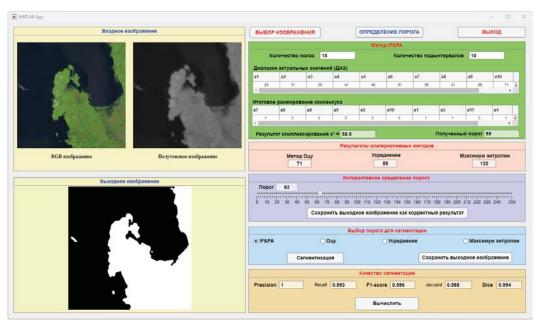
$$l=0,2(t_{\text{max}}-t_{\text{min}}),$$
 (7)

где $t_{\min},\ t_{\max}$ — минимальная и максимальная интенсивности.

Из рассмотрения большого количества разных изображений береговых линий следует, что большинство пикселей области морской поверхности принадлежат темной зоне гистограммы. Поэтому границы интервала I_k определяются по формулам:

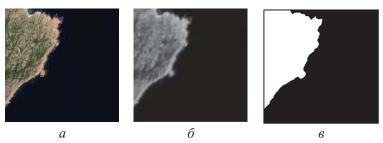
$$I_k^{\text{low}} = t_{\text{min}} + l; I_k^{\text{up}} = t_{\text{min}} + 2l.$$
 (8)

Puc. 2. Этапы сегментации изображения с расчетом порога методом IF&PA **Fig. 2.** Image segmentation stages with threshold determined by the IF&PA method


Для полученных интервалов яркости I_k вычисляется результат комплексирования x методом IF&PA, который используется в качестве порогового значения яркости f при формировании сегментированного изображения D в соответствии с формулой (1). Выходное изображение D является бинаризованным, в нем область белого цвета соответствует поверхности суши, а область черного цвета представляет морскую поверхность.

Программное обеспечение для экспериментальных исследований

Для экспериментальной проверки предложенного метода было разработано программное обеспечение (ПО) в среде технических вычислений Matlab. На рис. 3 показан вид пользовательского


интерфейса разработанного ПО. Пользователь имеет возможность выбрать исходное анализируемое изображение, задать параметры метода IF&PA, обработать изображение другими пороговыми методами, в том числе ручным (интерактивным) методом, результат которого считается правильным. Результат сегментации выводится на экран монитора с соответствующими оценками типовых мер качества распознавания.

Рассмотрим пример применения разработанного ПО для сегментации изображения береговой линии с определением порога яркости методом IF&PA. Входное изображение A размером 300×300 пикселей с помощью предварительной обработки преобразуется в полутоновое изображение C (рис. $4, a, \delta$).

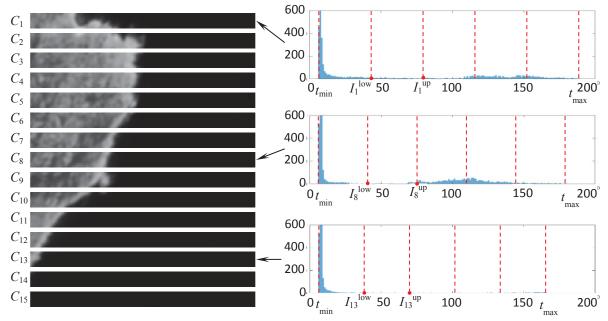

Рис. 3. Интерфейс пользователя экспериментального программного обеспечения для пороговой сегментации изображений

Fig. 3. User interface of the experimental software for image segmentation by thresholding

Рис. 4. Пример пороговой обработки изображения: а) входное изображение A; б) отфильтрованное полутоновое изображение C; в) результат сегментации методом IF&PA

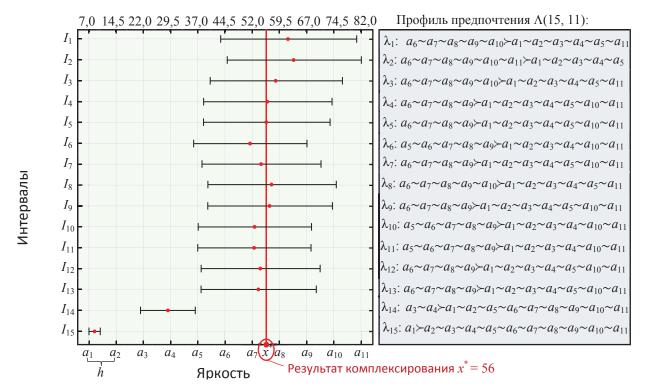
Fig. 4. Example of image threshold processing: a) input image; 6) filtered grayscale image C; θ) result of segmentation by the IF&PA method

Puc. 5. Разбиение изображения С на 15 горизонтальных полос и построение гистограммы яркости каждой полосы **Fig. 5.** С image division into 15 horizontal bands and building a brightness histogram of each band

Таблица 1. Верхние и нижние границы интервалов I_k, k=1, 2, ..., 15

Table 1. Upper and lower bounds of the intervals I_k , k=1, 2, ..., 15

$C_{\rm k}$	C_1	C_2	C_3	C_4	C_5	C_6	C_7	C ₈	C ₉	C ₁₀	C ₁₁	C ₁₂	C ₁₃	C ₁₄	C ₁₅
I_k^{low}	43	44	41	39	39	36	38	40	40	37	37	38	38	21	7
I_k^{up}	80	82	77	74	73	67	71	75	74	68	68	71	70	36	9


Изображение C разбивается на 15 горизонтальных полос, для которых строятся гистограммы яркости (рис. 5). Для гистограммы каждой полосы по формулам (7) и (8) определяются значения верхней и нижней границ каждого интервала I_k (табл. 1).

Набор интервалов I_k , k=1, 2, ..., 15, подается на вход процедуры IF&PA, которая формирует диапазон актуальных значений $A=\{a_1, a_2, ..., a_{11}\}$, как показано на рис. 6. Нижняя граница ДАЗ $a_1=7$, верхняя граница $a_{11}=82$, норма h=(82-7)/10=7,5. Полученные 11 дискретных значений интенсивно-

сти a_1 , a_2 , ..., a_{11} показаны на левой вертикальной оси на рис. 6. Соответствующие интервалам ранжирования, сформированные в соответствии с выражениями (2)–(5), образуют входной профиль предпочтения $\Lambda(15, 11)$, показанный в правой части рис. 6.

Алгоритм RECURSALL вычислил N=576 ранжирований Кемени. После свертки выходного профиля B(576, 11) получено итоговое ранжирование консенсуса β_{fin} :

$$a_6 \sim a_7 \sim a_8 \sim a_9 > a_{10} > a_5 > a_1 \sim a_3 \sim a_4 \sim a_{11} > a_2$$
.

Puc. 6. Пример работы процедуры IF&PA с интервалами яркости **Fig. 6.** Example of the IF&PA procedure operation with brightness intervals

Поскольку итоговое ранжирование содержит две наилучшие альтернативы $a_6 \sim a_7 \sim a_8 \sim a_9$, т. е. v=4, по формуле (6) получено значение $x=(a_7+a_8)/2=(52,0+59,5)/2=55,75$. Найденный результат комплексирования принимается за порог яркости $f=x \approx 56$. По формуле (1) формируется бинаризованное изображение D, представляющее собой результат сегментации (рис. 4, e), где черная область соответствует морю, а белая — суше.

План эксперимента

Процедура сегментации с выбором порога методом IF&PA была протестирована путем предъявления ей набора из 100 различных изображений. Изображения являются снимками, полученными спутником дистанционного зондирования Земли Landsat 8, разных участков береговой линии в Юго-Восточной Азии. Изображения были загружены из онлайн-инструмента EarthExplorer [24], разработанного Геологической службой США (United States Geological Survey – USGS). Все загруженные изображения не содержат облаков и имеют наивысшее качество. Все изображения были визуально отредактированы, геометрически скорректированы, обрезаны до небольших изображений размером 300×300 пикселей и преобразованы в полутоновые изображения. Затем эти изображения были обработаны с целью удаления шума фильтром Гаусса со стандартным отклонением, равным 2.

Для сравнения те же изображения обрабатывались традиционными пороговыми методами сегментации: методом Оцу [10] (определяет оптимальный порог на основе минимизации внутриклассовой дисперсии яркости); методом усреднения (вычисляет порог как среднее арифметическое яркостей сегментируемой области); методом максимальной энтропии (МЭ — основан на оценивании параметров неизвестного закона распределения случайной величины из условия максимума энтропии Шеннона [11, 12]).

Все четыре сравниваемых метода осуществляли распознавание в автоматическом режиме, т. е. без участия оператора. Однако для обеспечения возможности сравнения результатов, полученных тестируемыми методами, с заведомо правильными (истинными) результатами распознавания при проведении испытаний был реализован интерактивный (ручной) режим сегментации, когда пользователь имеет возможность (рис. 3) ввести произвольное значение порога, визуально оценить качество результата сегментации и сохранить этот результат как правильный. Таким образом, для каждого из 100 изображений имеется правильный результат сегментации, полученный в интерактивном режиме, с которым сопоставляются результаты остальных четырех испытываемых методов.

Меры качества сегментации

Для оценки точности результатов сегментации изображений в эксперименте использовались известные метрики Accuracy (точность), Precision (прецизионность) и Recall (полнота) [25, 26].

Договоримся считать положительным такой исход работы метода сегментации, когда пиксель анализируемого изображения C отнесен к области P(соответствующей поверхности моря), а отрицательным - исход, при котором пиксель отнесен к области E (соответствующей поверхности суши). Тогда возможны четыре исхода работы метода сегментации (выраженных в количестве пикселей): истинно положительный (true positive -TP) — число пикселей из области моря, отнесенных тестируемым методом к области моря P; истинно отрицательный (true negative - TN) - число пикселей из области суши, отнесенных тестируемым методом к области суши E; ложно положительный (false positive -FP) – число пикселей из области суши, отнесенных тестируемым методом к области моря P; ложно отрицательный (false negative – FN) – число пикселей из области моря, отнесенных тестируемым методом к области суши E.

Ясно, что общее количество пикселей анализируемого изображения C равно сумме значений всех исходов, т. е.

$$|C| = r \cdot q = TP + TN + FP + FN. \tag{9}$$

Тогда показатели Precision и Recall рассчитываются по формулам:

$$Precision = TP/(TP+FP); (10)$$

$$Recall=TP/(TP+FN). (11)$$

Показатель точности выражается в терминах исходов следующим образом:

Accuracy=
$$(TP+TN)/(TP+TN+FP+FN)=(TP+TN)/r \cdot q.$$
 (12)

Показатель Accuracy можно оценивать также в виде выраженной в процентах доли правильно распознанных объектов среди всех проанализированных объектов.

Значения показателей (10)–(12) изменяются в диапазоне от 0 до 1. Чем ближе значение показателя к 1, тем лучше результат сегментации изображения.

Для каждого *i*-го изображения, i=1, ..., 100, рассчитывались *отклонения* ξ_i порогов от правильного значения по формуле:

$$\xi_i = |f_{\text{true}i} - f_{\text{method}i}|, \tag{13}$$

где $f_{\text{true}i}$ – значение правильного порога, определенного интерактивным методом на i-м изображении; $f_{\text{method}i}$ – значение порога, определенного тестируемым методом (method = максимум энтропии, усреднение, Оцу или IF&PA) на i-м изображении.

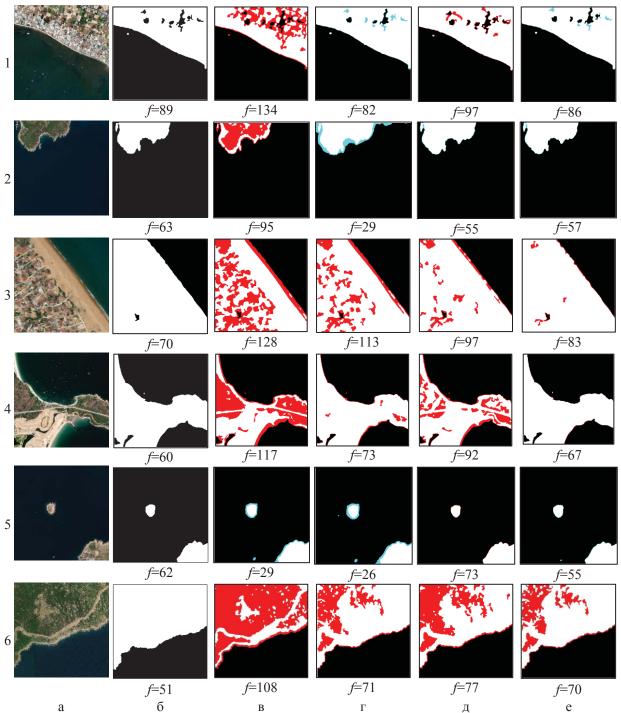
Результаты экспериментальных исследований

Значения порогов для 100 изображений, полученные предложенным и известными методами приведены в табл. 2, в которой жирным шрифтом выделены полученные в ручном режиме пороговые значения, рассматриваемые как заведомо правильные. Из данных табл. 2 следует, что пороговые значения, полученные методом IF&PA, ближе к правильным значениям, полученным ручным методом, чем значения, полученные традиционными методами.

На рис. 7 представлены примеры сегментации изображений с помощью пороговой обработки, где f — вычисленный соответствующим методом порог для каждого изображения. На рис. 7 красным цветом показаны чрезмерно сегментированные области суши, а голубым цветом недостаточно сегментированные области моря. Это явление нередко возникает при применении пороговых методов [27], особенно при недостаточной однородности сегментируемых областей. Для преодоления этого недостатка обычно применяют более совершенные подходы к сегментации, такие как наращивание областей, детектирование контуров и т. д. [8, 23].

Данные экспериментов показывают, что даже без применения специальных мер результаты сегментации всех 100 изображений с применением IF&PA содержат значительно меньше пикселей, окрашенных в голубой и красный цвета, чем результаты других методов. Рис. 7 иллюстрирует этот факт на примере шести изображений. Таким образом, предложенный метод позволяет эффективно устранять влияние шумов в процессе обнаружения береговой линии.

Сравнение полученных изображений с правильными результатами (рис. 7, δ) показало, что береговая линия, выделенная предложенным методом, как правило, имеет непрерывные границы и расположение, близкое к найденному ручным методом.


Оценки показателей качества сегментации Precision и Recall для примеров на рис. 7, рассчитанные по формулам (9)–(11), приведены в табл. 3. Результат сегментации изображения считается приемлемым, если значения показателей Precision и Recall превышают 0,5. В табл. 3 жирным шрифтом выделены значения, не удовлетворяющие указанному условию.

Результаты определения береговой линии, приведенные в табл. 4, показывают, что предложенный метод правильно распознал 84 из 100 изображений (84 %). Метод Оцу правильно распознал 73 изображения (73 %), метод усреднения — 74 изображения (74 %), а метод максимума энтропии — 27 изображения (27 %). Таким образом, метод IF&PA позволяет автоматически определять порог яркости изображения с лучшим показателем точности Ассигасу, чем традиционные методы.

Таблица 2. Значения порогов, полученные предложенным и известными методами

 Table 2.
 Threshold values determined by the proposed and traditional methods

Изображение			Метод Method			Изображение			Метод Method		
Image	Ручной Manual	МЭ МЕ	Усреднение Averaging	Оцу Otsu	IF&PA	Image	Ручной Manual	МЭ МЕ	Усреднение Averaging	Оцу Otsu	IF&PA
1	97	141	96	109	94	51	102	83	71	89	86
2	95	135	93	105	96	52	66	147	87	96	96
3	89	121	100	106	86	53	72	135	93	98	99
4	101	97	89	109	95	54	122	130	75	86	85
5	84	121	87	101	85	55	86	73	62	76	72
6	97	133	92	113	87	56	129	174	82	94	90
7	90	125	74	96	87	57	63	97	73	88	82
8	89	134	82	97	86	58	62	107	75	90	84
9	86	121	98	109	99	59	81	148	105	99	88
10	85	103	56	55	67	60	62	129	70	91	88
11	64	105	56	55	70	61	51	130	63	89	74
12	64	104	62	59	63	62	60	139	58	77	80
13	63	95	29	55	57	63	94	151	79	97	97
14	80	33	22	65	60	64	95	101	84	108	91
15	61	92	57	50	56	65	71	97	81	105	92
16	74	105	44	53	56	66	65	144	75	90	71
17	63	112	60	55	61	67	65	142	65	76	74
18	62	102	56	51	58	68	61	146	72	68	78
19	59	100	42	55	58	69	82	121	61	66	75
20	61	114	69	56	63	70	60	122	75	89	80
21	98	94	48	65	60	71	67	98	73	98	79
22	103	95	59	67	72	72	68	92	63	84	72
23	68	97	64	62	72	73	74	88	45	63	66
24	62	29	26	73	55	74	60	100	72	85	73
25	67	29	32	69	65	75	64	80	54	58	60
26	72	122	72	93	76	76	68	103	64	61	63
27	58	128	51	81	66	77	68	103	74	66	72
28	60	117	73	92	67	78	71	112	60	67	74
29	52	93	30	45	50	79	67	92	57	63	68
30	51	154	32	51	50	80	65	86	66	70	72
31	49	154	45	53	60	81	55	80	57	70	61
32	57	88	41	50	56	72	59	121	54	61	64
33	42	103	60	51	55	83	70	128	112	97	83
34	52	41	39	72	63	84	65	176	87	92	79
35	68	33	35	73	61	85	71	62	77	108	73
36	58	133	40	64	55	86	100	127	110	103	75
37	57	137	62	64	62	87	77	53	57	106	72
38	60	152	58	63	64	88	73	37	44	98	62
39	55	152	42	66	57	89	131	121	122	146	120
40	105	123	104	115	96	90	62	127	70	83	61
41	70	124	71	72	76	91	47	175	62	73	65
42	69	124	68	74	73	92	49	67	56	63	50
43	122	101	40	68	57	93	77	147	60	65	47
44	51	108	71	77	70	94	60	58	54	80	59
45	51	119	75	71	77	95	49	81	55	74	57
46	101	134	87	97	79	96	26	68	40	77	57
47	81	102	57	88	70	97	44	86	47	58	57
48	92	111	60	83	77	98	60	112	62	74	75
49	66	133	62	78	60	99	60	87	51	59	51
50	62	80	37	55	52	100	69	99	49	62	56

Рис. 7. Примеры результатов пороговой сегментации изображений береговой линии: а) входное изображение; б) ручной метод; в) метод максимума энтропии; г) метод усреднения; д) метод Оцу; е) метод IF&PA **Fig. 7.** Examples of threshold segmentation results of coastline images: a) input image; б) manual method; в) тахітит

entropy method; ε) averaging method; д) Otsu method; e) IF&PA method

Таблица 3. Оценки показателей качества сегментации Precision и Recall для примеров изображений на рис. 7

Table 3. Estimates of segmentation quality measures
Precision and Recall for the image examples in
Fig. 7

	U				
Изобра-	Показа-		Метод/Meth	od	
жение на рис. 7	тель каче- ства	Максимум энтропии	Усреднение	Оцу	IEO DA
Image in	Quality	Maximum	Averaging	Otsu	IF&PA
Fig. 7	measure	entropy			
1	Precision	0,441	1,0	0,960	1,0
1	Recall	0,691	0,931	0,998	0,987
2	Precision	0,453	0,375	1,0	1,0
2	Recall	0,783	0,407	1,0	1,0
3	Precision	0,133	0,217	0,398	0,742
3	Recall	0,423	0,611	0,828	0,991
4	Precision	0,319	0,666	0,353	0,870
4	Recall	0,589	0,941	0,796	0,987
5	Precision	0,551	0,424	1,0	0,973
5	Recall	0,628	0,510	1,0	1,0
6	Precision	0,073	0,271	0,216	0,280
0	Recall	0,184	0,815	0,636	0,810

Визуализация оценок качества сегментации

Были построены кривые распределения рассчитанных по формуле (13) отклонений ξ_i (рис. 8) порогов, определенных методами максимума энтропии, усреднения, Оцу и IF&PA, по всем 100 проанализированным изображениям. На графиках группы значений ξ_i , относящиеся к одному тестируемому методу, упорядочены по возрастанию с целью повышения информативности визуализации.

Кривые, представленные на рис. 8, показывают изменение ξ_i в зависимости от номера изображения для каждого исследуемого метода. По расстоянию от этих кривых до горизонтальной оси координат

легко судить о качестве сегментации метода: чем меньше это расстояние, тем выше качество метода.

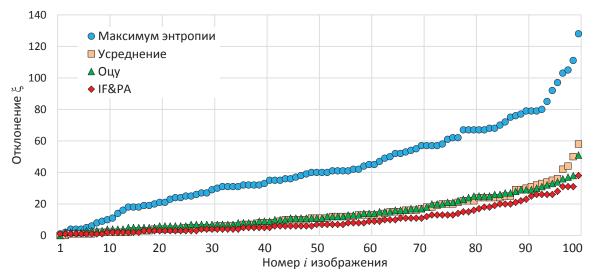
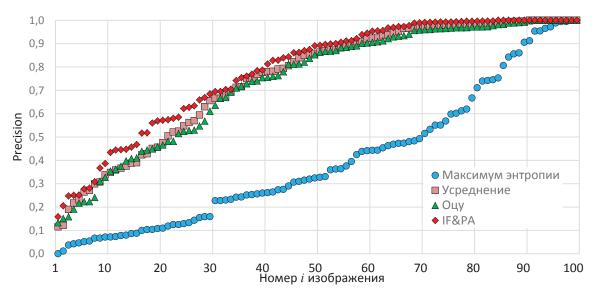

Таблица 4. Количество правильно сегментированных объектов

 Table 4.
 Number of correctly segmented objects

	Распознано методом Recognized by the method of						
Количество изобра-	Recognize	a by the met	100 01				
жений Number of images	Максимум энтропии Maximum entropy	Усредне- ние Averaging	Оцу Otsu	IF&PA			
100	27	76	73	84			


Из рис. 8 видно, что кривая ξ_i , построенная для метода IF&PA (красная линия), расположена ближе к горизонтальной оси, чем кривые, построенные для всех остальных методов.

По тому же принципу, что и графики распределения отклонений ξ_i на рис. 8, были построены кривые распределения значений показателей Precision и Recall по всем проанализированным изображениям (рис. 9, 10). В отличие от рис. 8, на рис. 9, 10 наилучшему методу соответствует кривая, расположенная ближе остальных кривых к горизонтальной линии, проходящей через значение 1,0. Из графиков на рис. 9, 10 видно, что этому требованию удовлетворяет кривая красного цвета, соответствующая методу IF&PA. Результаты экспериментальных исследований показывают, что на большинстве протестированных изображений предложенный метод имеет более высокое качество сегментации, чем три традиционных метода, использованных для сравнения.

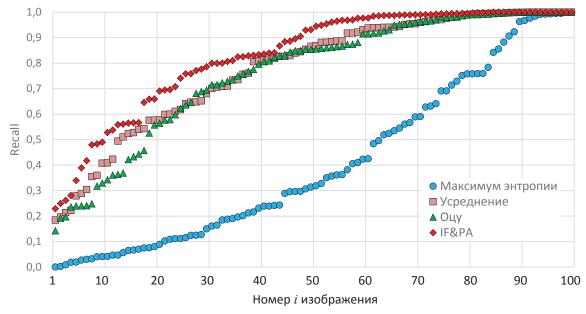

Рис. 8. Графики упорядоченных значений отклонений ξ_i, i=1, ..., 100, порогов, определенных методами максимума энтропии (синий), усреднения (желтый), Оцу (зеленый) и IF&PA (красный)

Fig. 8. Graphs of ordered values of deviations ξ_i , i=1, ..., 100, of thresholds determined by methods of maximum entropy (blue), averaging (yellow), Otsu (green) and IF&PA (red)

Рис. 9. Графики упорядоченных значений показателя Precision для изображений i=1, ..., 100, обработанных методами максимума энтропии (синий), усреднения (желтый), Оцу (зеленый) и IF&PA (красный)

Fig. 9. Graphs of ordered values of the Precision metric for images i=1, ..., 100, processed by methods of maximum entropy (blue), averaging (yellow), Otsu (green) and IF&PA (red)

Рис. 10. Графики упорядоченных значений показателя Recall для изображений i=1, ..., 100, обработанных методами максимума энтропии (синий), усреднения (желтый), Оцу (зеленый) и IF&PA (красный)

Fig. 10. Graphs of ordered values of the Recall metric for images i=1, ..., 100, processed by methods of maximum entropy (blue), averaging (yellow), Otsu (green) and IF&PA (red)

Заключение

В статье рассмотрен метод сегментации изображения путем определения порога яркости с помощью предложенного и развиваемого авторами робастного метода комплексирования интервалов агрегированием предпочтений IF&PA. Результаты экспериментальных исследований 100 спутниковых изображений береговой линии показали, что предложенный метод обеспечил корректное разделение

областей суши и моря на 84 изображениях, в то время как традиционные методы — максимума энтропии, арифметического усреднения и Оцу — показали корректные результаты только в, соответственно, 27, 76 и 73 случаях. Оценки метрик Precision, Recall и отклонения вычисленного порога от заведомо правильного значения показали преимущество предложенного метода над остальными протестированными методами по качеству сегментации.

СПИСОК ЛИТЕРАТУРЫ

- 1. Schowengerdt R. Remote sensing: models and methods for image processing. NY: Academic Press, 2006. 560 p.
- Gonzalez R.C., Woods R.E. Digital image processing. NY: Pearson, 2018. 1192 p.
- Duda R.O., Hart P.E., Stork D.G. Pattern classification. NY: Wiley-Interscience, 2012. 688 p.
- Muravyov S.V., Khudonogova L.I., Emelyanova E.I. Interval data fusion with preference aggregation // Measurement. 2018. Vol. 116. - P. 621-630.
- 5. Coastline information extraction based on the tasseled cap transformation of Landsat-8 OLI images / C. Chen, J. Fu, S. Zhang, X. Zhao // Estuarine, Coastal and Shelf Science. - 2019. - Vol. 217. - P. 281-291.
- Coastline detection in satellite imagery: a deep learning approach on new benchmark data / C. Seale, T. Redfern, P. Chatfield, C. Luo, K. Dempsey // Remote Sensing of Environment. – 2022. – Vol. 278. – P. 113044.
- 7. Celik O.İ., Gazioğlu C. Coast type based accuracy assessment for coastline extraction from satellite image with machine learning classifiers // The Egyptian Journal of Remote Sensing and Space Science. - 2022. - Vol. 25. - № 1. - P. 289-299.
- 8. Hu X., Wang Y. Monitoring coastline variations in the Pearl River Estuary from 1978 to 2018 by integrating Canny edge detection and Otsu methods using long time series Landsat dataset // Catena. - 2022. - Vol. 209. - P. 105840.
- Viaña-Borja S.P., Ortega-Sánchez M. Automatic methodology to detect the coastline from Landsat images with a new water index assessed on three different Spanish Mediterranean deltas // Remote Sensing. - 2019. - Vol. 11. - № 18. - P. 2186.
- 10. Otsu N. A threshold selection method from gray-level histograms // IEEE Transactions on Systems, Man, and Cybernetics. -1979. – Vol. 9. – № 1. – P. 62–66.
- 11. Gull S.F., Skilling J. Maximum entropy method in image processing // IEE Proceedings F (Communications, Radar and Signal Processing). -1984. -Vol. 131. $-\text{N}_{2} 6$. -P. 646-659.
- 12. Entropy and contrast enhancement of infrared thermal images using the multiscale top-hat transform / J.C. Mello Román, J.L. Vázquez Noguera, H. Legal-Ayala, D.P. Pinto-Roa, S. Gomez-Guerrero, M. García Torres // Entropy. - 2019. - Vol. 21. -№ 3. - 244.
- 13. Худоногова Л.И. Комплексирование интервальных измерительных данных методом агрегирования предпочтений: автореф. дис. ... канд. техн. наук. – Томск, 2017. – 23 с.
- 14. Хо М.Д. Повышение точности анализа гетероскедастичных измерительных данных: автореф. дис. ... канд. техн. наук. Томск, 2021. – 21 с.
- 15. Емельянова Е.Ю. Агрегирование предпочтений на основе точного решения задачи о ранжировании Кемени: автореф.
- дис. ... канд. техн. наук. Томск, 2022. 23 с.

 16. Riani M., Torti F., Zani S. Outliers and robustness for ordinal data // Modern Analysis of Customer Surveys / Eds. R.S. Kenett, S. Salini. - New York: John Wiley & Sons, 2012. - P. 155-169.
- 17. Kemeny J.G., Snell J.L. Mathematical models in the social sciences. Cambridge: MIT Press, 1972. 145 p.
- 18. Литвак Б.Г. Экспертная информация: методы получения и анализа. М.: Радио и связь, 1982. 184 с.
- 19. Muravyov S.V. Ordinal measurement, preference aggregation and interlaboratory comparisons // Measurement. 2013. -Vol. 46. – № 8. – P. 2927–2935.
- 20. Muravyov S.V., Emelyanova E.Y. Kemeny rule for preference aggregation: reducing all exact solutions to a single one // Measurement. - 2021. - Vol. 182. - P. 109403.
- 21. Muravyov S.V. Dealing with chaotic results of Kemeny ranking determination // Measurement. 2014. Vol. 51. P. 328-334.
- 22. Rico N., Alonso P., Díaz I. Kemeny ranking aggregation meets the GPU // The Journal of Supercomputing. 2023. Vol. 79. -№ 9. – P. 10335–10352.
- 23. Муравьев С.В., Нгуен Д.К. Автоматическая сегментация методом комплексирования интервалов агрегированием предпочтений при распознавании дефектов сварки // Дефектоскопия. – 2023. – № 12. – Р. 34–44.
- 24. EarthExplorer. URL: http://earthexplorer.usgs.gov (дата обращения: 07.10.2023).
- 25. Chicco D., Jurman G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation // BMC Genomics. – 2020. – Vol. 21. – № 1. – P. 1–13.
- 26. Tharwat A. Classification assessment methods // Applied Computing and Informatics. 2020. Vol. 17. № 1. P. 168–192.
- 27. Sigut J., Fumero F., Nuñez O. Over- and under-segmentation evaluation based on the segmentation covering measure // Proceedings of the 23rd International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision (WSCG'2015). - Pilsen, Czech Republic, 2015. - P. 83-89.

Информация об авторах

Дык Кыонг Нгуен, аспирант отделения автоматизации и робототехники Инженерной школы информационных технологий и робототехники Национального исследовательского Томского политехнического университета, Россия, 634050, г. Томск, пр. Ленина, 30. nguyen@tpu.ru

Сергей Васильевич Муравьев, доктор технических наук, профессор отделения автоматизации и робототехники Инженерной школы информационных технологий и робототехники Национального исследовательского Томского политехнического университета, Россия, 634050, г. Томск, пр. Ленина, 30. muravyov@tpu.ru; https://orcid.org/0000-0001-5650-1400

Поступила в редакцию: 10.01.2024

Поступила после рецензирования: 01.02.2024

Принята к публикации: 14.02.2024

REFERENCES

- 1. Schowengerdt R. Remote sensing: models and methods for image processing. New York, Academic Press, 2006. 560 p.
- 2. Gonzalez R.C., Woods R.E. Digital image processing. New York, Pearson, 2018. 1192 p.
- 3. Duda R.O., Hart P.E., Stork D.G. Pattern classification. New York, Wiley-Interscience, 2012. 688 p.
- Muravyov S.V., Khudonogova L.I., Emelyanova E.I. Interval data fusion with preference aggregation. *Measurement*, 2018, vol. 116, pp. 621–630.
- 5. Chen C., Fu J., Zhang S., Zhao X. Coastline information extraction based on the tasseled cap transformation of Landsat-8 OLI images. *Estuarine, Coastal and Shelf Science*, 2019, vol. 217, pp. 281–291.
- 6. Seale C., Redfern T., Chatfield P., Luo C., Dempsey K. Coastline detection in satellite imagery: A deep learning approach on new benchmark data. *Remote Sensing of Environment*, 2022, vol. 278, 113044.
- 7. Çelik O. İ., Gazioğlu C. Coast type based accuracy assessment for coastline extraction from satellite image with machine learning classifiers, *The Egyptian Journal of Remote Sensing and Space Science*, 2022, vol. 25, no. 1, pp. 289–299.
- 8. Hu X., Wang Y. Monitoring coastline variations in the Pearl River Estuary from 1978 to 2018 by integrating Canny edge detection and Otsu methods using long time series Landsat dataset. *Catena*, 2022, vol. 209, pp. 105840.
- 9. Viaña-Borja S.P., Ortega-Sánchez M. Automatic methodology to detect the coastline from Landsat images with a new water index assessed on three different Spanish Mediterranean deltas. *Remote Sensing*, 2019, vol. 11, no. 18, 2186.
- 10. Otsu N. A threshold selection method from gray-level histograms. *IEEE Transactions on Systems, Man, and Cybernetics*, 1979, vol. 9, no. 1, pp. 62–66.
- 11. Gull S.F., Skilling J. Maximum entropy method in image processing. *IEE Proceedings F (Communications, Radar and Signal Processing)*, 1984, vol. 131, no. 6, pp. 646–659.
- 12. Mello Román J.C., Vázquez Noguera J.L., Legal-Ayala H., Pinto-Roa D.P., Gomez-Guerrero S., García Torres M. Entropy and contrast enhancement of infrared thermal images using the multiscale top-hat transform. *Entropy*, 2019, vol. 21, no. 3, 244.
- 13. Khudonogova L.I. *Interval measurement data fusion by the method of preference aggregation*. Cand. Diss. Abstract. Tomsk, 2017. 23 p. (In Russ.)
- 14. Ho M.D. Accuracy enhancement of heteroscedastic measurement data analysis. Cand. Diss. Abstract. Tomsk, 2021. 21 p. (In Russ.)
- 15. Emelyanova E.Y. *Preference aggregation based on the exact solution of Kemeny ranking problem*. Cand, Diss. Abstract. Tomsk, 2022. 23 p. (In Russ.)
- 16. Riani M., Torti F., Zani S., Outliers and robustness for ordinal data. Kenett R.S., Salini S. (Eds.) *Modern Analysis of Customer Surveys*. New York, John Wiley & Sons, 2012. pp. 155–169.
- 17. Kemeny J.G., Snell J.L. Mathematical models in the social sciences. Cambridge, MIT Press, 1972. 145 p.
- 18. Litvak B.G. Expert information: methods for obtaining and analysis. Moscow, Radio i svyaz Publ., 1982. 184 p. (In Russ.)
- 19. Muravyov S.V. Ordinal measurement, preference aggregation and interlaboratory comparisons. *Measurement*, 2013, vol. 46, pp. 2927–2935.
- 20. Muravyov S.V., Emelyanova E.Y. Kemeny rule for preference aggregation: reducing all exact solutions to a single one. *Measurement*, 2021, vol. 182, 109403.
- 21. Muravyov S.V. Dealing with chaotic results of Kemeny ranking determination. Measurement, 2014, vol. 51, pp. 328-334.
- 22. Rico N., Alonso P., Díaz I. Kemeny ranking aggregation meets the GPU. *The Journal of Supercomputing*, 2023, vol. 79, no. 9, pp. 10335–10352.
- 23. Muravyov S.V., Nguyen D.C. Automatic segmentation by the method of interval fusion with preference aggregation when recognizing weld defects. *Russian Journal of Nondestructive Testing*, 2023, vol. 59, no. 12, pp. 1280–1290. (In Russ.)
- 24. EarthExplorer. Available at: http://earthexplorer.usgs.gov (accessed: 7 October 2023)
- 25. Chicco D., Jurman G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. *BMC Genomics*, 2020, vol. 21, no. 1, pp. 1–13.
- 26. Tharwat A. Classification assessment methods. Applied Computing and Informatics, 2020, vol. 17, no. 1, pp. 168–192.
- 27. Sigut J., Fumero F., Nuñez O. Over- and under-segmentation evaluation based on the segmentation covering measure. *Proceedings of the 23rd International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision* (WSCG'2015), Pilsen, Czech Republic, 2015. pp. 83–89.

Information about the authors

Duc Cuong Nguyen, Postgraduate Student, National Research Tomsk Polytechnic University, 30, Lenin avenue, Tomsk, 634050, Russian Federation. nguyen@tpu.ru

Sergey V. Muravyov, Dr. Sc., Professor, National Research Tomsk Polytechnic University, 30, Lenin avenue, Tomsk, 634050, Russian Federation. muravyov@tpu.ru; https://orcid.org/0000-0001-5650-1400

Received: 10.01.2024 Revised: 01.02.2024 Accepted: 14.02.2024 УДК 622.276

DOI: 10.18799/24131830/2024/3/4457 Шифр специальности ВАК: 2.8.4

Использование программного обеспечения Petroleum Experts Prosper для получения дополнительной добычи нефти путем анализа режима работы скважин

Р.Н. Коротков⊠, Д.М. Овчаренко, В.И. Ерофеев

Национальный исследовательский Томский политехнический университет, Россия, г. Томск

□ klimatqwf@gmail.com

Аннотация. Актуальность исследования обусловлена текущей ситуацией, когда все большее количество недропользователей движется по пути корректного выбора системы разработки, следовательно, применимость интегрированных моделей актива экспоненциально растет с каждым годом. Одним из комплексных подходов в области моделирования системы пласт - скважина - наземная инфраструктура является использование программного обеспечения Petroleum Experts. Данное решение успешно зарекомендовало себя на международном рынке ввиду наличия большого количества всевозможных корреляций, подходящих под те или иные геологические условия, а также вследствие сложной методики расчета поставленных задач. Благодаря вышеописанному продукту задачи расчета притока из пласта, дебита скважин и анализа пропускной способности инфраструктуры образовали собой единое интегрированное решение для качественного моделирования месторождений/группы месторождений. В свою очередь программное обеспечение Petroleum Experts Prosper позволяет оценить эффективность работы скважины, а также получить дополнительную добычу за счет оптимизационного расчета на модели скважины, настроенной на фактические параметры. Цель: формирование и анализ подхода к настройке моделей-компонент (скважин) путем адаптации параметров к фактическим данным с целью получения дополнительной добычи нефти. Методы: настройка и адаптация моделей скважин, оборудованных установками электроцентробежных насосов, настройка и адаптация фонтанных скважин, подход к работе с периодическим фондом, оценка эффективности использования Prosper в части дополнительной добычи нефти. Результаты. Полученные результаты позволяют адаптировать модели скважин с точностью более 95 %, что помогает симулировать режим работы механизированного и фонтанного добывающего фонда с целью оптимизации и увеличения добычи нефти. В результате анализа были выявлены критерии настройки скважин, а также представлен минимальный необходимый набор параметров для качественной адаптации моделей. Также доказана эффективность и точность метода посредством сравнения фактических данных о режимах работы скважин с синтетическими. На основании проделанной работы можно сделать вывод о том, что использование интегрированной модели демонстрирует нам высокое схождение с реальными данными, что позволяет с достаточной точностью проводить оптимизационные расчеты с получением результата, обеспечивающего наибольший эффект.

Ключевые слова: Petroleum Experts Prosper, PETEX, интегрированная модель, модель скважины, адаптация скважин

Благодарности: Авторы выражают благодарность Центру коллективного пользования Томского политехнического университета «Физико-химические методы анализа».

Для цитирования: Коротков Р.Н., Овчаренко Д.М., Ерофеев В.И. Использование программного обеспечения Petroleum Experts Prosper для получения дополнительной добычи нефти путем анализа режима работы скважин // Известия Томского политехнического университета. Инжиниринг георесурсов. – 2024. – Т. 335. – № 3. – С. 31–39. DOI: 10.18799/24131830/2024/3/4457

УДК 622.276

DOI: 10.18799/24131830/2024/3/4457

Use of Petroleum Experts Prosper software to obtain additional oil production by analysis of well operation mode

R.N. Korotkov[⊠], D.M. Ovcharenko, V.I. Erofeev

National Research Tomsk Polytechnic University, Tomsk, Russian Federation

[™]klimatqwf@gmail.com

Abstract. Relevance. Current situation, when an increasing number of subsoil users are moving towards the correct choice of a development system. Therefore, the applicability of integrated asset models is growing exponentially every year. One of the integrated approaches in the field of reservoir-well-ground infrastructure modeling is the use of Petroleum Experts software. This solution has successfully established itself in the international market due to the presence of a large number of various correlations suitable for certain geological conditions, as well as a complex methodology for calculating the tasks. Thanks to the above product, the tasks of calculating the inflow from a reservoir, well flow rate and infrastructure throughput analysis formed a single integrated solution for high-quality modeling of fields/groups of fields. In its turn, the Petroleum Experts Prosper software allows you to evaluate the efficiency of a well, as well as to obtain additional production through optimization calculations on a well model tuned to actual parameters. Aim. To form and analyze the approach to setting up component models (wells) by adapting parameters to actual data in order to obtain additional oil production. Methods. Setting up and adaptation of well models equipped with installations of electrical center pumps, setting up and adaptation of fountain wells, approach to working with a periodical fund, assessment of the effectiveness of the use of Prosper in terms of additional oil production. Results. The results obtained allow us to adapt well models with an accuracy of more than 95%, which simulates the operating mode of the mechanized and fountain mining fund in order to optimize and increase oil production. As a result of the analysis, the criteria for tuning wells were identified, and the minimum necessary set of parameters for high-quality adaptation of models was presented. The effectiveness and accuracy of the method by comparing the actual data on the regimes of the wells with synthetic are also proved. Based on the work done, we can conclude that the use of an integrated model shows us a high convergence with real data, which allows you to conduct optimization calculations with high accuracy with obtaining a result that provides the greatest effect.

Keywords: Petroleum Experts Prosper, PETEX, integrated model, well model, well adaptation

Acknowledgements: The authors are grateful to the TPU center «Physical and chemical methods of analysis».

For citation: Korotkov R.N., Ovcharenko D.M., Erofeev V.I. Use of Petroleum Experts Prosper software to obtain additional oil production by analysis of well operation mode. *Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering*, 2024, vol. 335, no. 3, pp. 31–39. DOI: 10.18799/24131830/2024/3/4457

Введение

На текущий момент нефтегазодобывающие компании начали активное использование систем моделирования для контроля режима работы фонда скважин, а также с целью проведения оптимизационных расчетов для получения дополнительной добычи нефти.

Программное обеспечение Petroleum Experts Prosper является уникальным решением для нефтегазового комплекса ввиду обеспечения целостного представления системы пласт — скважина — наземная инфраструктура [1]. Благодаря интеграции и широкому функционалу программы специалисты нефтегазовой отрасли могут проводить комплексные исследования, моделировать различные сценарии работы месторождения и принимать обоснованные решения на основе полученных данных. Использование Petroleum Experts Prosper позволяет существенно сократить время на проведение расчетов производительности работы скважин и анализа возможных ограничений по наземной инфраструктуре, а также повышает точность и надежность полученных результатов. Такой подход позволяет эффективно эксплуатировать месторождения и достигать оптимальных показателей в добыче углеводородов [2].

Методы

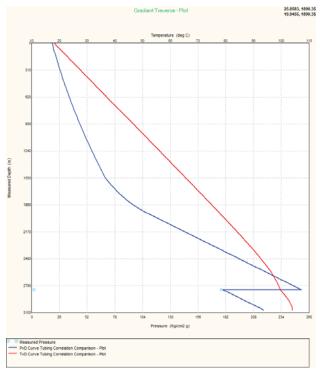
Настройка моделей добывающих скважин заключается в адаптации параметров, полученных расчетным путем в программном обеспечении Petroleum Experts Prosper, к фактическим данным на дату актуализации. Если говорить о скважинах, оборудованных установками электроцентробежных насосов (УЭЦН), то для корректной настройки моделей добывающих скважин необходимо произвести следующие действия в секции программного продукта Petroleum Experts Prosper:

- 1) внести фактические данные по замерам на дату актуализации модели;
- 2) настроить модель вертикального лифта;
- 3) настроить индикаторную кривую;
- 4) проверить адаптацию скважины в секции «System»;
- 5) сгенерировать кривые вертикального лифта;
- 6) произвести настройку многопластовых скважин (при необходимости).

В меню «VLP/IPR Matching» вносятся данные, которые используются для дальнейших расчетов. Параметры накапливаются в окне по мере обновления моделей скважин и могут быть использованы для анализа работы скважин с течением времени:

- Test Point Date дата актуализации модели скважины;
- Test Point Comment информация об устьевом штуцере (диаметр штуцера или отсутствие штуцера);
- 3) Tubing Head Pressure буферное давление;
- 4) Tubing Head Temperature температура флюида на устье скважины;
- 5) Water Cut обводненность добываемой продукции;
- 6) Liquid Rate дебит жидкости. Для постоянно работающих скважин заносится фактический дебит. Для периодических скважин заносится мгновенный дебит, определяемый через время работы/простоя по следующей формуле:

где Qмгн – мгновенный дебит жидкости в пересчёте на сутки; Qупл – среднесуточный (уплотнённый) дебит жидкости; Тпр – время простоя (в часах) в течение суток;

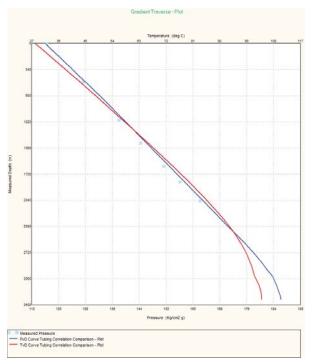

- 7) Gauge Depth (Measured) глубина спуска датчика;
- 8) Gauge Pressure давление на датчике;
- 9) Reservoir Pressure пластовое давление;
- 10) Gas Oil Ratio газосодержание;
- 11) GOR Free содержание газа, приходящего из газовой шапки;
- 12) Operating Frequency частота работы ЭЦН;
- 13) Pump Wear Factor коэффициент износа насоса;
- 14) Pump Intake Pressure давление на приёме насоса:
- 15) Pump Discharge Pressure давление на выходе насоса.

Для настройки вертикального лифта предназначен раздел «Correlation Comparison» в секции

«VLP/IPR Matching». Секция «Quick Look» подходит только для односекционных насосов.

На вкладке «Correlation Comparison» выполняется расчёт и построение градиента давления и температуры в скважине для данных на дату актуализации. Для этого вносятся данные о буферном давлении, проценте обводненности, газовом факторе и дебите жидкости. Также немаловажным фактором является выбор правильной корреляции для расчета, которая подбирается опытным путем и обычно является единой для залежей с аналогичными физико-химическими свойствами [3].

На графике градиента давления визуально оценивается, насколько расчётное значение на приёме ЭЦН совпадает с фактическим (рис. 1). Голубой точкой на рисунке отмечено фактическое давление на приеме ЭЦН, полученное с датчика погружной телеметрии (ТМС). Синяя линия демонстрирует нам распределение давления по стволу скважины.



Puc. 1. Проверка качества настройки модели **Fig. 1.** Checking the quality of the model tuning

В случае, если расчётное давление меньше фактического, подбирается коэффициент износа насоса пока значения не совпадут (рекомендуемое расхождение не более 1 кгс/см²). Если коэффициент износа лежит в пределах от 0 до 0,2, то это считается допустимым значением, при условии, если межремонтный период (МРП) насоса больше 200 суток [4]. Настройка вертикального лифта на этом заканчивается.

Если коэффициент износа насоса окажется более 0,2, то это считается повышенным износом. Необходим дополнительный анализ: либо перепроверка исходных данных по замеру на дату актуализации (в случае обнаружения ошибок процедура настройки вертикального лифта повторяется заново), либо поиск причин повышенного износа насоса (в случае подтверждения повышенного износа настройка вертикального лифта заканчивается, подобранный коэффициент износа принимается допустимым) [5–10].

Производится анализ причин ремонтов. Значение коэффициента износа может достигать 0,5 в том случае, если для скважины характерны осложнения при эксплуатации в виде солеотложений. При этом точная адаптация таких скважин возможна только после замера профиля давления над насосом, так как возможно солеотложение как в УЭЦН, так и в лифте [11]. На рис. 2 голубыми точками представлены замеры давления по стволу скважины с помощью геофизического прибора, а также демонстрация качества наложения кривой распределения давления для заданной корреляции.

Puc. 2. Pacпределение давления по стволу скважины **Fig. 2.** Pressure distribution along the wellbore

В случае, если расчётное значение больше фактического, необходимо перепроверить исходные данные по замеру на дату актуализации (в первую очередь давление на приёме ЭЦН, частоту ЭЦН, дебит жидкости, буферное давление). При обнаружении ошибок процедура настройки вертикального

лифта повторяется заново [6]. Для скважин с кратковременной эксплуатацией (КЭС) особое внимание уделяется анализу величины мгновенного дебита. Для скважин с вентильными двигателями уточняется частота вращения при переводе единиц измерения из об/мин в Гц (перевод производится прямо пропорционально от соотношения 2910 об/мин=50 Гц, для вентильных двигателей зависимость может быть не прямая) [7].

Следует обратить внимание, что подобранный коэффициент износа насоса после завершения настройки модели скважины в секции «VLP/IPR Matching» необходимо вручную занести в секцию «ESP Input Data».

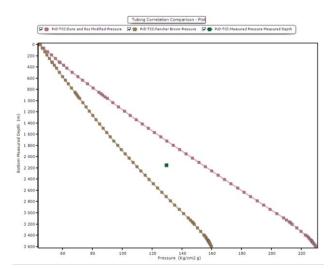
Индикаторные кривые (IPR – Inflow Performance Relationship) описывают зависимость между перепадами давления в скважине и ее дебитом, что является важным инструментом для понимания поведения пласта/скважины и количественной оценки производительности скважин.

Для настройки индикаторной кривой следует использовать меню «VLP/IPR» в секции «VLP/IPR Matching». На вкладке «VLP/IPR» выполняется расчёт для данных на дату актуализации с выбранной корреляцией Petroleum Experts 2.

Кривая вертикального лифта (VLP – Vertical Lift Performance) показывает, какое давление требуется для подъема определенного количества жидкости на поверхность при заданном устьевом давлении.

По результатам расчёта оценивается, насколько расчётное значение по дебиту жидкости (пересечение кривых VLP и IPR) совпадает с фактическим. При совпадении расчётного и фактического дебитов в пределах 5 % настройка скважины заканчивается [12].

Настройка моделей многопластовых скважин в Prosper осуществляется аналогично скважинам, вскрывающим один пласт. Для них при занесении данных по пласту используются характеристики пласта с наибольшим дебитом нефти (PVT-модель флюида, Рпл, Тпл) [13]. Такие модели скважин могут использоваться для выполнения одиночных расчётов в Prosper (например, для подбора глубинного насосного оборудования по скважине).

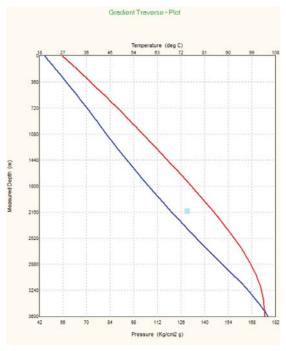

При интеграции таких моделей скважин в GAP вносится только характеристика вертикального лифта (VLP), а индикаторные кривые задаются отдельно по каждому из пластов с помощью элементов «Inflow». В случае, если расчётные дебиты по пластам отличаются от фактических более чем на 5 %, коэффициенты продуктивности по пластам могут быть скорректированы [14].

Настройка моделей добывающих фонтанных скважин осуществляется аналогично в секции «VLP/IPR Matching» программного продукта Petroleum Experts Prosper. Однако для точной

настройки фонтанных скважин необходим ряд дополнительных процедур [9].

Уточнение коэффициента теплопередачи U-Value проводится только для скважин с замеренной устьевой температурой. По остальным скважинам U-Value принимается заданным по умолчанию. Для проверки качества замера и настройки вертикального лифта следует зайти в меню «Correlation Comparison» в секции «VLP/IPR Matching». На вкладке «Correlation Comparison» выполняется расчёт и построение градиента давления и температуры в скважине для данных на дату актуализации. Для проверки качества замера в левой нижней части секции выбираются граничные корреляции Fancher Brown и Duns and Ros Modified и проводится расчет. Корреляция Fancher Brown не учитывает проскальзывание фаз в трубопроводе, следовательно, рассчитываемый перепад по насоснокомпрессорным трубам (НКТ) будет минимальным. Корреляция Duns and Ros Modified рассчитывает максимальный перепад давления по НКТ с учетом пробкового режима течения. Замер считается кондиционным, если лежит в поле между этими корреляциями [10].

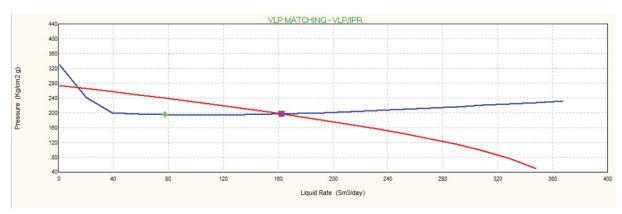
Чтобы наглядно убедиться в пригодности замера, с помощью кнопки Plot выводятся фактический замер и графики градиента давления, рассчитанные по граничным корреляциям (рис. 3).



Puc. 3. Проверка качества замера **Fig. 3.** Measurement quality check

На рис. 3 видно, что замеренная точка попадает в область между граничными корреляциями, а значит пригодна для дальнейшей настройки.

Далее выбирается несколько корреляций для расчета вертикального течения газожидкостной смеси. Данные корреляции получены путем анализа большого количества данных и показывают мак-


симальные и минимальные перепады давления в НКТ для большинства случаев [15]. Корреляция Petroleum Experts 2 рассчитывает режим течения вертикального потока в скважине, поэтому данная корреляция выбрана для использования в расчетах. Модели скважин будут настроены на исходные данные с использованием данной корреляции. По графикам градиента давления можно визуально оценить, насколько расчётное значение давления совпадает с фактическим замером (рис. 4).

Puc. 4. График градиента давления **Fig. 4.** Pressure gradient plot

Для фонтанных скважин также рассчитываются поправки на гравитацию (Parameter 1) и трение в НКТ (Parameter 2). Если для настройки корреляции под фактический замер требуется использовать большие значения поправок (менее 0,9 или более 1,1), необходимо провести дополнительный анализ данных.

После проделанных шагов модель воспроизводит фактический градиент давления. Теперь необходимо проанализировать и настроить пересечение VLP с индикаторной кривой. Для выполнения этого шага следует зайти в меню «VLP/IPR» в секции «VLP/IPR Matching». На вкладке «VLP/IPR» выполняется расчёт для данных на дату адаптации с выбранной корреляцией Petroleum Experts 2. По результатам расчёта оценивается, насколько расчётное значение по дебиту жидкости (пересечение кривых VLP и IPR) совпадает с фактическим (рис. 5) (зеленая точка на графике).

Puc. 5. Пересечение кривых VLP и IPR **Fig. 5.** Intersection of VLP and IPR curves

При расхождении расчётного и замеренного дебита более 5 % подбирается либо коэффициент продуктивности скважины (PI — Productivity Index), либо пластовое давление. Пластовое давление при выполнении проекта считается наиболее достоверным из двух перечисленных параметров, вследствие чего производится подбор PI. Это может быть сделано вручную в секции «IPR» или автоматически с использованием функции «Adjust PI». Указанную функцию стоит использовать с осторожностью, так как в некоторых случаях рассчитанное значение PI может быть не найдено либо быть некорректным (при нестабильном (слабом) пересечении VLP/IPR) [16–19].

При совпадении расчётного и фактического дебитов в пределах 5 % настройка скважины заканчивается.

При настройке моделей периодических скважин в Prosper используется мгновенный дебит. Это позволяет корректно воспроизвести работу внутрискважинного оборудования в тот момент, когда оно в работе. Дебит жидкости пересчитывается из уплотненного в мгновенный.

Настройка периодических скважин проводится по тем же принципам, что и настройка скважин с постоянным режимом работы. При переходе к расчетам на модели инфраструктуры для периодических скважин используется уплотненный дебит. Это учитывается путем использования коэффициента простоя «Downtime».

Коэффициент простоя «Downtime» позволяет корректно учитывать накопленную добычу при проведении прогнозных расчетов.

В результатах расчета на срез и прогноз есть два показателя дебитов по фазам, например, «Liquid Rate» и «Average Liquid Rate». «Liquid Rate» – это мгновенный дебит, а «Average Liquid Rate» – уплотненный дебит, т. е. с учетом коэффициента.

Результаты

После адаптации модели скважины на фактические данные, вышеописанное ПО позволяет прове-

сти оптимизационный расчет, с помощью которого Prosper предложит различные сценарии для увеличения добычи нефти. Подбирая различные частоты ЭЦН, а также диаметр штуцера (для фонтанной скважины) в секции «System», программным комплексом будет произведен расчет дебита скважины с учетом заданных параметров. В случае выхода за пределы рабочей зоны появится дополнительное уведомление о невозможности расчетов.

В качестве примера успешной практики применения оптимизационных расчетов на моделях скважин можно отметить положительный результат на Чаяндинском месторождении по кустовой площадке № 9 (ПАО «Газпромнефть»). В результате опытно-промышленных испытаний были получены следующие результаты: дополнительная добыча нефти составила 133 т в сутки; производительность скважин возросла в 1,1-1,5 раза относительно исходного состояния. В ходе проведения расчетов на настроенных моделях скважин были выполнены рекомендации программного обеспечения по групповой оптимизации режима работы скважин кустовой площадки (произведены мероприятия, направленные на увеличение частот ЭЦН по скважинам) (таблица).

Таблица. Увеличение дебита нефти по скважинам кустовой площадки № 9 Чаяндинского месторождения

Table. Increasing the oil rate on wells of the bush site No. 9 of the Chayanda field

Τ	Скважина,	Дебит нефти до, т/сут	Дебит нефти после,	
	Nº	Oil flow rate before,	т/сут	
L	Well, No.	t/day	Oil flow rate after, t/day	
	9700	135	144	
T	9701	142	159	
Ι	9703	210	225	
	9704	11	45	
	9705	25	58	
Ι	9707	83	108	

Выводы

данной работе представлена методика В настройки моделей добывающих скважин с использованием программного обеспечения Petroleum Experts Prosper. Данное ПО позволяет с высокой точностью моделировать работу скважин при различных условиях. В результате анализа были выявлены критерии настройки скважин, а также представлен минимальный необходимый набор параметров для качественной адаптации моделей. Также показана эффективность и точность моделей посредством сравнения фактических данных о режимах работы скважин с расчетными. На основании проделанной работы можно сделать вывод о том, что использование интегрированной модели демонстрирует нам высокое схождение с реальными данными, что позволяет с достаточной точностью проводить оптимизационные расчеты с получением результата, обеспечивающим наибольший эффект [20].

Научная новизна работы заключается в индивидуальном подходе к настройке моделей скважин Чаяндинского месторождения: для различных месторождений требуется правильная адаптация моделей и выбор корректной корреляции, а также подтверждение сходимости расчетных и реальных данных, что также было представлено в ходе работы.

В ходе проведения оптимизационных расчетов по скважинам также практически установлен положительный эффект в виде получения дополнительной добычи нефти, что позволяет тиражировать данную технологию на другие месторождения. Суммарный эффект проведения ОПИ составил 133 т нефти в сутки, что эквивалентно приблизительно 2 млн р. в сутки при стоимости нефти по состоянию на январь 2023 г.

СПИСОК ЛИТЕРАТУРЫ

- 1. Применение интегрированного моделирования в нефтегазовой отрасли / Е.В. Филиппов, Г.Н. Чумаков, И.Н. Пономарева, Д.А. Мартюшев // Недропользование. 2020. Т. 20. № 4. С. 386–400.
- Особенности разработки месторождений высоковязкой нефти в условиях низкого пластового давления / А.Н. Иванов, М.М. Велиев, Э.М. Велиев, Л.С. Кулешова, Е.А. Удалова // Нефтяное хозяйство. – 2021. – № 8. – С. 50–52.
- 3. Повышев К.И., Вершинин С.А., Берниковская О.С. Комплексная модель «Пласт-Скважина-Инфраструктура» и ее возможности // РROHEФТЬ. Профессионально о нефти. 2016. № 2. С. 48–53.
- Интегрированное моделирование-инструмент повышения качества проектных решений для разработки нефтяных оторочек многопластовых нефтегазоконденсатных месторождений / Р.Т. Апасов, И.Л. Чамеев, А.И. Варавва, О.С. Верниковская, А.Р. Ильясов, В.И. Вирт // Нефтяное хозяйство. – 2018. – № 12. – С. 46–49.
- Яночкин С.В., Рычков А.Ф. Интегрированное моделирование. Опыт реализации пилотных проектов // Нефть. Газ. Новации. – 2018. – № 12. – С. 29–30.
- 6. Проблемы расчетов промысловых систем сбора и транспорта добываемой продукции месторождений высоковязкой нефти / М.М. Велиев, А.Н. Иванов, А.Г. Ахмадеев и др. // Нефтяное хозяйство. 2021. № 10. С. 108–111.
- 7. Интегрированное моделирование как инструмент, повышающий эффективность разработки многопластового нефтегазоконденсатного месторождения / Е.В. Богданов, И.Л. Чамеев, Д.А. Решетников, И.В. Перевозкин, А.В. Ткачук, А.Н. Шорохов // Нефтяное хозяйство. 2019. № 12. С. 52–55.
- 8. Рычков А.Ф., Кадыков И.А. Построение интегрированных моделей месторождений с высокопродуктивными скважинами, в условиях малых значений депрессий на пласт на примере Памятно-Сасовского месторождения // Сб. статей VII Конференции молодых ученых и специалистов Головного офиса ООО «ЛУКОЙЛ-Инжиниринг». М., 2018. С. 664–673.
- 9. Bandilla K.W., Guo B., Celia M.A. Applicability of vertically integrated models for carbon storage modeling in structured heterogeneous domains // Energy Procedia. 2017. Vol. 114. P. 3312–3321.
- 10. Towards the development of an integrated modelling framework underpinned by mineralogy / S. Ntlhabane, M. Becker, E. Charikinya, M. Voight, R. Schouwstra, D. Bradshaw // Minerals Engineering. 2018. Vol. 116. P. 123–131.
- 11. Создание и эксплуатация интегрированной модели, учитывающей особенности газоконденсатной залежи / В.Г. Зипир, А.Г. Менгалиев, А.Г. Рясный, М.Н. Курбатова, О.М. Рудая // Известия Томского политехнического университета. Инжиниринг георесурсов. − 2022. − Т. 333. − № 10. − С. 159−168.
- 12. Liu C., Li Y., Xu M. An integrated detection and location model for leakages in liquid pipelines // Journal of Petroleum Science and Engineering. 2019. Vol. 175. P. 852–867.
- An integrated model for asphaltene deposition in wellbores/pipelines above bubble pressures / Q. Guan, A. Goharzadeh, J. Chai, F.M. Vargas, S.L. Biswal, W.G. Chapman, M. Zhang, Y.F. Yap //Journal of Petroleum Science and Engineering. 2018. Vol. 169. P. 353–373.
- 14. An integrated simulation model for analysing electricity and gas systems / B.C. Erdener, K.A. Pambour, R.B. Lavin, B. Dengiz // International Journal of Electrical Power & Energy Systems. 2014. Vol. 61. P. 410–420.
- 15. Integrated field operation and optimization / S.D. Rahmawati, C. Whitson, B. Foss, A. Kuntadi // Journal of Petroleum Science and Engineering. 2012. Vol. 81. P. 161–170.
- 16. Margaret A.W. Modelling and forecasting the supply of oil and gas: a survey of existing approaches // Journal of Resources and Energy. 1992. Vol. 14. P. 287–309.
- 17. Aydin G. Production modeling in the oil and natural gas industry: an application of trend analysis // Journal of Petroleum Science and Technology. 2014. Vol. 32. P. 555–564.
- 18. Китов Е.С., Ерофеев В.И., Джалилова С.Н. Анализ технологий промысловой подготовки природного газа // Известия Томского политехнического университета. Инжиниринг георесурсов. 2022. Т. 333. № 10. С. 31–38.

- 19. Технология бинарных смесей как современный комплексный метод увеличения нефтеотдачи для разработки трудноизвлекаемых запасов на месторождениях Западной Сибири / Р.Н. Коротков, А.А. Коновалов, Д.М. Овчаренко, В.И. Ерофеев // Известия Томского политехнического университета. Инжиниринг георесурсов. 2023. Т. 334. № 9. С. 146—153. DOI: https://doi.org/10.18799/24131830/2023/9/4176
- 20. Коротков Р.Н., Овчаренко Д.М., Ерофеев В.И. Настройка модели пласта методом материального баланса в программном обеспечении petroleum experts MBAL. Настройка интегрированной модели в GAP // Известия Томского политехнического университета. Инжириринг георесурсов. − 2024. − Т. 335. − № 2. − С. 133–140. DOI: 10.18799/24131830/2024/2/4434

Информация об авторах

Роман Николаевич Коротков, аспирант отделения нефтегазового дела Школы природных ресурсов Национального исследовательского Томского политехнического университета, Россия, 634050, г. Томск, пр. Ленина, 30. klimatqwf@gmail.com; http://orcid.org/0009-0000-5118-9198

Диана Маратовна Овчаренко, магистрант отделения нефтегазового дела Школы природных ресурсов Национального исследовательского Томского политехнического университета, Россия, 634050, г. Томск, пр. Ленина, 30. dmo4@tpu.ru; http://orcid.org/0009-0009-5799-2972

Владимир Иванович Ерофеев, доктор технических наук, профессор отделения нефтегазового дела Школы природных ресурсов Национального исследовательского Томского политехнического университета, Россия, 634050, г. Томск, пр. Ленина, 30. erofeevvi@mail.ru; http://orcid.org/0000-0001-5153-887X

Поступила в редакцию: 31.10.2023

Поступила после рецензирования: 07.11.2023

Принята к публикации: 25.01.2024

REFERENCES

- 1. Filippov E.V., Chumakov G.N., Ponomareva I.N., Martyushev D.A. Application of integrated modeling in the oil and gas industry. *Nedropolzovanie*, 2020, vol. 20, no. 4, pp. 386–400. (In Russ.)
- 2. Ivanov A.N., Veliev M.M., Veliev E.M., Kuleshova L.S., Udalova E.A. Features of the development of high-viscosity oil fields under conditions of low reservoir pressure. *Neftyanoe khozyaystvo*, 2021, no. 8, pp. 50–52. (In Russ.)
- 3. Povyshev K.I., Vershinin S.A., Bernikovskaya O.S. Integrated model "reservoir-well-infrastructure" and its capabilities. *PRONEFT. Professionalno o nefti*, 2016, no. 2, pp. 48–53. (In Russ.)
- 4. Apasov R.T., Chameev I.L., Varavva A.I., Vernikovskaya O.S., Ilyasov A.R., Virt V.I. Integrated modeling as a tool for improving the quality of design solutions for the development of oil rims of multilayer oil and gas condensate fields. *Neftyanoe khozyaystvo*, 2018, no. 12, pp. 46–49. (In Russ.)
- 5. Yanochkin S.V., Rychkov A.F. Integrated modeling. Experience in implementing pilot projects. *Neft. Gaz. Novatsii*, 2018, no. 12, pp. 29–30. (In Russ.)
- 6. Veliev M.M., Ivanov A.N., Akhmadeev A.G. Problems of calculations of field systems for collecting and transporting produced products from high-viscosity oil fields. *Neftyanoe khozyaystvo*, 2021, no. 10, pp. 108–111. (In Russ.)
- Bogdanov E.V., Chameev I.L., Reshetnikov D.A., Perevozkin I.V., Tkachuk A.V., Shorokhov A.N. Integrated modeling as a tool
 that increases the efficiency of the development of a multilayer oil and gas condensate field. *Neftyanoe khozyaystvo*, 2019,
 no. 12, pp. 52–55. (In Russ.)
- 8. Rychkov A.F., Kadykov I.A. Building integrated models of fields with highly productive wells under conditions of low reservoir pressure drawdowns on the example of the Pamyatno-Sasovskoye field. *Proc. of the VII Conference of Young Scientists and Specialists of the Head Office of OOO LUKOIL-Engineering*. Moscow, 2018. pp. 664–673.
- 9. Bandilla K.W., Guo B., Celia M.A. Applicability of vertically integrated models for carbon storage modeling in structured heterogeneous domains. *Energy Procedia*, 2017, no. 114, pp. 3312–3321.
- 10. Ntlhabane S., Becker M., Charikinya E., Voight M., Schouwstra R., Bradshaw D. Towards the development of an integrated modelling framework underpinned by mineralogy. *Minerals Engineering*, 2018, no. 116, pp. 123–131.
- 11. Zipir V.G., Mengaliev A.G., Ryasny A.G., Kurbatova M.N., Rudaya O.M. Creation and exploration of the integrated model, taking into account the features of the gas condensate deposit. *Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering*, 2022, vol. 333, no. 10, pp. 159–168. (In Russ.)
- 12. Liu C., Li Y., Xu M. An integrated detection and location model for leakages in liquid pipelines. *Journal of Petroleum Science and Engineering*, 2019, no. 175, pp. 852–867.
- 13. Guan Q., Goharzadeh A., Chai J., Vargas F.M., Biswal S.L., Chapman W.G., Zhang M., Yap Y.F. An integrated model for asphaltene deposition in wellbores/pipelines above bubble pressures. *Journal of Petroleum Science and Engineering*, 2018, no. 169, pp. 353–373.
- 14. Erdener B.C., Pambour K.A., Lavin R.B., Dengiz B. An integrated simulation model for analysing electricity and gas systems. *International Journal of Electrical Power & Energy Systems*, 2014, no. 61, pp. 410–420.
- 15. Rahmawati S.D., Whitson C., Foss B., Kuntadi A. Integrated field operation and optimization. *Journal of Petroleum Science and Engineering*, 2012, no. 81, pp. 161–170.
- 16. Margaret A.W. Modelling and forecasting the supply of oil and gas: a survey of existing approaches. *Journal of Resources and Energy*, 1992, vol. 14, pp. 287–309.
- 17. Aydin G. Production modeling in the oil and natural gas industry: an application of trend analysis. *Journal of Petroleum Science and Technology*, 2014, no. 32, pp. 555–564.

- 18. Kitov E.S., Erofeev V.I., Dzhalilova S.N. Analysis of technologies for field treatment of natural gas. *Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering*, 2022, vol. 333, no. 10, pp. 31–38. (In Russ.)
- 19. Korotkov R.N., Konovalov D.M., Ovcharenko D.M., Erofeev V.I. Binary mixture technology as a modern complex method of increasing oil recovery for the development of hard-to-recover reserves in the fields of Western Siberia. *Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering*, 2023, vol. 334, no. 9, pp. 146–153. (In Russ.) DOI: https://doi.org/10.18799/24131830/2023/9/4176
- 20. Korotkov R.N., Ovcharenko D.M., Erofeev V.I. Adjustment of a reservoir model by the material balance method in the petroleum experts MBAL program. Setting up the integrated model in GAP. *Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering*, 2024, vol. 335, no. 2, pp. 133–140. (In Russ.) DOI: 10.18799/24131830/2024/2/4434

Information about the authors

Roman N. Korotkov, Postgraduate Student, National Research Tomsk Polytechnic University, 30, Lenin avenue, Tomsk, 634050, Russian Federation. klimatqwf@gmail.com; http://orcid.org/0009-0000-5118-9198

Diana M. Ovcharenko, Master Student, National Research Tomsk Polytechnic University, 30, Lenin avenue, Tomsk, 634050, Russian Federation. dmo4@tpu.ru; http://orcid.org/0009-0009-5799-2972

Vladimir I. Erofeev, Dr. Sc., Professor, National Research Tomsk Polytechnic University, 30, Lenin avenue, Tomsk, 634050, Russian Federation. erofeevvi@mail.ru; http://orcid.org/0000-0001-5153-887X

Received: 31.10.2023 Revised: 07.11.2023 Accepted: 25.01.2024 УДК 544.726.2:549.28

DOI: 10.18799/24131830/2024/3/4446

Шифр специальности ВАК: 1.4.2

Новый меняющий цвет сорбционный материал для эффективного удаления тяжелых металлов из сточных вод

Э.А. Камбарова^{1,⊠}, Н.А. Бектенов², К.Ж. Базарбаева³, А.К. Мажибаев¹, С.М. Болысбекова⁴, М.А. Гавриленко⁵

¹ Таразский региональный университет им. М.Х. Дулати, Казахстан, г. Тараз
² Казахский национальный педагогический университет имени Абая, Казахстан, г. Алматы
³ Евразийский национальный университет им. Л.Н. Гумилева, Казахстан, г. Астана
⁴ Международный университет Астаны, Казахстан, г. Астана
⁵ Томский государственный университет, Россия, г. Томск

[™]ilmira080884@mail.ru

Аннотация. Актуальность исследования обусловлена необходимостью очистки водных ресурсов от катионов Me(II). Получение действенных и дешевых сорбентов, позволяющих обнаруживать и адсорбировать катионы тяжелых металлов в питьевой или водопроводной воде и параллельно осуществлять систематический мониторинг качества воды в окружающей среде, является одним из приоритетных направлений для очистки вод различного назначения. *Цель:* синтезировать сорбционный материал для эффективного удаления катионов Me(II) из сточных вод, изучить основные параметры нового сорбционного материала. Объекты: Шанханайский природный цеолит и его модифицированные полиэтиленполиамином, 1,2-пиридилазонафтолом и эпоксидной смолой (ЭД-20) формы. Методы: спектрофотометрия. Результаты. Предложен сорбент на основе комбинации поверхностного слоя полиэтиленполиамина, 1,2-пиридилазонафтола и эпоксидной смолы ЭД-20, которая затем успешно иммобилизована на цеолите для адсорбции катионов металлов Me(II)) из воды. Синтезированный сорбент позволяет проводит диагностику собственной работоспособности по изменению цвета поверхности после сорбции катионов Me(II). Изучены основные экспериментальные параметры, такие как текстура сорбента, диапазон рН сорбции, интенсивность цвета, сорбционная емкость, эффект конкурирующих катионов жесткости воды и возможность десорбции накопленных катионов раствором кислоты. pH образца воды играет ключевую роль. На основе максимальных величин интенсивности сигнала и полноты очистки воды предложено эффективный диапазон рН 6-7. Конкурирующие катионы щелочных и щелочноземельных металлов (соли жесткости воды) не препятствуют адсорбции катионов Me(II). Максимальная сорбционная емкость составила 220 мг/г, что сопоставимо с другими распространенными сорбентами. Также сорбент продемонстрировал возможность повторного использования после 10-12 циклов десорбции и регенерации цветообразующего компонента 1,2-пиридилазонафтола. Десорбцию проводили с помощью 0,20 М HCl, затем сорбент был готов к использованию после промывки водой без существенной потери своих характеристик. Восстановление способности изменения цвета достигнуто обработкой сорбента в 10-3 М водным раствором 1-(2-пиридилазо)-2-нафтола в течение 10 минут.

Ключевые слова: Шанханайский природный цеолит, сорбция, катионы Me(II), полиэтиленполиамин, эпоксидная смола, 1,2-пиридилазонафтол, тяжелые металлы

Благодарности: Исследование поддержано Министерством образования и науки Российской Федерации, грант 0721-2020-0037.

Для цитирования: Новый меняющий цвет сорбционный материал для эффективного удаления тяжелых металлов из сточных вод / Э.А. Камбарова, Н.А. Бектенов, К.Ж. Базарбаева, А.К. Мажибаев, С.М. Болысбекова, М.А. Гавриленко // Известия Томского политехнического университета. Инжиниринг георесурсов. − 2024. − Т. 335. − № 3. − С. 40−49. DOI: 10.18799/24131830/2024/3/4446

UDC 544.726.2:549.28

DOI: 10.18799/24131830/2024/3/4446

New color changing sorption material for effective removal of heavy metals from wastewater

E.A. Kambarova^{1,⊠}, N.A. Bektenov², K.Zh. Bazarbaeva³, A.K. Mazhibayev¹, S.M. Bolysbekova⁴, M.A. Gavrilenko⁵

¹ Taraz Regional University named after M.Kh. Dulaty, Taraz, Kazakhstan
² Kazakh National Pedagogical University named after Abai, Almaty, Kazakhstan
³ Eurasian National University named after L.N. Gumilev, Astana, Kazakhstan
⁴ Astana International University, Astana, Kazakhstan
⁵ Tomsk State University, Tomsk, Russian Federation

[™]ilmira080884@mail.ru

Abstract. *Relevance.* The need to purify water resources from Me(II) cations. Obtaining effective and cheap sorbents is one of the priority areas for water purification for various purposes. Namely, the sorbents, allowing the detection and adsorbing heavy metal cations in drinking or tap water and, at the same time, systematic monitoring of water quality in the environment. *Aim.* Synthesis of sorption material for effective removal of Me(II) cations from wastewater, study of the main parameters of new sorption material. *Objects.* Shanghai natural zeolite and its forms modified with polyethylene polyamine, 1,2-pyridylazonaphthol and epoxy resin (ED-20). *Methods.* Spectrophotometry. *Results.* A sorbent is proposed based on a combination of a surface layer of polyethylene polyamine, 1,2-pyridylazonaphthol and ED-20 epoxy resin, which is then successfully immobilized on zeolite for adsorption of metal cations Me(II) from water. The synthesized sorbent makes it possible to diagnose its own efficiency by color changing of the surface after sorption of Me(II) cations. Competing cations of alkali and alkaline earth metals (water hardness salts) do not interfere with the adsorption of Me(II) cations. The maximum sorption capacity was 220 mg/g, which is comparable to other common sorbents. The sorbent also demonstrated the possibility of reuse after 10–12 cycles of desorption and regeneration of the color-forming component 1,2-pyridylazonaphthol. Desorption was carried out using 0.20 M HCl, then the sorbent was ready for being used without significant loss of its characteristics after washing with water. Restoration of the ability to color change was achieved by treating the sorbent in a 10-3 M aqueous solution of 1-(2-pyridylazo)-2-naphthol for 10 minutes.

Keywords: Shanghai natural zeolite, sorption, Me(II) cations, polyethylene polyamine, epoxy resin, 1,2-pyridylazonaphthol, heavy metals

Acknowledgements: The study was supported by the Ministry of Education and Science of the Russian Federation, grant 0721-2020-0037.

For citation: Kambarova E.A., Bektenov N.A., Bazarbaeva K.Zh., Mazhibayev A.K., Bolysbekova S.M., Gavrilenko M.A. New color changing sorption material for effective removal of heavy metals from wastewater. *Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering*, 2024, vol. 335, no. 3, pp. 40–49. DOI: 10.18799/24131830/2024/3/4446

Введение

В настоящее время распространенными источниками токсичных катионов Me(II) в окружающей среде являются промышленные стоки и, в меньшей степени, контакт водоемов с залежами рудных ископаемых [1, 2]. Всемирная организация здравоохранения (ВОЗ) допускает, что максимальное содержание ионов Me(II) в питьевой воде 3,0 мг/л [3] и максимально допустимый предел суммы содержания катионов Me(II) в воде пресных водоемов составляет 2 мг/л по данным Агентства по охране окружающей среды США (Environmental Protection Agency) [4]. В Европе (ЕС) максимально допустимое суммарное содержание катионов Me(II) в по-

верхностных водах регламентируется на уровне 3,0 мг/л, за исключением некоторых наиболее токсичных катионов [5]. Поэтому крайне важно разработать химические сорбенты, позволяющие обнаруживать и адсорбировать катионы тяжелых металлов в питьевой или водопроводной воде и одновременно осуществлять непрерывный мониторинг качества воды в окружающей среде.

Разработано множество методов удаления тяжелых металлов из водной среды, таких как: ионный обмен, химическое осаждение, обратный осмос, выпаривание, мембранное разделение, ионный обмен и адсорбция, электроосаждение, хлорирование, выщелачивание, цианирование и биосорбция

[6-10]. Перспективным направлением является использование природных и техногенных сорбентов на основе оксидов металлов, включая магнетит и оксид титана, для удаления и извлечения ионов ценных металлов из отходов [11–14]. Тем не менее адсорбция с использованием природных сорбентов с большой площадью поверхности и электроотрицательными группами поверхности остается преобладающим способом в адсорбции катионов из сточных вод. В частности, сорбционные материалы с группами органических лигандов привлекают внимание научного сообщества вследствие устойчивости поверхностных хромофорных групп, специфичности связывания и высокой интенсивности цвета комплексов с катионами металлов. Ряд таких сорбентов предложены как материалы нового класса для одновременного обнаружения и удаления Me(II) из водных растворов [15, 16]. Основными преимуществами сорбции на специально подготовленных сорбентах, особенно на модифицированных слоями полимеров, являются высокая селективность и производительность, обратимость и возможность повторного использования адсорбента, низкие эксплуатационные расходы, эффективная кинетика сорбции, отсутствие необходимости в сложных приборах для мониторинга присутствия токсичных катионов металлов [17–21].

Для мониторинга тяжелых металлов в пробах воды разработано множество методов, в том числе атомно-абсорбционная спектрометрия [22, 23], оптическая эмиссионная спектрометрия с индуктивно связанной плазмой [24], масс-спектрометрия с индуктивно-связанной плазмой [2] и ионная хроматография [25, 26]. Эти методы требуют дорогостоящих инструментов, длительной пробоподготовки и не являются мобильными для анализа in situ, особенно для мониторинга окружающей среды в режиме реального времени. В качестве альтернативы предложены полевые аналитические методы, включая электрохимический мониторинг [27, 28], флуоресцентное и колориметрическое обнаружение [29, 30], тест-методы [31]. Эти методы демонстрируют чрезвычайно низкий предел обнаружения, также они могут быть адаптированы для мониторинга окружающей среды в режиме реального времени. Колориметрический подход является привлекательным методом вследствие его простоты, короткого времени обнаружения, низкой стоимости, простоты в использовании, безвредности для окружающей среды [32-34]. Эффект, аналогичный использованию тест-методов, может быть достигнут закреплением хромофорного лиганда на поверхностных полимерных слоях модифицированных природных сорбентов. Иммобилизованные на поверхности полимерного слоя хромофорные лиганды на различных твердых носителях успешно используются для разделения и колориметрического определения катионов металлов [35, 36]. Лиганд в сорбенте выполняет две функции. Первая функция – рецепторная, которая трансформирует химическую информацию в аналитические сигналы путем переноса заряда при связывании с катионами Me(II). Вторая функция заключается в обеспечении дополнительной селективности по отношению к катионам исследуемых металлов.

Одновременное обнаружение и адсорбция токсичных катионов является перспективным направлением контроля опасного загрязнения водных объектов. Необходимо объединение сорбционных и колориметрических свойств в одном многофункциональном материале для быстрого обнаружения катионов тяжелых металлов и одновременной эффективной адсорбции из сточных вод. Цель исследования состоит в изучении колориметрического эффекта распространенного реагента ПАН после контакта с катионами тяжелых металлов на поверхности природного цеолита, модифицированного эпоксидной смолой ЭД-20.

Экспериментальная часть

Образец природного цеолита получен из местного месторождения (Алматинская область, Казахстан). Для увеличения сорбирующей способности и избирательности сорбции минерал модифицировали смесью полиамина ПЭПА и эпоксидной смолы ЭД-20, относящейся к эпоксидно-диановым смолам. Перед модификацией цеолит измельчали до размера зерен 0,4 мм. Для модифицирования к 100 г измельченного цеолита добавляли компоненты для олигомеризации эпоксидной смолы массой 40 и 10 г полиэтиленполиамина до равномерного распределения по объему цеолита. Образовавшуюся смесь в лабораторных огнеупорных тиглях помещали в сушильный шкаф при 120 °C на 12 ч. После сушки изучаемый сорбент извлекали и остужали в течение 10 ч. Затем осушенные и охлажденные сорбенты вымачивали в N,N-диметилформамиде в течение суток, затем промывали деионизированной водой до нейтральной среды.

Окончательный вариант сорбента приготовлен путем прямой иммобилизации ПАН из водного раствора на поверхности приготовленного цеолит-ЭД-20. ПАН образует окрашенные комплексы с этими металлами, которые можно измерить фотометрически. Применение ПАН в работе связано с его способностью образовывать стабильные и видимые соединения с катионами Ме(II). При реакции ПАН с металлом образуется хелатный комплекс, который имеет интенсивный цвет. Цветовая интенсивность комплекса пропорциональна концентрации металла, что позволяет определить его содержание в образце. Навеску ПАН массой 40 мг

растворяли 10 мл воды и перемешивали с 50 г порошка цеолит-ЭД-20 в течение 2 ч. Иммобилизацию проводили в течение 1 ч, затем растворитель удаляли под вакуумом при 30 °С. На завершающей стадии полученный сорбент промывали теплой водой для проверки стабильности и отсутствия элюирования ПАН. Затем материал сушили при 50 °С в течение 6 ч и использовали в дальнейшей работе.

Адсорбция катионов Me(II)

Адсорбцию катионов Me(II) исследовали в статическом режиме при перемешивании на мультиротаторе. Для этого 10 мг полученного сорбента вносили в раствор, содержащий сумму катионов Me(II), и доводили до необходимых значений рН путем добавления HCl или NaOH (0,05 M) из 20 мл раствора. После перемешивания в течение 20 мин при комнатной температуре сорбент отделяли фильтрованием и определяли концентрации Me(II) спектрофотометрией до и после адсорбции, в том числе в присутствии сопоставимых концентраций сопутствующих катионов металлов Na(I), K(I), Li(I), Ca(II), Ba(II), Mg(II), Bi(III), Fe(III), Al(III) и некоторых анионов.

Десорбцию катионов также исследовали в статическом режиме, для этого использовали 50 мг сорбента после сорбции суммы катионов Me(II) с концентрациями 10–100 мг/л из 50 мл раствора. Сорбент отфильтровывали, промывали деионизированной водой и переносили в мерную колбу на 250 мл. В колбу вносили 10,0 мл элюирующего агента, например, 0,20 М HCl или NaCl, и перемешивали в течение 10 мин. Концентрацию катионов Me(II) после десорбции из сорбента в раствор определяли спектрофотометрией. Затем высушенный сорбент повторно использовали в течение нескольких циклов после промывки водой для изучения возможности многоразового применения.

Материалы

В работе использованы реактивы: полиэтиленполиамин (ПЭПА, Россия, ТУ 2413-357-00203447-9920), двухкомпонентная смесь для олигомеризации эпоксидной смолы (ЭД-20, Россия, ГОСТ 10587-84), 1-(2-пиридилазо)-2-нафтол (ПАН, Sigma-Aldrich, Германия). Все химические вещества соответствовали квалификации х.ч. и ч.д.а. и использованы без дополнительной очистки.

Аппаратура

Оценку параметров удельной поверхности проводили с помощью автоматического газоадсорбционного анализатора TriStar II 3020 (Micrometrics, США). Регистрацию спектров раствора и поверхности сорбента осуществляли с помощью спектрофотометра Shimadzu-1800 (Shimadzu, Япония).

Результаты и их обсуждение

На поверхности полимеризованной эпоксидной смолы ЭД-20 присутствуют льюисовские кислотные центры, которые способны образовывать устойчивые комплексы с органическими реагентами [37], поэтому в качестве хромофорного реагента выбрали распространенный и изученный 1,2пирилазонафтол (ПАН). Иммобилизованный ПАН обладает устойчивостью в широком диапазоне рН от 2,0 до 11,0, что является важным фактором при использовании цеолит-ЭД-20 как сорбента в средах различной кислотности. В процессе иммобилизации происходит окрашивание поверхности сорбента, однако до образования комплекса цвет сорбента с ПАН не отличается от исходного цвета Цеолит-ЭД-20 (рис. 1), после сорбции поверхность приобретает красно-коричневый цвет. Спектры диффузного отражения представляют собой широкую полосу с максимумами при 490 и 520 нм.

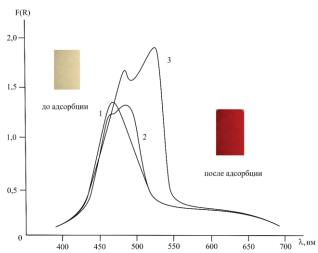


Рис. 1. Спектры диффузного отражения Цеолит-ЭД-20 (1), модифицированного ПАН (2) после адсорбции катиона металла (3), и интенсивность цвета до и после адсорбции

Fig. 1. Diffuse reflectance spectra of Zeolite-ED-20 (1) modified with PAN (2) after adsorption of a metal cation (3) and color intensity before and after adsorption

Интенсивность изменения цвета соответствует увеличению концентрации катионов Me(II), при этом спектры отражения расширены и смещены после образования комплекса ПАН-Me(II). Максимумы отражения батохромно сдвинуты от $\lambda_{\text{макс}}$ при 462 до 520 нм, что указывает на комплекс с переносом заряда [38]. Изменение положения максимума спектра является результатом присоединения катионов Me(II) и образования стабильного комплекса, что обеспечивает равномерное цветообразование в

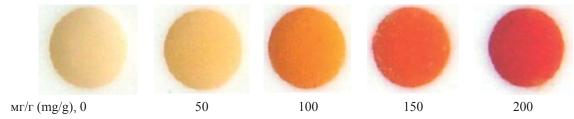
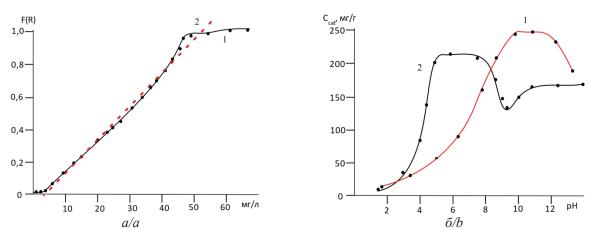
поверхностном слое ЭД-20. С увеличением рН количество льюисовских кислотных центров на поверхности ЭД-20 уменьшается и закрепление ПАН на поверхности сорбента происходит дополнительно за счет электростатического взаимодействия с аминогруппами ПЭПА, о чем свидетельствует увеличение интенсивности максимума в спектрах диффузного отражения при 520 нм.

Графики показывают линейную корреляцию с интенсивностью цвета в диапазоне низких концентраций ионов Me(II) (рис. 2, 3, *а.*) По градуировочной зависимости минимальный предел спектрофотометрического обнаружения Me(II) сорбентом составил 0,4 мг/л. Низкое значение предела обнаружения может быть связано с большой площадью поверхности сорбента.

Сорбент достаточно чувствителен к pH во время адсорбции Me(II), и самый высокий отклик сигнала был обнаружен в нейтральной и слабокислой области при pH 6,0–7,0 (рис. 3, δ). В диапазоне pH>8,5 ряд катионов металлов образует малорастворимые гидроксокомплексы, которые не вступают в реакцию комплесообразования с ПАН, однако сорби-

руются на поверхности Цеолит-ЭД-20. Таким образом, сорбционные свойства Цеолит-ЭД-20 остаются высокими независимо от изменения интенсивности цвета в щелочной среде.

Поскольку закрепление органических реагентов на поверхности эпоксидной смолы происходит за счет электростатических взаимодействий и образования водородных связей, то существенное влияние на прочность их закрепления могут оказывать кислые или высокосолевые среды. Устойчивость закрепления ПАН изучали обработкой сорбента растворами NaCl, HCl и HNO₃. Об устойчивости закрепления реагента судили по степени его десорбции (рис. 4). Как видно из диаграммы, концентрация в воде солей не оказывает существенного влияния на десорбцию ПАН с поверхности, в то время как увеличение кислотности среды повышает степень десорбции органического реагента за счет протонизации поверхности ЭД-20 и конкурентного взаимодействия с положительно заряженным азотом полиамина. Особенно это заметно для HNO₃, которая дополнительно способна разрушать поверхностный слой сорбента.

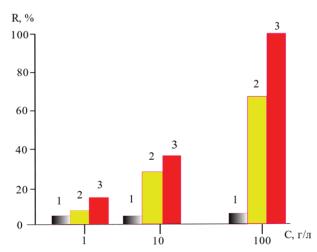

Рис. 2. Изменение цвета сорбента в зависимости от количества сорбированных катионов Me(II)

Fig. 2. Change in sorbent color depending on the amount of sorbed Me(II) cations

Рис. 3. Экспериментальная (1) и теоретическая (2) градуировочные зависимости (а) и зависимость полноты сорбции исходного цеолита (1) и модифицированного ЭД-20 цеолита (2) от pH (б) при времени контакта 40 минут

Fig. 3. Experimental (1) and theoretical (2) calibration dependences (a) and dependence of sorption completeness of the original zeolite (1) and modified ED-20 zeolite (2) on pH (b) at 40 minutes contact time

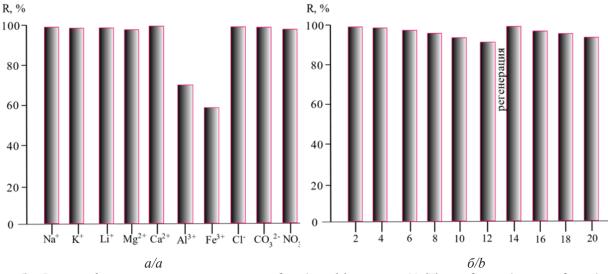

Рис. 4. Степень десорбции (%) ПАН с поверхности Цеолит-ЭД-20 при обработке сорбента растворами NaCl (1), HCl (2) и HNO₃ (3)

Fig. 4. Degree of desorption (%) of PAN from the surface of Zeolite-ED-20 when the sorbent is treated with solutions of NaCl (1), HCl (2) and HNO3 (3)

ПАН с поверхности ЭД-20 десорбируется при обработке сорбента 0,1 М HCl, что, вероятно, также связано со слабой устойчивостью закрепления низкомолекулярных олигомеров ЭД-20 на поверхности цеолита. Устойчивость слоя органического реагента на полимерном слое в кислых и солевых растворах зависит от природы и количества кислотных групп в молекуле реагента. Наличие в составе органических реагентов функциональных групп (NH2–, OH–, O= и др.), способных к взаимодействию с аминогруппами ПЭПА, снижает степень десорбции реагентов при воздействии этих растворов.

Мешающее влияние катионов, часто присутствующих в воде, оценено в оптимальных условиях с использованием Na (I), K (I), Li (I), Ca (II), Ba (II), Mg (II), Bi(III), Fe(III) и Al(III). Для сравнения соотношения концентраций суммы катионов Me(II) 1,0 мг/л и других катионов металлов 20 мг/л их сохраняли одинаковыми и оценивали изменения интенсивности максимума отражения и цвета сорбента (рис. 5). Экспериментальные результаты показали, что добавление солей жесткости воды с концентрацией до 100 мг/л не взывает существенных изменений в спектрах отражения адсорбента, за исключением катионов Me(III). Это связано с их способностью образовывать искаженные комплексы с ПАН, причем одна из связей может либо образовывать спейсер к поверхности сорбента, либо присоединять гидроксильную группу -ОН в зависимости от кислотности среды. Независимо от солевого состава образцов воды, до достижения максимальной сорбционной емкости 220 мг/г сорбция катионов Me(II) осуществляется полностью.

Несмотря на минимальное увеличение интенсивности максимума в спектрах отражения адсорбента, выявлены изменения интенсивности окраски сорбента, когда концентрация Me(III) в растворе превышала 20 мг/л в присутствии Fe(III) и Al(III). Минимизация связанной этим погрешности достигнута после добавления маскирующего реагента 0,10 мг/л фторида для Al(III) и ЭДТА для Fe(III). Прочность связывания этих катионов с ПАН ниже, чем для катионов Me(II) [36]. Результаты показали, что сорбент обладает достаточной селективностью к ионам Me(II) даже в присутствии большого количества посторонних ионов.

Рис. 5. Влияние фоновых анионов и катионов на адсорбцию (а) катионов Me(II) из водных образцов и десорбцию (б) катионов Me(II) при различном количестве циклов использования

Fig. 5. Effect of background anions and cations on adsorption (a) of Me(II) cations from aqueous samples and desorption (b) of Me(II) cations at different numbers of regeneration cycles

Десорбция сорбированных катионов металлов является важным параметром, который определяет, является ли адсорбция рентабельной и потенциально пригодной для крупномасштабного использования. Элюирование важно для выяснения природы процесса адсорбции, чтобы регенерировать материал и извлекать катионы металлов. Для оценки возможности регенерации цвета и сорбционной способности материала проведены серии 10-12 циклов использования сорбента. Для десорбции сорбированных катионов металлов в качестве элюента использовали кислый раствор 0,20 M HCl (рис. 5, б). Данные подтвердили, что эффективность адсорбции ионов Me(II) сохраняется даже после нескольких последовательных циклов адсорбция-элюирование/регенерация. После серии из 10-12 циклов адсорбированные катионы элюировали 0,20 М НСІ, затем одновременно регенерировали 10^{-3} М раствором ПАН в исходную форму для следующей операции детектирования и адсорбции без существенной потери своих первоначальных свойств.

Заключение

Сорбент может обнаруживать и удалять катионы Me(II) с высокой адсорбционной способностью и эффективностью. Синтезированный сорбент демонстрирует быстрое обнаружение катионов Me(II) по изменению цвета и одновременно эффективное удаление ионов Me(II) посредством адсорбции. Сорбент является реверсивным с точки зрения нескольких химических обработок и может быть повторно использован в течение 10-12 циклов без существенной потери своих первоначальных характеристик, и потенциально может использоваться для анализа и очистки воды в полевых условиях.

Таким образом, обнаружение и поглощение ионов Me(II) предложенным сорбентом является эффективной альтернативой, замещающей сразу два процесса - очистку воды и мониторинг тяжелых металлов в водоемах. Сорбент предложен к использованию для очистки сточных вод предприятий и для реального применения в крупномасштабных исследованиях, содержащих Me(II) проб воды.

СПИСОК ЛИТЕРАТУРЫ

- A review on detection of heavy metal ions in water an electrochemical approach / M.B. Gumpua, S. Sethuraman, U.M. Krishnan, J.B.B. Rayappana // Sens. Actuators B Chem. -2015. - Vol. 213. - 515.
- 2. Advances in sustainable approaches to recover metals from e-waste a review / A. Islam, T. Ahmed, M.R. Awual, A. Rahman,
- M. Sultana, A.A. Aziz, M.U. Monir, S.H. Teo, M. Hasan // J. Clean. Prod. 2020. Vol. 244. 118815.

 3. World Health Organization (WHO), Guidelines for Drinking-Water Quality. 4th ed. Geneva: World Health Organization, 2011. - 327 p.
- Environmental protection agency office of water office of science and technology health and ecological criteria division. -Washington, D.C. EPA 820-R-16-002, 2016. - 721 p.
- 5. Directive 2013/39/EU of the European Parliament and the Council // Environmental Quality Standards, Official Journal of the European Union. – 2013. – 17 p.
- Grba N., Baldermann A., Dietzel M. Novel green technology for wastewater treatment: Geo-material/geopolymer applications for heavy metal removal from aquatic media // International Journal of Sediment Research. – 2023. – Vol. 38. – № 1. – P. 33–48.
- 7. Iron-based materials for simultaneous removal of heavy metal(loid)s and emerging organic contaminants from the aquatic environment: Recent advances and perspectives / Y. Gong, Y. Wang, N. Lin, R. Wang, M. Wang, X. Zhang // Environmental Pollution. – 2022. – Vol. 299. – 118871.
- 8. Water-sediment interactions and mobility of heavy metals in aquatic environments / L.S. Miranda, B. Wijesiri, G.A. Ayoko, P. Egodawatta, A. Goonetilleke // Water Research. –2021. – Vol. 202. – 117386.
- 9. Microplastics as a vehicle of heavy metals in aquatic environments: a review of adsorption factors, mechanisms, and biological effects / S. Liu, J. Huang, W. Zhang, L. Shi, K. Yi, H. Yu, C. Zhang, S. Li, J. Li // Journal of Environmental Management. -2022. - Vol. 302. - Part A. - 113995.
- 10. Sequestration and oxidation of heavy metals mediated by Mn(II) oxidizing microorganisms in the aquatic environment / Y. Huang, X. Huangfu, C. Ma, Z. Liu // Chemosphere. – 2023. – Vol. 329. – 138594.
- 11. Dashtian K., Ghaedi M., Hajati S. Photo-sensitive Pb₅S₂I₆ crystal incorporated polydopamine biointerface coated on nanoporous TiO₂ as an efficient signal-on photoelectrochemical bioassay for ultrasensitive detection of Cr(VI) ions // Biosensor. Bioelectr. – 2019. - Vol. 132. - P. 105-114.
- 12. Development of 3-methoxyaniline sensor probe based on thin Ag₂O@La₂O₃ nanosheets for environmental safety / M.M. Rahman, T.A. Sheikh, A.M. Asiri, M.R. Awual // New J. Chem. - 2019. - Vol. 43. - P. 4620-4632.
- 13. Amourizi F., Dashtian K., Ghaedi M. Polyvinylalcohol-citrate-stabilized gold nanoparticles supported congo red indicator as an optical sensor for selective colorimetric determination of Cr(III) ion // Polyhedron. – 2020. – Vol. 176. – 114278.
- 14. Dashtian K., Zare-Dorabei R. An easily organic-inorganic hybrid optical sensor based on dithizone impregnation on mesoporous SBA-15 for simultaneous detection and removal of Pb(II) ions from water samples: response-surface methodology // Appl. Organometal. Chem. - 2017. - Vol. 31. - 3842.
- 15. Elmas S., Arslan F., Aydin D. A novel ratiometric fluorescent and colorimetric sensor based on a 1,8-naphthalimide derivative for nanomolar Cu²⁺ sensing; smartphone and food applications // The Analyst. – 2022. – Vol. 147. – № 12. – P. 2687–2695.
- 16. Hg²⁺ selective ratiometric and colorimetric probe based on dansyl-rhodamine and its staining function in cell imaging Y. Wang, H. Ding, S. Wang, C. Fan, Y. Tu, G. Liu, S. Pu // Luminescence. – 2019. – Vol. 34. – № 8. – P. 911–917.

- Evaluation of lanthanide sorption and their coordination mechanism by EXAFS measurement using novel hybrid adsorbent / M.R. Awual, T. Kobayashi, H. Shiwaku, Y. Miyazaki, R. Motokawa, S. Suzuki, Y. Okamoto, T. Yaita // Chem. Eng. J. 2013. Vol. 225. P. 558–566.
- Schiff based ligand containing nano-composite adsorbent for optical copper(II) ions removal from aqueous solutions / M.R. Awual, G.E. Eldesoky, T. Yaita, M. Naushad, H. Shiwaku, Z.A. Al Othman, S. Suzuki // Chem. Eng. J. – 2015. – Vol. 279. – P. 639–647.
- 19. Large-pore diameter nano-adsorbent and its application for rapid lead (II) detection and removal from aqueous media / A. Shahat, M.R. Awual, M.A. Khaleque, M.Z. Alam, M. Naushad, A.M.S. Chowdhury // Chem. Eng. J. 2015. Vol. 273. P. 286–295.
- 20. Ultimate selenium(IV) monitoring and removal from water using a new class of organic ligand based composite adsorbent / M.R. Awual, T. Yaita, S. Suzuki, H. Shiwaku // J. Hazard. Mater. 2015. Vol. 291. P. 111–119.
- 21. Mesoporous aluminosilica sensors for the visual removal and detection of Pd(II) and Cu(II) ions / S.A. El-Safty, M.A. Shenashen, M. Ismael, M. Khairy, M.R. Awual // Micropor. Mesopor. Mater. 2013. Vol. 166. P. 195–205.
- 22. Development of a new green non-dispersive ionic liquid microextraction method in a narrow glass column for determination of cadmium prior to couple with graphite furnace atomic absorption spectrometry / T.G. Naeemullah, M. Kazi, F. Tuzen, H.I. Shah, D. Afridi // Anal. Chimica. Acta. 2014. Vol. 812. P. 59–64.
- 23. Gunduz S., Akman S., Kahraman M. Slurry analysis of cadmium and copper collected on 11-mercaptoundecanoic acid modified TiO₂ core-Au shell nanoparticles by flame atomic absorption // J. Hazard. Mater. 2011. Vol. 186. P. 212–217.
- 24. Adsorption kinetics, isotherms and thermodynamic studies for the adsorption of Pb²⁺ and Hg²⁺ metal ions from aqueous medium using Ti(IV) iodovanadate cation exchanger / M. Naushad, Z.A. Al Othman, M.R. Awual, M.M. Alam, G.E. Eldesoky // Ionics. 2015. Vol. 21. P. 2237–2245.
- 25. Determination of Cu, Fe, Mn, and Zn in blood fractions by SEC-HPLC-ICP-AES coupling / K. Pomazal, C. Prohaska, I. Steffan, G. Reich, J.F.K. Huber // Analyst. 1999. Vol. 124. P. 657–663.
- 26. pH dependent Cu(II) and Pd(II) ions detection and removal from aqueous media by an efficient mesoporous adsorbent / M.R. Awual, I.M.M. Rahman, T. Yaita, M.A. Khaleque, M. Ferdows // Chem. Eng. J. 2014. Vol. 236. P. 100–109.
- 27. Awual M.R. New type mesoporous conjugate material for selective Andersen JET A novel method for the filterless preconcentration of iron // Analyst. 2005. Vol. 130. P. 385–390.
- 28. Berg V. CMG Chemical speciation of iron in seawater by cathodic stripping voltammetry with dihydroxynaphthalene // Anal Chem. 2006. Vol. 78. P. 156–163.
- 29. Efficient FRET-based colorimetric and ratiometric fluorescent chemosensor for Al³⁺ in living cells Sensors and Actuators B / C. Li, Y. Zhou, Y. Li, C. Zou, X. Kong // Chemical. 2013. Vol. 186. P. 360–366.
- 30. Prediction of sensor ability based on chemical formula: possible approaches and pitfalls / D.N. Yarullin, M.N. Zavalishin, G.A. Gamov, M.M. Lukanov, A.A. Ksenofontov, N.A. Bumagina, E.V. Antina // Inorganics. − 2023. − Vol. 11. − № 4. − 158.
- 31. Kaur B., Kaur N., Kumar S. Colorimetric metal ion sensors a comprehensive review of the years 2011–2016 // Coordination Chemistry Reviews. 2018. Vol. 358. P. 13–69.
- 32. Potentially toxic elements and environmentally-related pollutants recognition using colorimetric and ratiometric fluorescent probes / T. Rasheed, C. Li, M. Bilal, C. Yu, H.M.N. Iqbal // Science of The Total Environment. 2018. Vol. 640–641. P. 174–193
- 33. Wang S., Meng X., Zhu M. A naked-eye rhodamine-based fluorescent probe for Fe(III) and its application in living cells // Tetrahedron Lett. 2011. Vol. 52. P. 2840–2843.
- 34. Phase behavior of poly diacetylene mixed with a xanthene dye at air water interface and onto solid support / S. Suklabaidya, S. Chakraborty, B. Dey, D. Bhattacharjee, S.A. Hussain // Soft Materials. 2019. Vol. 17. № 1. P. 77–92.
- 35. Ngororabanga J.M., Tshentu Z.R., Mama N. A highly selective and sensitive ESIPT-based coumarin–triazole polymer for the ratiometric detection of Hg^{2+} // New Journal of Chemistry. 2019. Vol. 43. N 30. P. 12168–12177.
- 36. Гавриленко Н.А., Саранчина Н.В., Гавриленко М.А. Колориметрический сенсор для определения кобальта на основе полиметакрилатной матрицы с иммобилизованным 1-(2-пиридилазо)-2-нафтолом // Журнал аналитической химии. 2015. Т. 70. № 12. С. 1283–1287.
- 37. Камбарова Э.А., Гавриленко М.А., Бектенов Н.А. Модифицированные полиэтиленполиамином и эпоксидной смолой шунгиты для извлечения ионов свинца из сточных вод // Известия Томского политехнического университета. Инжиниринг георесурсов. 2021. Т. 332. № 1. С. 7–13.
- 38. Colorimetric and fluorescent sensing of rhodamine using polymethacrylate matrix / N.A. Gavrilenko, N.V. Saranchina, E.A. Kambarova, E.V. Urazov, M.A. Gavrilenko // Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2019. Vol. 220. 117106.

Информация об авторах

Эльмира Абдувалиевна Камбарова, магистр химии, старший преподаватель Таразского регионального университета им. М.Х. Дулати, Казахстан, 080000, г. Тараз, ул. Толе би, 60. ilmira080884@mail.ru; http://orcid.org/0000-0002-9474-2923

Несипхан Абжапарович Бектенов, доктор химических наук, профессор Казахского национального педагогического университета имени Абая, Казахстан, 050000, г. Алматы, пр. Достык, 13. bekten_1954@mail.ru; http://orcid.org/0000-0003-1427-438X

Карлыгаш Жаксыбековна Базарбаева, кандидат химических наук, и. о. доцента Евразийского национального университета им. Л.Н. Гумилева, Казахстан, 010008, г. Астана, ул. Сатпаева, 2. Karlygash.ba@mail.ru; http://orcid.org/0009-0002-5372-0784

Асылжан Кенжекереевич Мажибаев, кандидат химических наук, доцент Таразского регионального университета им. М.Х. Дулати, Казахстан, 080000, г. Тараз, ул. Толе би, 60. 707olo@mail.ru; http://orcid.org/0000-0003-4942-7307

Салтанат Манарбековна Болысбекова, кандидат химических наук, доцент Школы образования, Международный университет Астаны, Казахстан, 010000, г. Астана, пр. Кабанбай bolysbekova.s@mail.ru

Михаил Алексеевич Гавриленко, доктор химических наук, профессор химического факультета Томского государственного университета, Россия, 634050, г. Томск, пр. Ленина 36. dce@mail.ru; http://orcid.org/0000-0002-1111-0016

Поступила в редакцию: 24.10.2023

Поступила после рецензирования: 01.12.2023

Принята к публикации: 14.02.2024

REFERENCES

- 1. Gumpua M.B., Sethuraman S., Krishnan U.M., Rayappana J.B.B. A review on detection of heavy metal ions in water an electrochemical approach. Sens. Actuators B Chem, 2015, vol. 213, 515.
- Islam A., Ahmed T., Awual M.R., Rahman A., Sultana M., Aziz A.A., Monir M.U., Teo S.H., Hasan M. Advances in sustainable approaches to recover metals from e-waste – a review. J. Clean. Prod, 2020, vol. 244, 118815.
- 3. World Health Organization (WHO). Guidelines for Drinking-Water Quality. 4th ed. Geneva, World Health Organization, 2011.
- 4. Environmental protection agency office of water office of science and technology health and ecological criteria division. Washington, D.C. EPA 820-R-16-002, 2016. 721 p.
- Directive 2013/39/EU of the European Parliament and the Council. Environmental Quality Standards. Official Journal of the European Union, 2013. 17 p.
- 6. Grba N., Baldermann A., Dietzel M. Novel green technology for wastewater treatment: Geo-material/geopolymer applications for heavy metal removal from aquatic media. International Journal of Sediment Research, 2023, vol. 38, no. 1, pp. 33-48.
- 7. Gong Y., Wang Y., Lin N., Wang R., Wang M., Zhang X. Iron-based materials for simultaneous removal of heavy metal(loid)s and emerging organic contaminants from the aquatic environment: Recent advances and perspectives. Environmental Pollution, 2022, vol. 299, 118871.
- 8. Miranda L.S., Wijesiri B., Ayoko G.A., Egodawatta P., Goonetilleke A. Water-sediment interactions and mobility of heavy metals in aquatic environments. Water Research, 2021, vol. 202, 117386.
- 9. Liu S., Huang J., Zhang W., Shi L., Yi K., Yu H., Zhang C., Li S., Li J. Microplastics as a vehicle of heavy metals in aquatic environments: A review of adsorption factors, mechanisms, and biological effects. Journal of Environmental Management, 2022, vol. 302, Part A, 113995.
- 10. Huang Y., Huangfu X., Ma C., Liu Z. Sequestration and oxidation of heavy metals mediated by Mn(II) oxidizing microorganisms in the aquatic environment. Chemosphere, 2023, vol. 329, 138594.
- Dashtian K., Ghaedi M., Hajati S., Photo-sensitive Pb₅S₂I₆ crystal incorporated polydopamine biointerface coated on nanoporous TiO₂ as an efficient signal-on photoelectrochemical bioassay for ultrasensitive detection of Cr(VI) ions. Biosensor. Bioelectr., 2019, vol. 132, pp. 105-114.
- 12. Rahman M.M., Sheikh T.A., Asiri A.M., Awual M.R. Development of 3-methoxyaniline sensor probe based on thin Ag₂O@La₂O₃ nanosheets for environmental safety. New J. Chem., 2019, vol. 43, pp. 4620–4632.
- 13. Amourizi F., Dashtian K., Ghaedi M. Polyvinylalcohol-citrate-stabilized gold nanoparticles supported congo red indicator as an optical sensor for selective colorimetric determination of Cr(III) ion. *Polyhedron*, 2020, vol. 176, 114278.
- 14. Dashtian K., Zare-Dorabei R. An easily organic-inorganic hybrid optical sensor based on dithizone impregnation on mesoporous SBA-15 for simultaneous detection and removal of Pb(II) ions from water samples: response-surface methodology. Appl. Organometal, Chem., 2017, vol. 31, 3842.
- 15. Elmas S., Arslan F., Aydin D. A novel ratiometric fluorescent and colorimetric sensor based on a 1,8-naphthalimide derivative
- for nanomolar Cu²⁺ sensing: smartphone and food applications. *The Analyst.*, 2022, vol. 147, no. 12, pp. 2687–2695.

 16. Wang Y., Ding H., Wang S., Fan C., Tu Y., Liu G., Pu S. Hg²⁺ selective ratiometric and colorimetric probe based on dansyl– rhodamine and its staining function in cell imaging. Luminescence, 2019, vol. 34, no. 8, pp. 911-917.
- 17. Awual M.R., Kobayashi T., Shiwaku H., Miyazaki Y., Motokawa R., Suzuki S., Okamoto Y., Yaita T. Evaluation of lanthanide sorption and their coordination mechanism by EXAFS measurement using novel hybrid adsorbent. Chem. Eng. J, 2013, vol. 225, pp. 558-566.
- 18. Awual M.R., Eldesoky G.E., Yaita T., Naushad M., Shiwaku H., Al Othman Z.A., Suzuki S. Schiff based ligand containing nanocomposite adsorbent for optical copper(II) ions removal from aqueous solutions. Chem. Eng. J., 2015, vol. 279, pp. 639-647.
- Shahat A., Awual M.R., Khaleque M.A., Alam M.Z., Naushad M., Chowdhury A.M.S. Large-pore diameter nano-adsorbent and its application for rapid lead (II) detection and removal from aqueous media. Chem. Eng. J, 2015, vol. 273, pp. 286–295.
- 20. Awual M.R., Yaita T., Suzuki S., Shiwaku H. Ultimate selenium(IV) monitoring and removal from water using a new class of organic ligand based composite adsorbent. J. Hazard. Mater, 2015, vol. 291, pp. 111–119.
- 21. El-Safty S.A., Shenashen M.A., Ismael M., Khairy M., Awual M.R. Mesoporous aluminosilica sensors for the visual removal and detection of Pd(II) and Cu(II) ions. Micropor. Mesopor. Mater, 2013, vol. 166, pp. 195–205.

- 22. Naeemullah T.G., Kazi M., Tuzen F., Shah H.I., Afridi D. Development of a new green non-dispersive ionic liquid microextraction method in a narrow glass column for determination of cadmium prior to couple with graphite furnace atomic absorption spectrometry. *Anal. Chimica. Acta.*, 2014, vol. 812, pp. 59–64.
- 23. Gunduz S., Akman S., Kahraman M. Slurry analysis of cadmium and copper collected on 11-mercaptoundecanoic acid modified TiO₂ core-Au shell nanoparticles by flame atomic absorption. *J. Hazard. Mater.*, 2011, vol. 186, pp. 212–217.
- 24. Naushad M., Al Othman Z.A., Awual M.R., Alam M.M., Eldesoky G.E. Adsorption kinetics, isotherms and thermodynamic studies for the adsorption of Pb²⁺ and Hg²⁺ metal ions from aqueous medium using Ti(IV) iodovanadate cation exchanger. *Ionics*, 2015, vol. 21, pp. 2237–2245.
- 25. Pomazal K., Prohaska C., Steffan I., Reich G., Huber J.F.K. Determination of Cu, Fe, Mn, and Zn in blood fractions by SEC-HPLC-ICP-AES coupling. *Analyst.*, 1999, vol. 124, pp. 657–663.
- 26. Awual M.R., Rahman I.M.M., Yaita T., Khaleque M.A., Ferdows M. pH dependent Cu(II) and Pd(II) ions detection and removal from aqueous media by an efficient mesoporous adsorbent. *Chem. Eng. J.*, 2014, vol. 236, pp. 100–109.
- 27. Awual M.R. New type mesoporous conjugate material for selective Andersen JET A novel method for the filterless preconcentration of iron. *Analyst.*, 2005, vol. 130, pp. 385–390.
- 28. Berg V. CMG Chemical speciation of iron in seawater by cathodic stripping voltammetry with dihydroxynaphthalene. *Anal Chem.*, 2006, vol. 78, pp. 156–163.
- 29. Li C., Zhou Y., Li Y., Zou C., Kong X. Efficient FRET-based colorimetric and ratiometric fluorescent chemosensor for Al³⁺ in living cells Sensors and Actuators B. *Chemical*, 2013, vol. 186, pp. 360–366.
- 30. Yarullin D.N., Zavalishin M.N., Gamov G.A., Lukanov M.M., Ksenofontov A.A., Bumagina N.A., Antina E.V. Prediction of sensor ability based on chemical formula: possible approaches and pitfalls. *Inorganics*, 2023, vol. 11, no. 4, 158.
- 31. Kaur B., Kaur N., Kumar S. Colorimetric metal ion sensors a comprehensive review of the years 2011–2016. *Coordination Chemistry Reviews*, 2018, vol. 358, pp. 13–69.
- 32. Rasheed T., Li C., Bilal M., Yu C., Iqbal H.M.N. Potentially toxic elements and environmentally-related pollutants recognition using colorimetric and ratiometric fluorescent probes. *Science of The Total Environment*, 2018, vol. 640–641, pp. 174–193.
- 33. Wang S., Meng X., Zhu M. A naked-eye rhodamine-based fluorescent probe for Fe(III) and its application in living cells. *Tetrahedron Lett.*, 2011, vol. 52, pp. 2840–2843.
- 34. Suklabaidya S., Chakraborty S., Dey B., Bhattacharjee D., Hussain S.A. Phase behavior of poly diacetylene mixed with a xanthene dye at air—water interface and onto solid support. *Soft Materials*, 2019, vol. 17, no. 1, pp. 77–92.
- 35. Ngororabanga J.M., Tshentu Z.R., Mama N. A highly selective and sensitive ESIPT-based coumarin-triazole polymer for the ratiometric detection of Hg²⁺. *New Journal of Chemistry*, 2019, vol. 43, no. 30, pp. 12168–12177.
- 36. Gavrilenko N.A., Saranchina N.V., Gavrilenko M.A. Colorimetric sensor for the determination of cobalt based on a polymethacrylate matrix with immobilized 1-(2-pyridylazo)-2-naphthol. *Journal of Analytical Chemistry*, 2015, vol. 70, no. 12, pp. 1283–1287. (In Russ.)
- 37. Kambarova E.A., Gavrilenko M.A., Bektenov N.A. Shungites modified with polyethylene polyamine and epoxy resin for the extraction of lead ions from wastewater. *Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering*, 2021, vol. 332, no. 1, pp. 7–13. (In Russ.)
- 38. Gavrilenko N.A., Saranchina N.V., Kambarova E.A., Urazov E.V., Gavrilenko M.A. Colorimetric and fluorescent sensing of rhodamine using polymethacrylate matrix. *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*, 2019, vol. 220. 117106.

Information about the authors

Elmira A. Kambarova, Master of Chemistry, Taraz Regional University named after M.Kh. Dulaty, 60, Tole bi street, Taraz, 080000, Kazakhstan. ilmira080884@mail.ru; http://orcid.org/0000-0002-9474-2923

Nesiphan A. Bektenov, Dr. Sc., Professor, Kazakh National Pedagogical University named after Abai, 13, Dostyk avenue, Almaty, 050000, Kazakhstan. bekten_1954@mail.ru; http://orcid.org/0000-0003-1427-438X

Karlygash Zh. Bazarbaeva, Cand. Sc., Acting Associate Professor, Eurasian National University named after L.N. Gumilev, 2, Satpaev street, Astana, 010008, Kazakhstan. Karlygash.ba@mail.ru; http://orcid.org/0009-0002-5372-0784

Assylzhan K. Mazhibayev, Ph.D., associate professor, Taraz Regional University named after M.Kh. Dulaty, 60, Tole bi street, Taraz, 080000, Kazakhstan. 707olo@mail.ru; http://orcid.org/0000-0003-4942-7307

Saltanat M. Bolysbekova, Cand. Sc., Associate Professor, Astana International University, 8, Kabanbay Batyr avenue, Astana, 010000, Kazakhstan. bolysbekova.s@mail.ru

Mikhail A. Gavrilenko, Dr. Sc., Professor, Tomsk State University, 30, Lenin avenue, Tomsk, 634050, Russian Federation. dce@mail.ru; http://orcid.org/0000-0002-1111-0016

Received: 24.10.2023 Revised: 01.12.2023 Accepted: 14.02.2024 УДК 621.039.736

DOI: 10.18799/24131830/2024/3/4569 Шифр специальности ВАК: 2.6.8

Термовискозиметрические характеристики боросиликатных стекол для перспективной области легкоплавких составов, разрабатываемых для удаляемого малогабаритного плавителя дизайна Производственного объединения «Маяк»

С.М. Шайдуллин $^{1\boxtimes}$, А.Ю. Никулина 1 , М.Б. Ремизов 1 , П.В. Козлов 1,2

¹ Производственное объединение «Маяк», Россия, г. Озерск ² Озерский технологический институт – филиал Национального исследовательского ядерного университета «Московский инженерно-физический институт», Россия, г. Озерск

[™]shaidullinsergey@yandex.ru

Аннотация. Актуальность исследования определяется необходимостью получения экспериментальных данных по зависимости термовискозиметрических свойств исследуемых боросиликатных стекол от температуры для решения задачи по разработке легкоплавкого состава боросиликатного стекла для малогабаритного плавителя дизайна Производственного объединения «Маяк». *Цель:* определение наиболее полных характеристик исследуемых боросиликатных стекол путем проведения термовискозиметрических измерений с применением симплекс-решетчатого плана четвертого порядка для получения в дальнейшем полинома, отражающего зависимость исследуемого свойства смеси от содержания в ней компонентов. Методы: математическое моделирование, симплекс-решетчатый план. Результаты и выводы. Одним из наиболее эффективных методов планирования эксперимента, позволяющих при относительно малом числе опытов получить математическую модель, отражающую зависимость исследуемого свойства смеси от содержания в ней компонентов, является метод планирования эксперимента на симплексе. Для упрощения решения подобной задачи обычно выделяют группу или группы компонентов, в которых соотношение массовой доли составных частей не меняется. В данной статье взяты три группы компонентов - имитаторы высокоактивных отходов, оксид натрия и оксид бора, и стеклофритта. Выделена наиболее перспективная область, где массовая доля стеклофритты составляет от 67,5 до 75 %, массовая доля натрия и бора – от 25 до 32,5 % и массовая доля компонентов высокоактивных отходов - от 0 до 20 %. Приведены результаты термовискозиметрических измерений 15 расплавов относительно легкоплавких боросиликатных стекол разных составов в диапазоне температур от 700 до 1200°C. С использованием математических моделей планирования эксперимента на симплексе построены области зависимости термовискозиметрических характеристик расплавов боросиликатных стекол от их состава. Определены области составов боросиликатных стекол, которые находятся в допустимых границах вязкости для слива расплава боросиликатного стекла при работе на удаляемом малогабаритном плавителе дизайна Производственного объединения «Маяк».

Ключевые слова: остекловывание, малогабаритный плавитель, удаляемый плавитель, боросиликатное стекло, метод симплекс-планирования, термовискозиметрическое исследование, высокотемпературный вискозиметр

Для цитирования: Термовискозиметрические характеристики боросиликатных стекол для перспективной области легкоплавких составов, разрабатываемых для удаляемого малогабаритного плавителя дизайна Производственного объединения «Маяк» / С.М. Шайдуллин, А.Ю. Никулина, М.Б. Ремизов, П.В. Козлов // Известия Томского политехнического университета. Инжиниринг георесурсов. – 2024. – Т. 335. – № 3. – С. 50–60. DOI: 10.18799/24131830/2024/3/4569

UDC 621.039.736

DOI: 10.18799/24131830/2024/3/4569

Thermoviscosimetric characteristics of borosilicate glasses with regard to the promising area of low-melting compositions currently being developed for the removable small-scale melter designed by Mayak Production Association

S.M. Shaidullin^{1⊠}, A.Yu. Nikulina¹, M.B. Remizov¹, P.V. Kozlov^{1,2}

¹Mayak Production Association, Ozersk, Russian Federation ²Ozersk Institute of Technology – a branch of the National Research Nuclear University "Moscow Institute of Engineering and Physics", Ozersk, Russian Federation

[™]shaidullinsergey@yandex.ru

Abstract. Relevance. The need to obtain experimental data on dependence of thermoviscosimetric properties of the examined borosilicate glasses on temperature, in order to solve the problem of developing a low-melting composition of borosilicate glass for a small-scale melter designed by Mayak Production Association. Aim. To get the most complete characterization of the glasses under study using thermoviscometric measurements. Methods. Mathematical modelling, simplex-lattice design. Results and conclusions. One of the most effective methods of experiment planning, which allows, with a relatively small number of experiments, obtaining a mathematical model reflecting the dependence of the studied property of the mixture on the content of components in it, is the simplex experiment planning method. To simplify the solution of such a task, a group or groups of components are usually distinguished, in which the ratio of the mass fraction of the components does not change. In this article, three groups of components are taken - simulators of high-level radioactive waste, sodium and boron oxides, and glass frit. The authors have identified the most promising area, where the mass fraction of glass frit is from 67.5 to 75%, the mass fraction of sodium and boron is from 25 to 32.5% and the mass fraction of high-level waste components is from 0 to 20%. The paper presents the results of thermoviscometric measurements of 15 melts of low-melting borosilicate glasses of different compositions at temperatures ranging from 700 to 1,200°C. Using simplex-based mathematical models of experiment planning, domains of dependence of thermoviscosimetric characteristics of glass melts on their compositions were created. The authors identified the compositions of glass melts that are found within the viscosity limits determined as allowable for glass melt discharge during operation of the removable small-scale melter of Mayak Production Association design.

Keywords: vitrification, small-scale melter, removable melter, borosilicate glass, simplex planning, thermoviscosimetric study, high-temperature viscosimeter

For citation: Shaydullin S.M., Nikulina A.Yu., Remizov M.B., Kozlov P.V. Thermoviscosimetric characteristics of borosilicate glasses with regard to the promising area of low-melting compositions currently being developed for the removable small-scale melter designed by Mayak Production Association. *Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering*, 2024, vol. 335, no. 3, pp. 50–60. DOI: 10.18799/24131830/2024/3/4569

Введение

Метод остекловывания обеспечивает иммобилизацию жидких высокоактивных отходов (ВАО) в стеклоподобный компаунд для последующего безопасного длительного хранения и захоронения [1]. В настоящее время промышленные установки по остекловыванию ВАО работают в России, США, Франции, Великобритании, Японии и Китае [2]. Функционируют они с применением двух технологий остекловывания — в печах прямого электрического нагрева и в индукционных печах. Наиболее распространенной и отработанной является первая технология [3, 4].

Ориентировочно в 2028 г. на ФГУП «ПО «Маяк» планируется запуск нового комплекса остекловывания, универсального по составу отверждаемых жидких высокоактивных отходов [5]. Согласно разработанной концепции нового комплекса остекловывания в его составе предполагается использование двух эвакуируемых плавителей прямого электрического нагрева на алюмофосфатном стекле и эвакуируемого малогабаритного плавителя прямого электрического нагрева на боросиликатном стекле [6].

Стоит отметить, что характер добавок оказывает существенное влияние на свойства получаемого стекла [7, 8]. Силикатные стекла, содержащие значительные количества щелочных металлов, образуются при более низких температурах, но менее стойки к воздействию воды. Добавки оксидов цин-

ка, кальция или магния к щелочным силикатным стеклам повышают их устойчивость к действию воды лишь незначительно; добавки оксидов алюминия и бора — существенно [9]. Для включения отходов в боросиликатные стекла необходима температура выше 1200 °C [10]. Однако достаточно текучие системы получены лишь при 1350 °C [11, 12]. Оптимальные показатели вязкости боросиликатных стекол при данных температурах находятся в диапазоне от 25 до 100 дПа·с [13].

В целом работа направлена на подбор состава боросиликатного стекла с приемлемой степенью включения ВАО, показатели которого соответствуют нормам [14] и имеют рабочую температуру слива (диапазон вязкости) от 1000 до 1150 °С. Данный температурный диапазон связан с устойчивостью конструкционных материалов плавителя (например, температура плавления конструкционного материала электродов и сливной фильеры равна 1200 °С).

Целью данной работы является получение наиболее полных характеристик исследуемых стекол путем проведения термовискозиметрических измерений.

Для достижения поставленной цели решено применить симплекс-решетчатый план для получения в дальнейшем полинома, отражающего зависимость исследуемого свойства смеси от содержания в ней компонентов [15]. Этот метод позволяет при относительно малом числе опытов получить математическую модель в виде так называемого приведенного полинома, отражающего зависимость исследуемого свойства от содержания компонентов, входящих в стекло, для исследуемой области составов. Упрощение решения подобной задачи осуществляют путем выделения групп компонентов, внутри которых соотношение составных частей не меняется.

Следует отметить, что в реальности исследуемые стекла представляют собой сложную много-компонентную систему, включающую более 20 оксидов различных элементов. Поэтому получение математической модели, отражающей зависимость свойств стекол от всех компонентов стекла, представляет сложную задачу [16].

На основании опыта [17–19] использования симплекс-моделей в области исследований стеклоподобных материалов ранее установлено, что результаты эксперимента достаточно адекватно предсказывает модель четвертого порядка. Поэтому дальнейшее построение плана было основано на соответствующей симплекс-решетке.

В поставленной задаче оксиды имитатора высокоактивных отходов, включающие оксиды многовалентных катионов (Me_nO_m), объединили в одну группу. При таком подходе задача сводится к иссле-

дованию трехкомпонентной системы, которая включала в себя следующие компоненты или их группы:

- стеклофритта;
- оксиды имитатора высокоактивных отходов;
- смесь оксидов натрия и бора.

В составах стекол варьировали содержание компонентов ВАО, оксидов натрия и бора, а также стеклофритты, за счет пропорционального их снижения или увеличения. При этом внутри групп содержание компонентов меняется, а суммарное содержание всех компонентов в матрице остается неизменным.

На основании ранее проведенных работ [20, 21] были выбраны диапазоны концентрационных пределов компонентов имитаторов ВАО, оксидов натрия и бора, стеклофритты, которые обеспечивают легкоплавкость получаемых боросиликатных стекол. В исследуемых составах массовая доля стеклофритты варьировалась от 55 до 75 %, а массовая доля компонентов высокоактивных отходов в пересчете на оксиды и смеси оксидов натрия и бора — от 0 до 20 % и от 25 до 45 %, соответственно.

Состав стеклофритты в данной работе определяется оксидами кремния, алюминия, магния, кальция, титана и лития, за исключением смеси оксидов натрия и бора. Состав имитатора высокоактивных отходов состоял из оксидов стронция, циркония, молибдена, цезия, лантана, церия, неодима, никеля, хрома и железа. В некоторых составах имитатор высокоактивных отходов отсутствовал. В состав имитаторов ВАО были добавлены практически все элементы, которые соответствуют составу рафината первого цикла от переработки отработавшего ядерного топлива (ОЯТ) энергетических АЭС на ФГУП «ПО «Маяк», за исключением плутония и благородных металлов.

Диапазон содержания компонентов стеклофритты, оксидов натрия и бора и компонентов ВАО представлен в табл. 1.

Координаты точек симплекс-решетчатого плана для исследуемой области (относительный состав образцов) представлены в табл. 2.

В качестве функции отклика рассматривали по-казатели вязкости стекла.

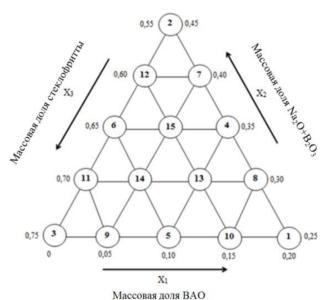
Для расчета параметров выбранной математической модели четвертого порядка требуется 15 экспериментальных точек. Их расположение на симплексе представлено на рис. 1.

По оси X_1 изменяется массовая доля компонентов имитатора ВАО в пересчете на оксиды, по оси X_2 — массовая доля смеси оксидов натрия и бора, по оси X_3 — массовая доля стеклофритты.

По полученным значениям исследуемого свойства с помощью матричного уравнения проводили расчет коэффициентов полинома для трехкомпонентной системы (1):

$$\begin{split} Y &= b_1x_1 + b_2x_2 + b_3x_3 + b_4x_1x_2 + b_5x_1x_3 + b_6x_2x_3 + \\ &\quad + b_7x_1x_2(x_1 - x_2) + b_8x_1x_3(x_1 - x_3) + \\ &\quad + b_9x_2x_3(x_2 - x_3) + b_{10}x_1x_2(x_1 - x_2)^2 + \\ &\quad + b_{11}x_1x_3(x_1 - x_3)^2 + b_{12}x_2x_3(x_2 - x_3)^2 + b_{13}x_1^2x_2x_3 + \\ &\quad + b_{14}x_1x_2x_3^2 + b_{15}x_1x_2^2x_3 \end{split} \tag{1}$$

Таблица 1. Диапазон содержания оксидов в стеклофритте, оксидов натрия и бора и компонентов ВАО


Table 1. Content of oxides in glass frit, sodium and boron oxides and of high-level waste (HLW) components

Оксиды/Oxides	Содержание оксидов, мас. % Content of oxides, wt %				
Компоненты сте	клофритты/Components of glass frit				
SiO ₂	43,8-59,8				
Al_2O_3	2,3-3,1				
Mg0	1,6-2,2				
CaO	3,9-5,3				
TiO_2	0,9-1,2				
Li ₂ O	2,6-3,5				
Оксиды натрия и бора/Sodium and boron oxides					
Na ₂ O	12,8-22,8				
B_2O_3	12,4-22,2				
Компоненты BAO/Components of HLW					
Sr0	0-2,3				
ZrO_2	0-3,2				
MoO_3	0-2,9				
Cs ₂ O	0-1,5				
La_2O_3	0-0,9				
CeO ₂	0-3,6				
Nd_2O_3	0-2,9				
NiO	0-0,4				
Cr_2O_3	0-0,5				
Fe_2O_3	0-1,9				

Таблица 2. Координаты точек симплекс-решетчатого плана для исследуемой области (относительный состав образцов)

Table 2. Coordinates of points of the simplex-lattice design for the examined group (relative sample composition)

Номер	Координаты точек симплекс-решетчатого плана Coordinates of points of the simplex-lattice design				
точки Point number	Компоненты ВАО в оксид- ной форме Components of HLW in oxide form	Na ₂ O+B ₂ O ₃	Стекло- фритта Glass frit		
1	0,20	0,25	0,55		
2	0	0,45	0,55		
3	0	0,25	0,75		
4	0,10	0,35	0,55		
5	0,10	0,25	0,65 0,65		
6	0	0,35			
7	0,05	0,40	0,55		
8	0,15	0,30	0,55		
9	0,05	0,25	0,70		
10	0,15	0,25	0,60		
11	0	0,30	0,70		
12	0	0,40	0,60		
13	0,10	0,30	0,60		
14	0,05	0,30	0,65		
15	0,05	0,35	0,60		

Puc. 1. Расположение экспериментальных точек на выбранной области составов стекол

Fig. 1. Layout of experimental points within the selected group of glass compositions

Затем подставляли полученные коэффициенты и проводили расчет значений данного свойства для всей области факторного пространства. При проведении расчетов шаг изменения содержания каждого компонента составлял 0.05 массовой доли.

Методическая часть Определение температуры варки

Схема осуществления синтеза боросиликатных стекол представлена на рис. 2.

Рис. 2. Схема синтеза боросиликатных стекол в лабораторных условиях

Fig. 2. Scheme of borosilicate glass synthesis under laboratory conditions

Приготовление стекол выполняли в соответствии со следующими этапами:

- 1) для приготовления стеклообразующих составов взвесили необходимые компоненты на аналитических весах;
- 2) все компоненты очень тщательно перемешали до получения однородного состава;

- 3) полученную смесь поместили в алундовые тигли и загрузили при помощи щипцов-держателей в силитовую печь, затем выставили температуру для кальцинирования. Кальцинировали в диапазоне температур от 300 до 800 °C, периодически контролируя процесс путем визуального осмотра содержимого тиглей. В зависимости от поведения шихты во время процесса подъем температуры осуществляли постепенно;
- 4) стеклообразующий кальцинат плавили в высокотемпературной муфельной печи SNOL 6,7/1300 [22] в диапазоне температур от 900 до 1150 °С. Поскольку для каждого состава стекла характерна индивидуальная температура варки, через каждые 50 °С проводили визуальный осмотр состояния содержимого тигля. После максимального превращения кальцината в расплав фиксировали температуру варки. Для полной гомогенизации расплав выдерживали при отмеченной температуре в течение 2 часов;
- 5) по истечении времени выключали печь и извлекали тигли при помощи щипцов-держателей, выливая расплав стекла на металлическую подложку из нержавеющей стали, в результате чего он быстро охлаждался при комнатной температуре. Таким образом получали закаленные стекла.

Термовискозиметрические измерения

Измерения вязкости стекол в режиме охлаждения проводили на лабораторном высокотемпературном вискозиметре. Прибор измеряет нагрузку и скорость сдвига с использованием вращающегося ротора, погруженного в расплав, при контролируемой температуре. Испытания проводятся или при контролируемой нагрузке (моменте), или при контролируемой скорости вращения ротора по изотермической или заданной пользователем температурной программе. Обработку полученных данных выполняли с использованием программного пакета WinTA 10.

Исследуемое стекло измельчали в металлической ступке. Насыпали от 30 до 32 г полученного порошка в тигель. Помещали тигель в печь, входящую в состав высокотемпературного вискозиметра, и ступенчато разогревали ее до температуры 1250 °C. Температура образца в печи составляет 1200 °C. При достижении температуры печи 1250 °C постепенно погружали ротор в расплав стекла. Затем включали программу измерения вязкости стекла. Регистрацию показаний вязкости расплава проводили при охлаждении печи до 700 °C.

После проведения измерений печь разогревали до температуры 1250 °C, постепенно извлекали ротор из расплава стекла. После полного освобождения ротора из расплава стекла печь выключали.

Для стекла каждого состава были получены зависимости вязкости стекла от температуры в диапазоне от 700 до 1200 °C.

Экспериментальная часть

Результаты определения температуры варки

Температуры варки составов приведены в табл. 3.

Таблица 3. Температура варки стекол различных составов

Table 3. Melting temperature for glasses of different compositions

Номер состава Composition number	Температура Тетрегаture, °C	Номер состава Composition number	Температура Тетрегаture, °С	Номер состава Composition number	Температура Тетрегаture, °C
1	1100	6	1050	11	1050
2	1050	7	1050	12	1050
3	1050	8	1100	13	1150
4	1050	9	1050	14	1150
5	1050	10	1100	15	1050

Из табл. 3 видно, что большинство стекол варились при температуре 1050 °C. Максимальная температура варки (1150 °C) наблюдается у составов стекол № 13 и 14. При заданных температурах варки закаленные стекла получились однородными.

Результаты термовискозиметрических измерений

Согласно технологическому регламенту отверждения высокоактивных растворов, образуемых от переработки ОЯТ методом остекловывания на заводе 235 ФГУП «ПО «Маяк», термовискозиметрические характеристики расплавов натрийалюмофосфатных стекол в рабочем диапазоне выработки стекла от 900 до 1100 °С должны находиться в пределах от 25 до 100 дПа·с, при этом вязкость в отмеченном диапазоне не должна резко изменяться. Нижний предел вязкости, помимо этого, определяется снижением коррозионного влияния расплавов в присутствии агрессивных компонентов на конструкционные материалы электропечи.

В ходе ранее проведенных исследовательских работ было определено, что указанный диапазон вязкости является оптимальным также для боросиликатных стекол при их варке и сливе в малогабаритном плавителе прямого электрического нагрева дизайна ФГУП «ПО «Маяк».

Температурная зависимость вязкости стекол представлена на рис. 3.

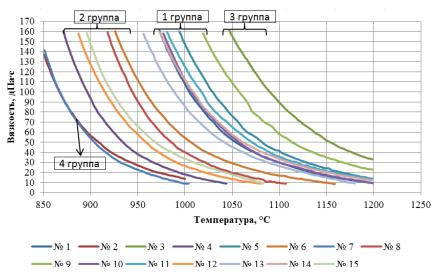


Рис. 3. Температурная зависимость вязкости стекол

Fig. 3. Temperature dependence of glass viscosity

Так как вязкость 25 дПа·с достигается не для всех стекол (исключение – состав № 3), то нижней границей принимали вязкость 35 дПа·с. Для данной вязкости значения температуры имелись для всех стекол.

Температурные границы оптимального диапазона вязкости для всех исследованных стекол приведены в табл. 4.

Таблица 4. Температурные границы оптимального диапазона вязкости стекол

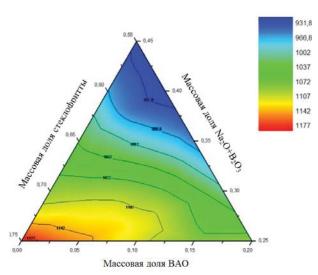
Table 4. Temperature limits of the optimum glass viscosity range

	Температурные границы оптимального					
Состав	диапазона вязкости стекол, °С					
	Temperature limits of the optimal range of glass					
стекла Glass	viscosity, °C					
composition	Верхняя граница	Нижняя граница				
Composition	(100 дПа∙с)	(35 дПа∙с)				
	Upper bound (100 dPa·s)	Lower bound (35 dPa·s)				
1	1005	1087				
2	867	932				
3	1090	1191				
4	897	957				
5	1030	1115				
6	958	1035				
7	868	923				
8	945	1010				
9	1058	1151				
10	1008	1084				
11	1018	1102				
12	916	981				
13	989	1073				
14	1009	1096				
15	923	997				

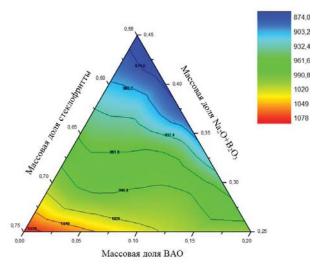
Примечание: минимальные значения выделены фоновой заливкой ячейки, максимальные – жирным шрифтом.
Note: the minimum values are highlighted by the background fill of the cell, the maximum values are in bold.

Минимальная температура, при которой достигалась нижняя граница оптимального диапазона вязкости расплавов (35 дПа·с), наблюдалась у стекла состава № 7 и составляла 923 °C, максимальная – у стекла состава № 3 (1191 °C).

Минимальная температура, при которой достигалась верхняя граница оптимального диапазона вязкости расплавов (100 дПа·с), наблюдалась у стекла состава № 2 и составляла 867 °C, максимальная – у стекла состава № 3 (1090 °C).


Из данных, представленных на рис. 3, следует, что в оптимальном диапазоне значений вязкости расплавов (от 35 до 100 дПа·с) исследованные составы стекол можно разделить на четыре основные группы:

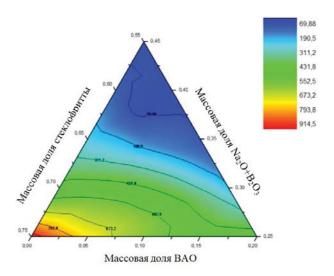
- составы № 1, 5, 10, 11, 13 и 14 обладают средней вязкостью по сравнению с остальными (при прочих равных условиях);
- составы № 4, 6, 8, 12 и 15, вискозиметрические кривые которых сдвинуты относительно первой группы примерно на 70–90 °С в сторону более низкой температуры;
- составы № 3 и 9, вискозиметрическая кривая которых сдвинута относительно первой группы на 60–70 °С в сторону более высокой температуры;
- составы № 2 и 7, вискозиметрическая кривая которых сдвинута относительно первой группы на 120–160 °С в сторону более низкой температуры.


Из рис. З видно, что при первом рассмотрении форма кривых (кривизна, угол наклона) весьма близки друг к другу и разница между ними определялась главным образом сдвигом относительно друг друга по температурной шкале. Данный факт свидетельствует об однородности зависимости из-

менения термовискозиметрических свойств в заданной области составов.

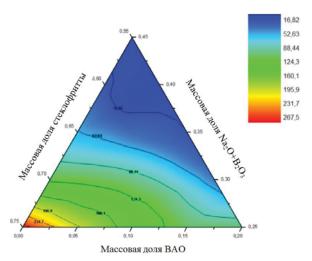
Используя значения температур, при которых вязкость достигает нижней и верхней границ, провели расчет коэффициентов приведенных полиномов. Измеренные величины температур приведены в табл. 4. Графические интерпретации математических моделей, отражающие изотермы вязкости при 35 и 100 дПа·с, представлены на рис. 4, 5.

Puc. 4. Изотермы вязкости при 35 дПа•с **Fig. 4.** Viscosity isotherms at 35 dPa•s



Puc. 5. Изотермы вязкости при 100 дПа•с **Fig. 5**. Viscosity isotherms at 100 dPa•s

Для построения следующих треугольников были использованы значения вязкости при температуре 900 и 1000 °С. Данные величины были взяты из-за того, что для каждого состава боросиликатного стекла из разработанного симплекс-решетчатого


плана эксперимента есть значение вязкости при температуре 1000 °C, а для большего значения температуры значение вязкости для некоторых составов стекол отсутствует. Значение вязкости при температуре 900 °C обусловлено тем, что построение диаграмм вязкости менее данной температуры (из-за низкой подвижности расплава стекол) для протекания технологического процесса не целесообразно.

Используя значения вязкости при температуре 900 и 1000 °C, провели расчет коэффициентов приведенных полиномов. Графические интерпретации математических моделей, отражающие вязкость стекол при температурах 900 и 1000 °C, представлены на рис. 6, 7.

Рис. 6. Вязкость боросиликатных стекол при температуре 900 $^{\circ}$ С

Fig. 6. Borosilicate glass viscosity at 900°C

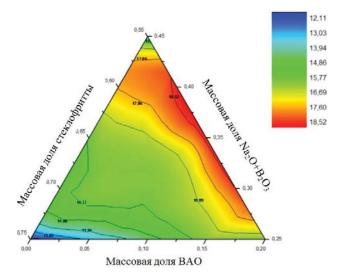
Рис. 7. Вязкость боросиликатных стекол при температуре $1000\,^{\circ}\mathrm{C}$

Fig. 7. Borosilicate glass viscosity at 1000°C

Из рис. 6 видно, что область стекол, у которых вязкость от 50 до 100 дПа·с (темно-синяя область) при температуре 900 °C, расположена там, где содержание оксидов натрия и бора от 35 до 45 %, стеклофритты – 55 %, ВАО – от 0 до 10 %. Из рис. 7 видно, что область с вязкостью от 35 до 100 дПа·с (от синей до зеленой области) при температуре 1000 °C расположена там, где содержание оксидов натрия и бора от 30 до 45 %, стеклофритты от 55 до 60 %, ВАО от 0 до 15 %.

Результаты определения относительной скорости изменения вязкости

В стекольной промышленности для оценки технологичности расплава стекла вводится такая характеристика, как его «длина» — температурный интервал выработки [23]. Это температурный интервал, в котором вязкость расплава лежит в заданном диапазоне. Обратная величина «длине» представляет собой скорость изменения вязкости. Поскольку вязкости исследованных стекол изменялись в очень широком диапазоне, то для возможности сравнения крутизны изменения их вязкости рассчитывали «длину» D, представляющую собой относительную скорость изменения вязкости в заданном относительном интервале изменения температур, по формуле (2)


$$D = (\Delta \eta \cdot T) / (\eta \cdot \Delta T). \tag{2}$$

Оценку относительной скорости изменения вязкости проводили при температуре T=950 °C, так как данная температура является средней в диапазоне температур от 900 до 1000 °C. Изменение вязкости ($\Delta\eta$) брали в представленном интервале температур (ΔT) от 900 до 1000 °C.

Графическая интерпретация математической модели, построенная на основании полученных данных, представлена на рис. 8.

Область с максимальными значениями относительной скорости изменения вязкости в данном исследовании находится там, где содержание стеклофритты от 55 до 65 %, содержание оксидов натрия и бора от 25 до 35 % и содержание ВАО от 10 до 20 %.

Сравнивая полученные диаграммы скорости изменения вязкости боросиликатных стекол с диаграммами скорости изменения вязкости фосфатных стекол [17], можно отметить тот факт, что боросиликатные стекла имеют менее выраженную зависимость изменения вязкости от температуры в отличие от фосфатных стекол, что дает возможность расширить температурный диапазон при сливе расплава стекла из печей разного типа (прямого электрического нагрева и индукционных печах).

Рис. 8. Скорость изменения вязкости боросиликатных стекол в диапазоне температур от 900 до $1000\,^{\circ}\mathrm{C}$

Fig. 8. Rate of borosilicate glass viscosity change in a temperature range from 900 to 1000°C

Выводы

- В рамках использованной модели определено распределение температур варки исследованных составов. Наиболее высокотемпературная область составов (1150 °C) соответствует составам № 13 и 14, в которых содержание стеклофритты от 60 до 65 %, компонентов ВАО от 5 до 10 % и 30 % оксидов натрия и бора.
- 2. Были рассчитаны коэффициенты приведенных полиномов для относительного изменения вязкости стекол при температуре 950 °C, и построена соответствующая графическая интерпретация математической модели. Область с максимальными значениями относительной скорости изменения вязкости находится там, где содержание стеклофритты от 55 до 65 %, содержание оксидов натрия и бора от 25 до 35 % и содержание ВАО от 10 до 20 %.
- 3. С использованием симплекс-планирования выбраны легкоплавкие составы боросиликатных стекол, обладающие необходимой вязкостью от 25 до 100 дПа·с в температурном интервале от 900 до 1000 °C. Оптимальная область составов боросиликатных стекол содержит оксиды натрия и бора от 35 до 45 %, стеклофритты от 55 до 60 %, компоненты ВАО от 0 до 15 %.
- Полученные экспериментальные данные показывают малую зависимость изменения вязкости боросиликатных стекол от температуры, что дает возможность расширить температурный диапазон при сливе расплава стекла из печей разного типа.

СПИСОК ЛИТЕРАТУРЫ

- Preparation and characterization of borosilicate glass waste form for immobilization of HLW from WWER spent nuclear fuel reprocessing / S.V. Stefanovsky, M.V. Skvortsov, O.I. Stefanovsky, B.S. Nikonov, I.A. Presniakov, I.S. Glazkova, A.G. Ptashkin // MRS Advances. – 2017. – Vol. 2. – Iss. 11: Scientific basis for nuclear waste management XL. – P. 583–589. DOI: 10.1557/adv.2016.622
- 2. Ожован М.И., Полуэктов П.П. Применение стекол при иммобилизации радиоактивных отходов // Безопасность окружающей среды. 2010. № 1. URL: https://www.atomic-energy.ru/ technology/33037 (дата обращения: 31.01.2024).
- 3. Raj K., Prasad K.K., Bansal N.K. Radioactivewaste management practices in India // Nuclear Engineering and Design. 2005. Vol. 236. № 7. P. 914–930. DOI: 10.1016/j.nucengdes.2005.09.036.
- Технология переработки ядерного наследия ФГУП «ПО «Маяк» накопленных высокоактивных гетерогенных отходов / Г.Ш. Баторшин, М.Б. Ремизов, П.В. Козлов, М.В. Логунов, С.В. Кустов // Вопросы радиационной безопасности. – 2015. – № 1. – С. 3–10.
- 5. Федеральная целевая программа «Обеспечение ядерной и радиационной безопасности на 2016-2020 годы и на период до 2035 года». URL: https://фцп-ярб.рф/ (дата обращения: 01.02.2024).
- 6. Шайдуллин С.М., Ремизов М.Б. и др. Новый эвакуируемый малогабаритный плавитель с донным сливом дизайна ФГУП «ПО «Маяк» для отверждения ВАО в боросиликатное стекло // Вестник Национального Исследовательского Ядерного Университета «МИФИ». 2021. Т. 10. № 2. С. 183–190.
- 7. High-temperature interaction of chromium-nickel steel with multicomponent matrix borosilicate materials / V.E. Eremyashev, G.G. Korinevskaya, A.S. Lebedev, I.A. Blinov // Russ. Metall. 2023. P. 722–729. DOI: 10.1134/S0036029523060174.
- High-temperature interaction of 08Cr18Ni10Ti chromium-nickel steel with model borosilicate waste form materials / V.E. Eremyashev, D.A. Zherebtsov, V.E. Zhivulin, G.G. Korinevskaya, A.S. Lebedev // Inorg. Mater. – 2021. – Vol. 57. – P. 980–986.
- 9. Heimann R.B. Nuclear fuel management and archaeology: are ancient glass indicator of long-term durability of man-made materials // Glass Technology. 1986. Vol. 23. № 3. P. 96–101. DOI: 10.1111/ijag.12277
- 10. Preparation and characterization of nano porous silica glasses for nuclear waste immobilization / Z. Hamnabard, M.R. Taghavi Nik, M.M. Mohebi, A. Yadollahi // Journal of Nuclear Science and Applications. − 2023. − Vol. 3. − № 2. − P. 27–31. DOI: 10.24200/jon.2023.0623.
- 11. Ojovan M.I., Lee W.E. An introduction to nuclear waste immobilisation. United Kingdom: Elsevier Ltd., 2014. 497 p. DOI: 10.1016/C2012-0-03562-4.
- 12. Competition for charge compensation in borosilicate glasses: wide-angle x-ray scattering and molecular dynamics calculations / L. Cormier, D. Ghaleb, J.-M. Delaye, G. Calas // Phys. Rev. 2000. B. 61 (14495). 14495 p. DOI: 10.1103/PhysRevB.61.14495.
- 13. Nuclear glass formulation, structure and properties / T. Advocat, J.-M. Delayve, S. Peuget, O. Pinet, X. Deschanels // Nuclear Waste Conditioning / Ed. by J.-F. Parisot. Paris: CEA Saclay and Group Moniteur, 2009. P. 33–49.
- 14. НП-019-15. Сбор, переработка, хранение и кондиционирование жидких радиоактивных отходов. Требования безопасности. Утв. Приказом Ростехнадзора от 25.06.2015 № 252. Введ. 2015-25-06. М.: Ростехнадзор России, 2015. 22 с.
- 15. Зедгинидзе И.Г. Планирование эксперимента для исследования многокомпонентных систем. М.: Наука, 1986. 390 с.
- 16. Новые идеи в планировании эксперимента / под ред. В.В. Налимова. М.: Наука, 1989. 336 с.
- 17. Медведев Г.М., Ремизов М.Б., Дубков С.А. Исследование свойств фосфатных и борофосфатных стекол // Вопросы радиационной безопасности. 2004. № 2. С. 15–23.
- 18. Поиск области оптимальных составов цезийалюмофосфатных стекол в системе Cs₂O–Li₂O–Na₂O применительно к технологии изготовления ИИИ / Е.А. Беланова, М.Б. Ремизов, А.Г. Харлова, С.С. Игнатовский // Пятая Российская школа по радиохимии и ядерным технологиям: Тезисы стендовых докладов. Озерск, 10–14 сентября 2012. Озерск: РИЦ ВРБ ФГУП «ПО «Маяк», 2012. С. 96–97.
- 19. Исследование взаимного влияния оксидов цезия, лития и натрия на свойства цезийалюмофосфатных стекол / Е.А. Беланова, М.Б. Ремизов, А.Г. Харлова, С.С. Игнатовский // Седьмая Российская конференция по радиохимии. Радиохимия-2012: Тезисы докладов. Димитровград, 15–19 октября 2012. С. 197.
- 20. Investigation of borosilicate glasses with simulated HLW components and determination of their chemical durability / S.M. Shaydullin, E.A. Belanova, P.V. Kozlov, M.B. Remizov, E.M. Dvoryanchikova // Chimica Techno Acta. − 2021. − Vol. 8 (1). − № 20218105. − P. 1–7. DOI: 10.15826/chimtech.2021.8.1.05.
- 21. Отработка процесса варки боросиликатных стекол с имитаторами компонентов ВАО и исследование их химической устойчивости / С.М. Шайдуллин, Е.А. Беланова, П.В. Козлов, М.Б. Ремизов, Е.М. Дворянчикова // Известия высших учебных заведений. Физика. 2021. Т. 10. № 2-2 (759). С. 148–154.
- 22. Инструкция по применению электропечи сопротивления лабораторной SNOL 6,7/1300. Тверь: ООО «СНОЛ-ТЕРМ», 2022. 38 с.
- 23. Сырицкая З.М. Стеклообразование в трехкомпонентных фосфатных системах // Сборник «Стеклообразное состояние». Минск: Звязда, 1964. С. 8–12.

Информация об авторах

Сергей Минуллович Шайдуллин, начальник группы ПО «Маяк», Россия, 456784, г. Озерск, пр. Ленина, 31. shaidullinsergey@yandex.ru; https://orcid.org/0000-0003-1764-2491

Анастасия Юрьевна Никулина, инженер-технолог ПО «Маяк», Россия, 456784, г. Озерск, пр. Ленина, 31. nastenka.chesnokova.97@mail.ru

Михаил Борисович Ремизов, кандидат технических наук, ведущий инженер-технолог ПО «Маяк», Россия, 456784, г. Озерск, пр. Ленина, 31. mirem@yandex.ru

Павел Васильевич Козлов, кандидат технических наук, доцент, начальник исследовательской лаборатории ПО «Маяк», Россия, 456784, г. Озерск, пр. Ленина, 31. kozlov_pavel@inbox.ru

Поступила в редакцию: 12.02.2024

Поступила после рецензирования: 19.02.2024

Принята к публикации: 22.02.2024

REFERENCES

- Stefanovsky S.V., Skvortsov M.V., Stefanovsky O.I., Nikonov B.S., Presniakov I.A., Glazkova I.S., Ptashkin A.G. Preparation
 and characterization of borosilicate glass waste form for immobilization of HLW from WWER spent nuclear fuel reprocessing.

 MRS Advances: Scientific Basis for Nuclear Waste Management XL, 2017, vol. 2, Iss. 11, pp. 583–589. DOI:
 10.1557/adv.2016.622.
- 2. Ozhovan M.I., Poluehktov P.P. The use of glasses in the immobilization of radioactive waste. *Environmental safety*, 2010, no. 1. Available at: https://www.atomic-energy.ru/ technology/33037 (accessed on: 31.01.2024).
- 3. Raj K., Prasad K.K., Bansal N.K. Radioactivewaste management practices in India. *Nuclear Engineering and Design*, 2005, vol. 236, no. 7, pp. 914–930. DOI: 10.1016/j.nucengdes.2005.09.036.
- 4. Batorshin G.Sh., Remizov M.B., Kozlov P.V., Logunov M.V., Kustov S.V. The technology of processing the nuclear legacy of FSUE "PA "Mayak" accumulated highly active heterogeneous waste. *Radiation Safety Issues*, 2015, no. 1, pp. 3–10. (In Russ.)
- 5. The Federal target program «Ensuring nuclear and radiation safety for 2016-2020 and for the period up to 2035». (In Russ.) Available at: https://xn----btb4bfrm9d.xn-p1ai/ (accessed: 1 February 2024).
- Shaydullin S.M., Remizov M.B. A new removable small-scale melter equipped with the bottom drain and designed by Mayak PA for solidification of HLW in borosilicate glass. *Bulletin of the National Research Nuclear University "MEPhI"*, 2021, vol. 10, no. 2, pp. 183–190. (In Russ.)
- Eremyashev V.E., Korinevskaya G.G., Lebedev A.S. Blinov I.A. high-temperature interaction of chromium–nickel steel with multicomponent matrix borosilicate materials. *Russ. Metall*, 2023, pp. 722–729. DOI: https://doi.org/10.1134/S0036029523060174
- 8. Eremyashev V.E., Zherebtsov D.A., Zhivulin V.E., Korinevskaya G.G., Lebedev A.S. High-temperature interaction of 08Cr18Ni10Ti chromium-nickel steel with model borosilicate waste form materials. *Inorg. Mater.*, 2021, vol. 57, pp. 980–986.
- Heimann R.B. Nuclear fuel management and archaeology: are ancient glass indicator of long-term durability of man-made materials. Glass Technology, 1986, vol. 23, no. 3, pp. 96–101. DOI: 10.1111/ijag.12277
- Hamnabard Z., Taghavi Nik M.R., Mohebi M.M., Yadollahi A. Preparation and characterization of nano porous silica glasses for nuclear waste immobilization. *Journal of Nuclear Science and Applications*, 2023, vol. 3, no. 2, pp. 27–31. DOI: 10.24200/jon.2023.0623.
- 11. Ojovan M.I., Lee W.E. An introduction to nuclear waste immobilisation. United Kingdom, Elsevier Ltd., 2014. 497 p. DOI: 10.1016/C2012-0-03562-4.
- 12. Cormier L., Ghaleb D., Delaye J.-M., Calas G. Competition for charge compensation in borosilicate glasses: wide-angle x-ray scattering and molecular dynamics calculations *Phys. Rev.*, 2000, B 61 (14495), 14495 p. DOI: 10.1103/PhysRevB.61.14495.
- 13. Advocat T., Delayve J.-M., Peuget S., Pinet O., Deschanels X. Nuclear glass formulation, structure and properties. *Nuclear Waste Conditioning*. Ed. by J.-F. Parisot. Paris, CEA Saclay and Group Moniteur, 2009. pp. 33–49.
- 14. NP-019-15. Collection, processing, storage and conditioning of liquid radioactive waste. Appr. by Rostechnadzor order No. 252 of 25.06.2015. Introd. 2015-25-06. Moscow, Rostechnadzor Rossii Publ., 2015. 22 p. (In Russ.)
- 15. Zedginidze I.G. Experiment planning for the study of multicomponent systems. Moscow, Nauka Publ., 1986. 390 p. (In Russ.).
- 16. New ideas in experiment planning. Ed. by V.V. Nalimova. Moscow, Nauka Publ., 1989. 336 p. (In Russ.)
- 17. Medvedev G.M., Remizov M.B., Dubkov S.A. Investigation of properties of phosphate and borophosphate glasses. *Voprosy radiatsionnoy bezopasnosti*, 2004, no. 2, pp. 15–23. (In Russ.)
- 18. Belanova E.A., Remizov M.B., Kharlova A.G., Ignatovsky S.S. Search for the optimal compositions of cesium-aluminium phosphate glasses in the Cs2O–Li2O-Na2O system as applied to manufacturing of ionizing sources. *Abstracts of poster presentations of the Fifth Russian School on radiochemistry and nuclear technologies*. Ozersk, September 10–14, 2012. Ozersk, RITs VRB FGUP "PO "Mayak" Publ., 2012. pp. 96–97. (In Russ.)
- 19. Belanova E.A., Remizov M.B., Kharlova A.G., Ignatovsky S.S. Investigation of mutual influence of cesium, lithium and sodium oxides on properties of cesium-aluminium phosphate glasses. *Radiochemistry 2012. Abstracts of reports of the Seventh Russian Conference on Radiochemistry*. Dimitrovgrad, October 15–19, 2012. p. 197. (In Russ.)
- Shaydullin S.M., Belanova E.A., Kozlov P.V., Remizov M.B., Dvoryanchikova E.M. Investigation of borosilicate glasses with simulated HLW components and determination of their chemical durability. *Chimica Techno Acta*, 2021, vol. 8 (1), p. 20218105. DOI: 10.15826/chimtech.2021.8.1.05.
- 21. Shaydullin S.M., Belanova E.A., Kozlov P.V., Remizov M.B., Dvoryanchikova E.M. Optimization of the process of borosilicate glass melting using simulated HLW components and study of chemical stability of these glasses. *News of higher educational institutions. Physics*, 2021, vol. 10, no. 2-2 (759), pp. 148–154. (In Russ.)
- 22. Laboratory electric resistance furnace SNOL 6,7/1300 operation manual. Tver, LLC "SNOL-TERM" Publ., 2022. 38 p.
- 23. Syritskaya Z.M. Glass formation in three-component phosphate systems. *The glassy state (collection)*. Minsk, Zvyazda Publ., 1964. pp. 8–12. (In Russ.)

Information about the authors

Sergey M. Shaidullin, Head of the Group Mayak PA, 31, Lenin avenue, Ozersk, 456784, Russian Federation. shaidullinsergey@yandex.ru, https://orcid.org/0000-0003-1764-2491

Anastasia Yu. Nikulina, Process Engineer, Mayak PA, 31, Lenin avenue, Ozersk, 456784, Russian Federation. nastenka.chesnokova.97@mail.ru

Mikhail B. Remizov, Cand. Sc., Leading Process Engineer, Mayak PA, 31, Lenin avenue, Ozersk, 456784, Russian Federation. mirem@yandex.ru

Pavel V. Kozlov, Cand. Sc., Associate Professor, Head of the Research Laboratory, Mayak PA, 31, Lenin avenue, Ozersk, 456784, Russian Federation. kozlov_pavel@inbox.ru

Received: 12.02.2024 Revised: 19.02.2024 Accepted: 22.02.2024 УДК 62-6

DOI: 10.18799/24131830/2024/3/4506 Шифр специальности ВАК: 2.1.3

Сравнительный анализ двухмерного и трехмерного моделирования процессов теплопереноса при работе газового инфракрасного излучателя в помещении

Б.В. Борисов, А.В. Вяткин, В.И. Максимов[™], Т.А. Нагорнова

Национальный исследовательский Томский политехнический университет, Россия, г. Томск □elf@tpu.ru

Аннотация. Актуальность. Для сокращения затрат на отопление в больших помещениях локальные рабочие зоны предлагается обогревать системами на основе газовых инфракрасных излучателей, способных направлять радиационный тепловой поток. Однако широкое применение газовых инфракрасных излучателей тормозится имеющимися сложностями с предварительной оценкой перемещения конвективно-радиационных тепловых потоков, от чего зависит количество и расположение отопительных приборов. Предварительная оценка осложняется необходимостью в ряде случаев одновременным 3D-моделированием множества физических процессов. Для сокращения временных затрат на расчеты необходимо оценить возможность замены трудоемкого 3D-моделирования методикой расчета системы отопления с применением газовых инфракрасных излучателей на основе 2D-подхода. Цель: доказать, что применение двухмерной модели рассматриваемых процессов позволяет получить основные характеристики теплового режима помещения, дающие возможность заменить пространственное моделирование. Объект: система отопления с газовым инфракрасным излучателем «светлого» типа и система приточно- вытяжной вентиляции в качестве системы воздухообмена. Методы: двухмерное и трехмерное математическое моделирование процессов сопряженного теплопереноса методом конечных элементов. Математическое моделирование проводилось в программной среде COMSOL Multiphysics с использованием модулей: «The Heat Transfer in Fluids Interface», «Surface-to-Surface Radiation» и «The Turbulent Flow, k-ε Interface». Результаты. Приведены результаты математического моделирования, выполненные в трехмерной и двухмерной постановках. Представлено распределение температур по воздуху и ограждающим конструкциям, а также линии тока нагреваемого и нагретого воздуха в объеме помещения. Проведено сравнение результатов двумерного и трехмерного моделирования, по результатам которого установлено удовлетворительное сходство рассчитанных средних температуры воздуха в локальной рабочей зоне. Различие составило менее 2 °C для разных пространственных подходах к моделированию.

Ключевые слова: газовый инфракрасный излучатель, объект теплоснабжения, конвективный теплообмен, тепловые условия, локальная рабочая зона

Благодарности: Работа выполнена при финансовой поддержке Российского Научного Фонда (проект № 20-19-00226).

Для цитирования: Сравнительный анализ двухмерного и трехмерного моделирования процессов теплопереноса при работе газового инфракрасного излучателя в помещении / Б.В. Борисов, А.В. Вяткин, В.И. Максимов, Т.А. Нагорнова // Известия Томского политехнического университета. Инжиниринг георесурсов. – 2024. – Т. 335. – № 3. – С. 61–69. DOI: 10.18799/24131830/2024/3/4506

UDC 62-6

DOI: 10.18799/24131830/2024/3/4506

Comparative analysis of two-dimensional and three-dimensional modeling of heat transfer during operation of a gas infrared heater indoor

B.V. Borisov, A.V. Vyatkin, V.I. Maksimov[⊠], T.A. Nagornova

National Research Tomsk Polytechnic University, Tomsk, Russian Federation

□elf@tpu.ru

Abstract. Relevance. It is proposed to heat local work areas with systems based on gas infrared heaters, capable of directing radiative heat flow to reduce heating costs in large premises. However, the widespread use of gas infrared heaters is hampered by the existing difficulties with the preliminary assessment of convective-radiative heat flows movement, on which the number and location of heating devices depends. The preliminary assessment is complicated by the need in some cases for 3D modeling of complex physical processes. It is necessary to evaluate the possibility of replacing labor-intensive 3D modeling with a method for calculating a heating system using gas infrared emitters based on a 2D approach to reduce the time spent on calculations. Aim. To prove that the use of a two-dimensional model of the processes under consideration makes it possible to obtain the main characteristics of the thermal regime of the premises, making it possible to replace spatial modeling. Objects. Heating system with a light-type gas infrared heater and an air exchange system. Methods. Twodimensional and three-dimensional mathematical modeling of conjugate heat transfer processes using the finite element method. Mathematical modeling was carried out in the COMSOL Multiphysics software environment using the modules: "Heat $Transfer\ Interface\ in\ Liquids",\ "Radiation\ between\ Surfaces"\ and\ "Turbulent\ Flow,\ k-\epsilon\ Interface".\ \textit{Results.}\ The\ article\ presents$ the results of mathematical modeling performed in three-dimensional and two-dimensional formulations. The distribution of temperatures in the air and enclosing structures, as well as the flow lines of heated air and air, which was heating, in the volume of the premise are presented. The results of two-dimensional and three-dimensional modeling were compared. Satisfactory similarity of the calculated average air temperatures in the local working area was established based on the results. The difference was less than 2°C for different spatial modeling approaches.

Keywords: gas infrared heater, heat supply facility, convective heat exchange, thermal conditions, local work area

Acknowledgements: This work is supported by the Russian Science Foundation (grant no. 20-19-00226).

For citation: Borisov B.V., Vyatkin A.V., Maksimov V.I., Nagornova T.A. Comparative analysis of two-dimensional and three-dimensional modeling of heat transfer during operation of a gas infrared heater indoor. *Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering*, 2024, vol. 335, no. 3, pp. 61–69. DOI: 10.18799/24131830/2024/3/4506

Введение

Повышение энергетической эффективности зданий является одной из самых значимых проблем в промышленном секторе [1, 2]. Основная причина низкой энергетической эффективности промышленных зданий связана с недостаточной теплоизоляцией ограждающих конструкций. Из-за больших объемов промышленных помещений на их отопление требуется большое количество теплоты [3]. Зачастую обустроенные рабочие места в промышленных помещениях занимают меньшую часть общей площади [4, 5].

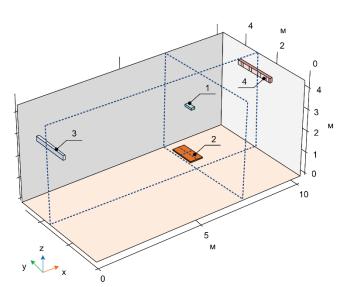
Наиболее подходящей системой отопления для промышленных помещений является использование локальной системы отопления, в частности применение лучистых систем отопления [6–8]. В качестве основного оборудования лучистых систем отопления используются газовые инфракрасные излучатели (ГИИ) [9, 10].

Однако из-за сложных физических процессов, по сравнению с традиционными системами отопления, возникают проблемы с определением параметров воздуха в локальной рабочей зоне и во всем помещении. Кроме того, необходимо наличие системы воздухообмена в помещении для удаления продуктов горения, выделяющихся при работе ГИИ. Система воздухообмена может оказывать дополнительное влияние на формирование теплового режима в локальной рабочей зоне [11–18].

Таким образом, существует необходимость в создании методики расчета системы отопления на базе ГИИ. Для оценки работы системы отопления локальной рабочей зоны необходимо использовать трехмерную модель, учитывающую геометрию представленного помещения и расположенного внутри оборудования. Однако сложность использования трехмерной модели связана с высокими требованиями к вычислительным мощностям и временем расчетам. Таким образом, необходимо упростить модель, например, использовать двумерную постановку для возможности проведения предварительных расчетов.

Цель работы – доказать, что при расчете по двухмерной модели получаются результаты основных характеристик теплового режима помещения, удовлетворительно согласующиеся с результатами, полученными при трехмерном моделировании.

Численные исследования


Для проведения математического моделирования в трехмерной постановке рассмотрено помещение известных размеров $L_x=10\times L_y=5\times L_z=4,4$ м. Толщина ограждающих конструкций (стен, пола и потолка) данного помещения принята как $L_{wall}=0,1$ м. В рассматриваемом помещении выделена локальная рабочая зона, в которой находится горизонтальная панель (размеры $Lx_{tb}=0,6$ м, $Ly_{tb}=1,2$ м, $Lz_{tb}=0,05$ м), имитирующая оборудование. Поверхность горизонтальной панели располагалась на оси симметрии ГИИ на высоте 760 мм от пола. Выделенная локальная рабочая зона обогревается ГИИ (размеры $Lx_{GIE}=0,164$ м, $Ly_{GIE}=0,4$ м, $Lz_{GIE}=0,1$ м), расположенным на высоте 2,975 м. В помещении также расположена система воздухообмена. Местораспо-

ложение элементов рассматриваемой области соответствует наиболее типичному варианту их размещения в реальном производственном помещении, схема которого представлена на рис. 1. При расчете воздух считается диатермичной средой, а все поверхности (стен, пола, потолка, ГИИ и оборудования) — непрозрачными серыми. Основные характеристики материалов элементов (объектов) конструкции приведены в таблице.

Таблица. Теплофизические свойства материалов ограждающих конструкций и панели, использовавшихся в экспериментах [19]

Table. Thermophysical properties of building envelope materials and panels used in experiments [19]

Объект Object	Материал Material	Плотность р, кг м- ³ Density, kg m- ³	Удельная теплоемкость c , Дж κr^{-1} K^{-1} , Specific heat, J $k g^{-1}$ K^{-1}	Коэффициент теплопроводности λ, Вт K ⁻¹ м ⁻¹ Thermal conductivity coefficient, W K ⁻¹ m ⁻¹	Степень черноты Emissivity, ε
Пол, потолок и стены Floor, ceiling and walls	бетон concrete	2500	840	1,55	0,95
Горизонтальная панель Horizontal panel	сосна pine	520	2300	0,15	0,4

Рис. 1. Схема области решения задачи: 1 – ГИИ, 2 – горизонтальная панель, 3 – зона притока воздуха, 4 – зона оттока воздуха. Пунктирными линиями выделены рассматриваемые сечения

Fig. 1. Problem solution area: 1 – gas infrared heater (GIH), 2 – horizontal panel, 3 – air inflow area, 4 – air outflow area. The sections under consideration are highlighted with dotted lines

Математическое моделирование проведено в рамках модели теплопереноса, описанной в [19, 20].

Математическое моделирование проводилось в программной среде COMSOL Multiphysics с использованием модулей: «The Heat Transfer in Fluids Interface», «Surface-to-Surface Radiation» и «The Turbulent Flow, k-є Interface». Трехмерное математическое моделирование процессов сопряженного теплопереноса — методом конечных элементов для интегрирования уравнений. Параметры радиационного теплового потока рассчитывались с использованием модуля «Surface-to-Surface Radiation» для серых поверхностей с соответствующими степенями черноты в рамках зонной модели с учетом средних угловых коэффициентов [19, 20].

Для уравнений движения воздуха на границах раздела сред «воздух – ограждающие конструкции» задавалось условие прилипания. Для моделирования приточной вентиляции в области притока воздуха задавался его расход и температура, а для вытяжной вентиляции – постоянное давление, равное атмосферному. В качестве начальной температуры всех объектов расчета принималось значение 7 °С, считалось, что поступающий приточный воздух обладает температурой 7 °С.

При решении задач в разделе «Mesh» среды COMSOL Multiphysics по всему рассматриваемому объему задавалась программно-предопределенная сетка «Extra coarse» со сгущением около ГИИ, горизонтальной поверхности и системы вентиляции до сетки «Normal».

Параметры нестационарного решения задачи задавались в разделе «Study» среды COMSOL Multiphysics. Расчет проводился на каждой десятой минуте рассматриваемого времени. Решение дифференциальных уравнений в каждый момент времени проводилось методом BDF.

Для расчета поставленных задач использовался персональный компьютер с процессором $Intel @Core^{TM} i7-8700 KCPU@3.70 GHz \times 12$ и оперативной памятью $32 \ \Gamma \delta$.

Установлено, что при использовании одних и тех же вычислительных мощностей на расчет задачи в трехмерной постановке затрачивается около 120 минут, а на расчет задачи в двухмерной постановке затрачивается около 30 минут.

Моделирование трехмерным подходом позволяет определить распределение температур воздуха и поверхностей (рис. 2, a), а также движение воздушных масс в пространстве (рис. 2, δ , 3).

При внимательном рассмотрении векторного поля скоростей (рис. 2, δ) можно отметить тенденции локальных и глобальных циркуляционных течений, определяемые более наглядно при анализе линий тока (рис. 3).

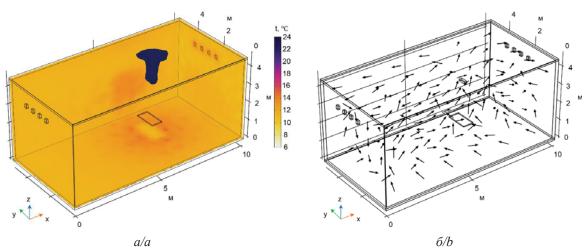
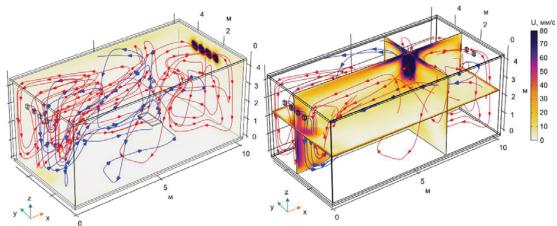



Рис. 2. Распределение температур на поверхностях ограждающих конструкций и область с температурой воздуха 24 °C (а) и векторное поле движения воздуха в рассматриваемой области (б) через 60 минут работы газового инфракрасного нагревателя и системы воздухообмена

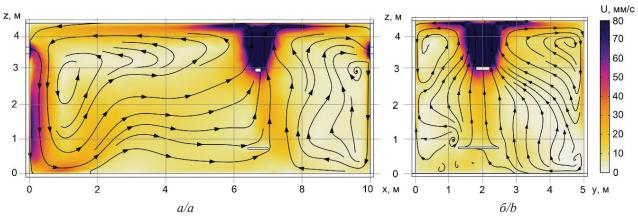
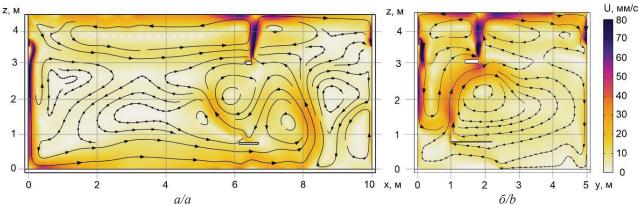

Рис. 3. Движение нагреваемого (синяя линия) и нагретого (красная линия) воздуха в рассматриваемой области через 60 минут работы газового инфракрасного нагревателя и системы воздухообмена

Fig. 3. Movement of cold (blue line) and warm (red line) air in the area under consideration after 60 minutes of gas infrared heater and supply and exhaust ventilation operation

Представленные результаты расчетных полей скоростей и температур формируются к начинающемуся квазистационарному режиму нагрева помещения, примерно через 60 минут работы ГИИ. В дальнейшем, как показывают расчеты, топологически расчетные поля практически не изменяются, а изменения (крайне незначительные) отмечаются только в медленно подрастающих значениях температур. Так, максимальные значения температур, определяемые после начала квазистационарного режима, изменяются примерно на 14 %.


При сравнении линий тока в характерных сечениях, полученных при трехмерном (рис. 4) и двумерных аналогах расчетов (рис. 5) отмечаются некоторые различия. Трехмерное моделирование дает

более «плавные» и более «определенные» в пространстве циркуляционные потоки с сохранением общей тенденции к генерации восходящих и нисходящих потоков воздуха. Наблюдающиеся различия в геометрии и числе циркуляционных течений, полученные в расчетах при 3D- и 2D-моделировании объясняются отсутствием дополнительного измерения при двумерном моделировании. В этом случае течение становится более стесненным и генерирует дополнительные циркуляционные структуры. В то время как при 3D-подходе в районе горизонтальной панели воздух имеет возможность перемещаться сразу в трех плоскостях (рис. 2, 6, 3), что способствует формированию более плавных и однозначных потоков в области горизонтальной панели.

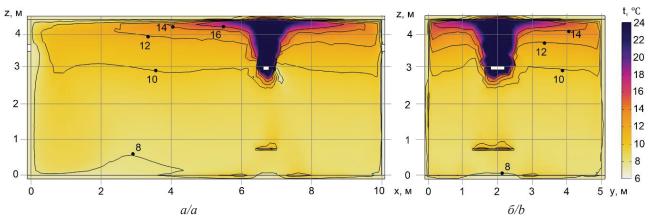

Рис. 4. Поля скоростей и линии тока в сечениях XZ (a) и YZ (a), полученные в результате трехмерного моделирования, через 60 минут работы газового инфракрасного нагревателя и системы воздухообмена

Fig. 4. Velocity fields and streamlines for XZ section (a) and YZ section (b), obtained as a result of three-dimensional modeling, after 60 minutes of gas infrared heater and supply and exhaust ventilation operation

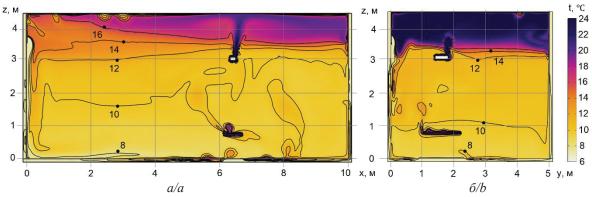

Рис. 5. Поля скоростей и линии тока в сечениях XZ (a) и YZ (a), полученные в результате двухмерного моделирования, через 60 минут работы газового инфракрасного нагревателя и системы воздухообмена

Fig. 5. Velocity fields and streamlines for XZ section (a) and YZ section (b), obtained as a result of two-dimensional modeling, after 60 minutes of gas infrared heater and supply and exhaust ventilation operation

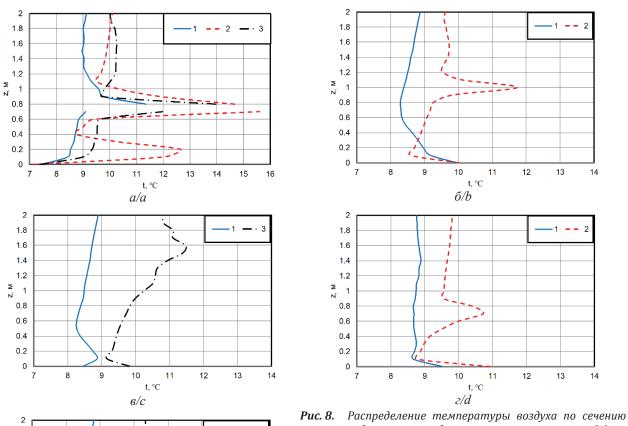

Рис. 6. Поля температур в сечениях XZ (a) и YZ (a), полученные в результате трехмерного моделирования, через 60 минут работы газового инфракрасного нагревателя и системы воздухообмена

Fig. 6. Temperature fields for XZ section (a) and YZ section (b), obtained as a result of three-dimensional modeling, after 60 minutes of gas infrared heater and supply and exhaust ventilation operation

Рис. 7. Поля температур в сечениях XZ (a) и YZ (a), полученные в результате двухмерного моделирования, через 60 минут работы газового инфракрасного нагревателя и системы воздухообмена

Fig. 7. Temperature fields for XZ section (a) and YZ section (b), obtained as a result of two-dimensional modeling, after 60 minutes of gas infrared heater and supply and exhaust ventilation operation

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

10

∂/e

t, °C

12

13

Рис. 8. Распреоеление температуры возоуха по сечению под газовым инфракрасным нагревателем (а) на расстоянии 20 см слева (б, в) и справа (г, д) от панели через 60 минут работы газового инфракрасного нагревателя и системы воздухообмена для случаев: 1 – трехмерного моделирования; 2 – двумерного моделирования в осях ХZ; 2 – двумерного моделирования в осях YZ

Fig. 8. Air temperature distribution over the section under the gas infrared heater (a) at a distance of 20 cm to the left (b, c) and to the right (d, e) of the panel after 60 minutes of gas infrared heater and supply and exhaust ventilation operation for cases: 1 – three-dimensional modeling; 2 – two-dimensional modeling in XZ axes; 3 – two-dimensional modeling in YZ axes

Отмечается согласие в получаемой тенденции формирования нисходящих холодных и восходящих нагретых потоков воздуха, возникающих при теплообмене с поверхностями разных температур (холодных ограждающих конструкций и более нагретой горизонтальной панели). Значительное согласие наблюдается как в номинальных значениях, так и в градиентах скоростей.

Отмеченное согласие результатов 3D- и 2Dрасчетов полей скоростей сопровождается согласием и полей температур (рис. 6, 7). Полученные температурные поля представлены в диапазоне температур от 6 до 24 °C для более наглядной демонстрации нагрева большего объема отапливаемого помещения. Результаты, представленные на анализируемых рисунках, свидетельствуют об удовлетворительном согласии температурных полей, полученных при 3D- и 2D-моделировании. Удовлетворительное согласие трехмерных и двухмерных расчетов демонстрируют и распределения температур по высоте в характерных зонах - на расстоянии 0,2 м со всех сторон от горизонтальной панели (рис. 8). Именно в этой зоне предполагается размещение работающих в помещении сотрудников.

Анализ полученных распределений показывает, что температура в рабочей зоне в среднем не отличается более чем на 2 °С при разных подходах моделирования. Таким образом, можно сделать вывод о том, что рассматриваемые модели имеют удовлетворительную сходимость результатов и могут быть применены для расчетов. Данное согласие получено с учетом применения масштабного коэффициента согласия $k_{\rm m}$ = $l_{\rm n}/L_{\rm n}$, на который при 2D-

моделировании умножаются плотности тепловых потоков на поверхностях ограниченных размеров по направлению n, нормальному к рассматриваемым плоскостям. В данном соотношении $l_{\rm n}$ — размер плоскости теплообмена в направлении n, а $L_{\rm n}$ — размер помещения в направлении n (ширина помещения 5 м для XZ плоскости или длина помещения 10 м для YZ соответственно).

Данный масштабный коэффициент предназначен согласовать трехмерные объекты теплообмена, существующие в реальности, с двухмерным представлением, при котором в расчетах предполагается рассмотрение слоя глубиной по нормали к рассматриваемой плоскости в 1 м.

Заключение

По результатам сравнительного анализа расчетов, проведенных с применением 3D- и 2Dподходов, получено удовлетворительное согласие расчетных полей основных параметров нагрева помещения системой отопления на основе газового инфракрасного излучателя. В статье приводятся типичные результаты из значительного количества проведенных вариативных расчетов. Предлагается для большинства предварительных оценок тепловых режимов нагрева использовать более экономные по временным затратам расчеты в двумерной постановке. В тех случаях, когда в помещении наличествуют существенно трехмерные геометрические объекты, необходимо предварительно использовать трехмерную постановку. И далее оценить возможность 2D-моделирования процессов

СПИСОК ЛИТЕРАТУРЫ

- 1. Evaluation of the energy efficiency class of an industrial facility: a rating system and a scale of sustainable development / N. Verstina, N. Solopova, N. Taskaeva, T. Meshcheryakova, N. Shchepkina // Sustainability. 2023. Vol. 15. 15799.
- 2. Stanchev P., Vacheva G., Hinov N. Evaluation and measures for improving the energy efficiency of medium-sized enterprises // 2023 Eight Junior Conference on Lighting (Lighting). Sozopol, Bulgaria, 23–25 September 2023. P. 1–4.
- 3. Toward integrated redevelopment of industrial buildings: a general intervention protocol and a case study / N. Banti, C. Ciacci, V. Di Naso, F. Bazzocchi // Colloqui.AT.e 2023 In Transizione: sfide e opportunità per l'ambiente costruito. Bari, Italy, 14–17 July 2023. P. 595–611.
- 4. Shen P., Wang Z., Ji Y. Exploring potential for residential energy saving in New York using developed lightweight prototypical building models based on survey data in the past decades // Sustainable Cities and Society. 2021. Vol. 66. 102659.
- 5. Gourlis G., Kovacic I. Building Information Modelling for analysis of energy efficient industrial buildings a case study // Renewable and Sustainable Energy Reviews. 2017. Vol. 68. Pt. 2. P. 953–963.
- 6. Трифонов А.П., Тарасова Е.В., Савенков Ф.И. Отопление промышленных помещений. Котельное оборудование и его экологичность // Молодежь и системная модернизация страны: сборник научных статей 5-й Международной научной конференции студентов и молодых ученых. Курск, 19–20 мая 2020. Курск: Юго-Западный государственный университет, 2020. С. 379–382.
- Бамбетова К.В., Кабжихов А.А. Отопление промышленных помещений и зданий // Вопросы науки и образования. 2021. – № 7 (132). – С. 29–31.
- Протасова А.Е. и др. Организация отопления промышленных помещений // Вестник Современных Исследований. 2018. – № 12.10 (27). – С. 322–328.
- 9. Редько А.Ф., Болотских Н.Н. Совершенствование систем отопления производственных помещений газовыми трубчатыми инфракрасными нагревателями // Энергосбережение. Энергетика. Энергоаудит. 2010. Т. 74. № 4. С. 36–47
- 10. Повышение коэффициента полезного действия лучистой системы отопления с применением в качестве отопительных приборов «светлых» газовых инфракрасных излучателей / Н.И. Куриленко, М.Н. Чекардовский, Л.Ю. Михайлова, А.Н. Ермолаев // Инженерный вестник Дона. − 2015. − Т. 38. − № 4. − С. 73–82.

- 11. Võsa K.-V., Ferrantelli A., Kurnitskia J. A combined analytical model for increasing the accuracy of heat emission predictions in rooms heated by radiators // Journal of Building Engineering. 2019. Vol. 23. P. 291–300.
- 12. Ghasemi M., Toghraie D., Abdollahi A. An experimental study on airborne particles dispersion in a residential room heated by radiator and floor heating systems // Journal of Building Engineering. 2020. Vol. 32. 101677.
- 13. Dudkiewicz E., Jezowiecki J. The influence of orientation of a gas-fired direct radiant heater on radiant temperature distribution at a work station // Energy Build. 2011. Vol. 43. № 6. P. 1222–1230.
- 14. Dudkiewicz E., Jezowiecki J. Measured radiant thermal fields in industrial spaces served by high intensity infrared heater // Energy Build. 2009. Vol. 41. № 1. P. 27–35.
- 15. Analysis of the influence of the gas infrared heater and equipment element relative positions on industrial premises thermal conditions / B.V. Borisov, A.V. Vyatkin, G.V. Kuznetsov, V.I. Maksimov, T.A. Nagornova // Energies. − 2022. − Vol. 15. − № 22. − 8749. − P. 1–20. DOI: 10.3390/en15228749
- 16. Анализ диапазонов повышения энергоэффективности газового инфракрасного излучателя / Б.В. Борисов, А.В. Вяткин, В.И. Максимов, Т.А. Нагорнова, С.О. Салагаев // Известия Томского политехнического университета. Инжиниринг георесурсов. 2023. Т. 334. № 2. С. 70–80. DOI: 10.18799/24131830/2023/2/3930
- 17. Численный анализ влияния конфигурации системы воздухообмена на температурный режим локальных рабочих зон в помещении с газовым инфракрасным / Б.В. Борисов, А.В. Вяткин, Г.В. Кузнецов, В.И. Максимов, Т.А. Нагорнова // Известия Томского политехнического университета. Инжиниринг георесурсов. − 2023. − Т. 334. − № 3. − С. 7–16. DOI: 10.18799/24131830/2023/3/3962
- 18. Математическое моделирование теплопереноса в помещении с газовым инфракрасным излучателем, системой воздухообмена и локальным ограждением рабочей зоны / Б.В. Борисов, А.В. Вяткин, Г.В. Кузнецов, В.И. Максимов, Т.А. Нагорнова // Сибирский журнал индустриальной математики. 2023. Т. 26. № 1. С. 20–32.
- 19. DOE fundamentals handbook. Thermodynamics, heat transfer and fluid flow. Washington: US Department of Energy, 1992. Vol. 2. P. 4–57.
- 20. Hesaraki A., Huda N. A comparative review on the application of radiant low-temperature heating and high-temperature cooling for energy, thermal comfort, indoor air quality, design and control // Sustainable Energy Technologies and Assessments. 2022. Vol. 49. 101661.

Информация об авторах

Борис Владимирович Борисов, доктор физико-математических наук, профессор НОЦ И.Н. Бутакова Инженерной школы энергетики Национального исследовательского Томского политехнического университета, Россия, 634050, г. Томск, пр. Ленина, 30. byborisov@tpu.ru

Александр Витальевич Вяткин, аспирант НОЦ И.Н. Бутакова Инженерной школы энергетики Национального исследовательского Томского политехнического университета, Россия, 634050, г. Томск, пр. Ленина, 30. avv47@tpu.ru; https://orcid.org/0000-0003-2238-7974

Вячеслав Иванович Максимов, кандидат технических наук, доцент НОЦ И.Н. Бутакова Инженерной школы энергетики Национального исследовательского Томского политехнического университета, Россия, 634050, г. Томск, пр. Ленина, 30. elf@tpu.ru; https://orcid.org/0000-0002-0908-8358

Татьяна Александровна Нагорнова, кандидат технических наук, доцент НОЦ И.Н. Бутакова Инженерной школы энергетики Национального исследовательского Томского политехнического университета, Россия, 634050, г. Томск, пр. Ленина, 30. tania@tpu.ru

Поступила в редакцию: 18.12.2023

Поступила после рецензирования: 15.01.2024

Принята к публикации: 21.02.2024

REFERENCES

- 1. Verstina N., Solopova N., Taskaeva N., Meshcheryakova T., Shchepkina N. Evaluation of the energy efficiency class of an industrial facility: a rating system and a scale of sustainable development. *Sustainability*, 2023, vol. 15, 15799.
- Stanchev P., Vacheva G., Hinov N. Evaluation and measures for improving the energy efficiency of medium-sized enterprises. 2023 Eight Junior Conference on Lighting (Lighting). Sozopol, Bulgaria, September 23–25, 2023. Bulgaria, IEEE Publ., 2023. pp. 1–4.
- 3. Banti N. Toward integrated redevelopment of industrial buildings: a general intervention protocol and a case study. *Colloqui. AT. e 2023-In Transizione: sfide e opportunità per l'ambiente costruito*. Bari, Italy, July 14–17, 2023. Italy, FLORE Publ., 2023. pp. 595–611.
- 4. Shen P., Wang Z., Ji Y. Exploring potential for residential energy saving in New York using developed lightweight prototypical building models based on survey data in the past decades. *Sustainable Cities and Society*, 2021, vol. 66, 102659.
- 5. Gourlis G., Kovacic I. Building Information Modelling for analysis of energy efficient industrial buildings a case study. *Renewable and Sustainable Energy Reviews*, 2017, vol. 68, pp. 953–963.
- 6. Trifonov A.P., Tarasova E.V., Savenkov F.I. Industrial space heating. Boiler equipment and its environmental friendliness. Youth and system modernization of the country. *Proc. of the 5th International scientific conference of students and young scientists*. Kursk, May 19–20 2020. Kursk, The Southwest State University Publ., 2023, pp. 379–382. (In Russ.)
- 7. Bambetova K.V., Kabzhikhov A.A. Heating of industrial space and buildings. *Voprosy nauki i obrazovaniya*, 2021, vol. 132, no. 7, pp. 29–31. (In Russ.)

- 8. Protasova A.E. Industrial space heating. Vestnik Sovremennyh Issledovanij, 2018, vol. 27, no 12.10, pp. 322–328. (In Russ.)
- 9. Redko A.F., Bolotskikh N.N. Improvement of heating systems of industrial space with gas tube infrared heaters. *Energosberezhenie. Energetika. Energoaudit*, 2010, vol. 74, no. 4, pp. 36–47. (In Russ.)
- Kurilenko N.I., Chekardovskij M.N., Mikhaylova L.Yu., Ermolaev A.N. Increase of a radiant heating system efficiency when applying «light» gas infrared emitters as heating units. *Inzhenerny vestnik Dona*, 2015, vol. 38, no. 4, pp. 73–82. (In Russ.)
- 11. Võsa K.V., Ferrantelli A., Kurnitski J. A combined analytical model for increasing the accuracy of heat emission predictions in rooms heated by radiators. *Journal of Building Engineering*, 2019, vol. 23, pp. 291–300.
- 12. Ghasemi M., Toghraie D., Abdollahi A. An experimental study on airborne particles dispersion in a residential room heated by radiator and floor heating systems. *Journal of Building Engineering*, 2020, vol. 32, 101677.
- 13. Dudkiewicz E., Jezowiecki J. The influence of orientation of a gas-fired direct radiant heater on radiant temperature distribution at a work station. *Energy Build.*, 2011, vol. 43, no 6, pp. 1222–1230.
- 14. Dudkiewicz E., Jeżowiecki J. Measured radiant thermal fields in industrial spaces served by high intensity infrared heater. *Energy Build.*, 2009, vol. 41, no 1, pp. 27–35.
- 15. Borisov B.V., Vyatkin A.V., Kuznetsov G.V., Maksimov V.I., Nagornova T.A. Analysis of the influence of the gas infrared heater and equipment element relative positions on industrial premises thermal conditions. *Energies*, 2023, vol. 15, no. 22, pp. 1–20, 8749. DOI: 10.3390/en15228749
- Borisov B.V., Vyatkin A.V., Maksimov V.I., Nagornova T.A., Salagaev S.O. Analysis of energy efficiency increasing ranges for gas infrared heater. *Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering*, 2023, vol. 334, no. 2, pp. 70–80. (In Russ.) DOI: 10.18799/24131830/2023/2/3930
- 17. Borisov B.V., Vyatkin A.V., Kuznetsov G.V., Maksimov V.I., Nagornova T.A. Numerical analysis of the influence of the air exchange system configuration on the temperature regime of local working areas in a room with a gas infrared heater. *Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering*, 2023, vol. 334, no. 3, pp. 7–16. (In Russ.) DOI: 10.18799/24131830/2023/3/3962
- 18. Borisov B.V., Vyatkin A.V., Kuznetsov G.V., Maksimov V.I., Nagornova T.A. Mathematical modeling of heat transfer in in a room with a gas infrared emitter, system of ventilation and local enclosure of the working area. *Sibirskiy zhurnal industrialnoy matematiki*, 2023, vol. 26, no. 1, pp. 20–32. (In Russ.)
- 19. DOE fundamentals handbook. Thermodynamics, heat transfer and fluid flow. Washington, US Department of Energy, DOE-HDBK-1012/2–92, 1992. Vol. 2, pp. 4–57.
- Hesaraki A., Huda N. A comparative review on the application of radiant low-temperature heating and high-temperature cooling for energy, thermal comfort, indoor air quality, design and control. Sustainable Energy Technologies and Assessments, 2022, vol. 49, 101661.

Information about the authors

Boris V. Borisov, Dr. Sc., Professor, National Research Tomsk Polytechnic University, 30, Lenin avenue, Tomsk, 634050, Russian Federation. byborisov@tpu.ru

Alexander V. Vyatkin, Postgraduate Student, National Research Tomsk Polytechnic University, 30, Lenin avenue, Tomsk, 634050, Russian Federation. avv47@tpu.ru; https://orcid.org/0000-0003-2238-7974

Vyacheslav I. Maksimov, Cand. Sc., Associate Professor, National Research Tomsk Polytechnic University, 30, Lenin avenue, Tomsk, 634050, Russian Federation. elf@tpu.ru; https://orcid.org/0000-0002-0908-8358

Tatiana A. Nagornova, Cand. Sc., Associate Professor, National Research Tomsk Polytechnic University, 30, Lenin avenue, Tomsk, 634050, Russian Federation. tania@tpu.ru

Received: 18.12.2023 Revised: 15.01.2024 Accepted: 21.02.2024 УДК 662.62:662.75:662.94.069 DOI: 10.18799/24131830/2024/3/4472 Шифр специальности ВАК: 2.4.6

Влияние кавитационной обработки водоугольных суспензий на средний размер капель в струе

Д.В. Гвоздяков $^{1\boxtimes}$, А.В. Зенков 1 , Л.И. Мальцев 2 , Ю.С. Поджаров 2

¹ Национальный исследовательский Томский политехнический университет, Россия, г. Томск ² Институт теплофизики им. С.С. Кутателадзе СО РАН, Россия, г. Новосибирск

[⊠]dim2003@tpu.ru

Аннотация. Актуальность. Переход к экологически чистым энергетическим технологиям, обусловленный современными требованиями к охране окружающей среды, предполагает поиск и создание новых источников энергии, в том числе и топлив. Одним из способов удовлетворения этих требований и сохранения на прежнем уровне показателей по выработке энергии тепловыми электростанциями является переход на многокомпонентные топлива. Наиболее перспективными и доступными котельными топливами с точки зрения энергетики, экологии и экономики являются водоугольные суспензии. В связи с этим изучение свойств и характеристик таких топлив во многих странах является актуальным. Цель: проведение экспериментальных исследований степени влияния продолжительности кавитационной обработки водоугольных топлив на средний размер капель в струе после распыления пневматической форсункой и обоснование эффективности такого подхода для практического применения. Объект. Экспериментальные исследования проводились с водоугольными суспензиями на основе длиннопламенного угля (марки Д) с добавлением 10 и 20 % по массе пирогенетической жидкости. В качестве образца сравнения использовалась суспензия, состоящая из угля и воды, без добавления пирогенетической жидкости. Методы. Приготовление водоугольных суспензий осуществлялось в роторном гидродинамическом генераторе кавитации. Для распыления водугольных суспензий использовалась пневматическая форсунка с внешним смешением. Средний размер капель топлива после распыления определялся при помощи метода Interferometric Particle Imaging. Результаты и выводы. Эксперименты по приготовлению водоугольных суспензий в составе с пирогенетической жидкостью показали рост значения динамической вязкости суспензии. Увеличение продолжительности обработки суспензий в роторном гидродинамическом генераторе кавитации позволяет снизить вязкость на 54 %. Средний размер капель в струе при этом снижается на 22 %.

Ключевые слова: водоугольная суспензия, пирогенетическая жидкость, вязкость, распыление, средний размер капель

Благодарности: Исследование выполнено при поддержке Российского научного фонда (проект № 22-79-00124).

Для цитирования: Влияние кавитационной обработки водоугольных суспензий на средний размер капель в струе / Д.В. Гвоздяков, А.В. Зенков, Л.И. Мальцев, Ю.С. Поджаров // Известия Томского политехнического университета. Инжиниринг георесурсов. – 2024. – Т. 335. – № 3. – С. 70–80. DOI: 10.18799/24131830/2024/3/4472

UDC 662.62:662.75:662.94.069

DOI: 10.18799/24131830/2024/3/4472

Effect of cavitation treatment of coal-water slurries on a droplet average size in a jet

D.V. Gvozdyakov[⊠], A.V. Zenkov, L.I. Maltzev, Yu.S. Podzharov

¹ National Research Tomsk Polytechnic University, Tomsk, Russian Federation ² Institute of Thermophysics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation

[⊠]dim2003@tpu.ru

Abstract. *Relevance.* Transition to environmentally friendly energy technologies, due to modern requirements for environmental protection, involves the search and creation of new energy sources, including fuels. One of the ways to meet these requirements and maintain the same level of energy production by thermal power plants is the transition to multicomponent fuels. The most promising and affordable boiler fuels from the point of view of energy, ecology and economy are coal-water slurries. In this regard, the study of the properties and characteristics of such fuels is relevant in many countries. *Aim.* Experimental studies of the effect of the coal-water fuel cavitation treatment duration on a droplet average size in a jet after spraying with a pneumatic nozzle and substantiation of the efficiency of such approach for practical application. *Object.* Experimental studies were carried out with coal-water slurries based on long-flame coal (D grade) with addition of 10 and 20 wt % by weight of pyrogenetic liquid. A slurry, consisting of just coal and water, without the addition of pyrogenetic liquid, was used as a reference sample. *Method.* The coal-water slurries were prepared in a rotary hydrodynamic cavitation generator. A pneumatic nozzle with external mixing was used to spray the coal-water slurries. The average size of fuel droplets after spraying was determined using the Interferometric Particle Imaging method. *Results.* Experiments on the preparation of coal-water slurries with pyrogenetic liquid showed an increase in the dynamic viscosity of the fuel. An increase in the duration of treatment of the slurries in a rotary hydrodynamic cavitation generator reduced the viscosity by 54%. The average size of droplets in the jet was reduced by 22%.

Keywords: coal-water slurry, pyrogenetic liquid, viscosity, spraying, average droplet size

Acknowledgments: The research was supported by the Russian Science Foundation (project no. 22-79-00124).

For citation: Gvozdyakov D.V., Zenkov A.V., Maltzev L.I., Podzharov Yu.S. Effect of cavitation treatment of coal-water slurries on a droplet average size in a jet. *Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering*, 2024, vol. 335, no. 3, pp. 70–80. DOI: 10.18799/24131830/2024/3/4472

Введение

Распыление жидкостей является неотъемлемой частью многих технологических процессов [1]. Нанесение лакокрасочных покрытий, распыление топлив в камеры сгорания двигателей, пылеподавление на производствах, опрыскивание растений, создание устройств распыления. И это лишь небольшая часть отраслей науки и техники, где от распыления зависит эффективность производственных процессов и исследований. Несмотря на множество экспериментальных и теоретических исследований параметров распыления различных жидкостей, например, [2–7], характеристики струй продолжают исследовать. Одной из причин является развитие способов и методов мгновенной регистрации газокапельной струи. Современные методы регистрации внесли значительный вклад в технологические процессы, основанные или зависящие от распыления жидкостей. При этом одной из важнейших характеристик газокапельной струи, от которой существенно зависит качество и эффективность процесса распыления, является размер

Немаловажным фактором, определяющим распределение капель жидкости по размерам в струе, являются свойства распыляемой жидкости. Известно, например, [9, 10], что при распылении жидкостей с различной вязкостью одним устройством распыления процесс диспергирования протекает по-разному. Форма, размер, количество и механизмы дробления капель будут разными [11]. В одном случае, распыляя маловязкую жидкость (вода, спирты и т. д.), дисперсный состав струи может быть достаточно однородным даже в непосред-

ственной близости к устью сопла. В другом случае, распыляя более вязкую жидкость (масло, мазут, нефть, водоугольные топлива), даже на значительном расстоянии от форсунки в струе будут присутствовать крупные фрагменты жидкости различных форм и объемов. При этом их наличие может быть не только в ядре струи, но и на ее периферийной области

На практике, в частности в энергетике, очень важным является распыление жидких топлив, в том числе многокомпонентных. Последним исследователи уделяют особое внимание. Одной из главных причин является то, что такие топлива могут стать альтернативой традиционным - уголь, газ, мазут. Наиболее перспективными являются водоугольные суспензии (ВУС). ВУС представляет жидкое смесевое топливо, состоящее из измельченного угля, воды и добавок поверхностно-активных веществ (ПАВ) [12]. Широкую популярность такое топливо получило во второй половине XX в. как альтернатива традиционным котельным топливам - нефть, мазут [13]. При этом следует учитывать, что водоугольное топливо (ВУТ) можно сжигать в котлах совместно с вышеуказанными топлива, тем самым снижая объем потребления дорогого мазута или нефти. Преимуществами ВУТ принято считать: пожароопасность - отсутствует сухая угольная пыль [14], экологичность – при сжигании в атмосферу выбрасывается меньше соединений вредных веществ из-за присутствия паров воды [15] (низкая, в сравнении с углем, температура горения за счет испарения влаги), независимость от поставок нефти – месторождения угля более равномерно распределены по континентам [16], показатели логистики - возможность доставлять на тепловую электростанцию автомобильным, железнодорожным и морским транспортом, по трубопроводам, стабильность - можно хранить достаточно длительное время без опасности расслоения, характерного для жидкостей в составе со взвешенными твердыми частицами [17], низкая стоимость – в качестве твердой компоненты можно использовать отходы (фильтр-кек) угольнообогатительных фабрик [18], универсальность - можно использовать на мазутных и пылеугольных котлах. Несмотря на внушительный перечень положительных качеств водоугольных топлив, есть причины, сдерживающие их широкое внедрение в теплоэнергетику. Одной из главных является процесс распыления, обеспечивающий мелкодисперсную струю.

Процесс сжигания водоугольного топлива в камерах сгорания котлов осуществляется аналогично нефти, мазуту, дизельному топливу, угольной пыли после распыления. При этом характеристики распыления ВУС отличаются от характеристик распыления вышеуказанных топлив. Во-первых, после распыления ВУС, независимо от типа устройства распыления, как правило, образуются достаточно крупные капли [19]. Объясняется это прежде всего высокой вязкостью водоугольного топлива, например, в сравнении с котельным мазутом. Последний, как известно, предварительно нагревается с целью снизить вязкость. В случае с ВУС термическая подготовка окажет незначительное влияние. Поэтому на практике вязкость ВУС при распылении достаточно высокая. Например, в [20] отмечается, что рекомендуемое значение динамической вязкости водоугольного топлива для распыления составляет 1000-1200 мПа·с при скорости сдвига шпинделя вискозиметра 100 с⁻¹. Это достаточно высокое значение, в сравнении с вязкостью разогретого мазута – 20–50 мПа·с. В результате высоких значений вязкости диаметр капель ВУС после распыления достаточно велик. В сравнении с угольной пылью, размер капли ВУС превышает средний размер частиц угольной пыли, так как одиночная капля ВУС состоит из нескольких частиц угля. Таким образом, после распыления ВУТ характерный размер капель в струе может достигать нескольких миллиметров. Во-вторых, немаловажным в процессе распыления ВУС является его структура. Предварительная гомогенизация ВУС позволяет обеспечить высокую эффективность распыления, исключить засорение топливного канала, камеры смешения и сопла форсунки.

В зависимости от типа форсунки после истечения из сопла ВУС перемешивается с распыляющим агентом или уже представляет смесь топлива и распыляющего агента. В некоторых случаях вблизи сопла возможна практически однофазная струя

топлива. Как правило, после истечения ВУС из соплового канала форсунки происходит ее разрушение на крупные фрагменты, как правило, за счет воздействия распыляющего агента, сил сопротивления окружающей среды, центробежной силы (капли ВУС при движении хаотично вращаются). Далее в струе, преимущественно за счет воздействия последних двух сил, происходит разрушение капель ВУС на мелкие. Проведенные нами ранее многочисленные экспериментальные исследования, например, [21-26], характеристик распыления различных ВУС и водоугольных топлив форсункой с внутренним смешением жидкости и распыляющего агента показали неплохую эффективность такого устройства распыления. Основным преимуществом является то, что дисперсный состав струи будет определяться параметрами распыления. Но при этом в струе все равно будут присутствовать крупные (характерным размером более 500 мкм) капли ВУС.

Учитывая вышеуказанные факторы, оказывающие влияние на характеристики распыления водоугольных топлив, целью настоящей работы является проведение экспериментальных исследований влияния продолжительности кавитационной обработки водоугольных топлив на средний размер капель в струе после распыления пневматической форсункой и обоснование эффективности такого подхода для практического применения.

Компоненты водоугольных суспензий и методики проведения исследования

В качестве твердой компоненты ВУС использовался длиннопламенный уголь. Размер фракции составлял менее 120 мкм. Вода бралась из системы водоснабжения. В качестве третьей компоненты ВУС использовалась пирогенетическая жидкость. Последняя является легким продуктом пиролиза древесины. Основные характеристики компонентов ВУС представлены ниже.

Уголь: зольность -11,5 %; выход летучих -40,5 %; содержание углерода -56,4 %; содержание водорода -4 %; суммарная доля кислорода, азота и серы -15,8 %; влажность -11,5 %, низшая теплота сгорания -21,9 МДж/кг.

Водопроводная вода: плотность -997,0 кг/м 3 ; pH-6.8.

Пирогенетическая жидкость: плотность — $1044,0 \text{ кг/м}^3, \text{ pH} - 2,3,$ низшая теплота сгорания (Q) — 2,8 МДж/кг.

При проведении экспериментальных исследований использовались три исходный состава ВУС. Характерным различием водоугольных суспензий являлось время их приготовления в роторном гидродинамическом генераторе кавитации (РГДГК), разработанном в Институте Теплофизики им. С.С.


Кутателадзе Сибирского отделения Российской академии наук [27]. Эффективность приготовление ВУС таким способом обусловлена тем, что частицы угля подвергаются вторичному измельчению в процессе гомогенизации суспензии. Продолжительность (τ) кавитационной обработки каждого состава ВУС составляла 27 и 90 с, соответственно. В табл. 1 представлены компонентные составы водоугольных суспензий.

Таблица 1. Cocmaв исследованных суспензий **Table 1.** Compositions of the studied slurries

Состав Composition	Уголь Coal		Вода Water	τ, c				
Марка/Grade Сод		Сод	цержание, мас. %/Content, wt %					
1			0	50				
2	Длиннопла-	50	10	40	27			
3	менный (Д)		20	30				
4	Long-flame		0	50				
5	(D)	50	50	50	50	10	40	90
6			20	30				

Динамическая вязкость (η) ВУС измерялась при помощи ротационного вискозиметра [27].

Экспериментальные исследования характеристик распыления ВУТ выполнены на специализированном стенде (рис. 1). Установка предназначена для изучения характеристик струй жидких и сухих топлив после распыления, изучения форсунок и различных распылителей. Распыление ВУС осуществлялось при помощи пневматической форсунки (рис. 2), предназначенной для распыления водоугольных топлив. Данная форсунка разработана Институтом Теплофизики им. С.С. Кутателадзе Сибирского отделения Российской академии наук.

Puc. 1. Экспериментальный стенд **Fig. 1.** Experimental stand

Puc. 2. Форсунка **Fig. 2.** Nozzle

Средний размер капель (δ) определялся при помощи метода IPI (Interferometric Particle Imaging) [28-30]. Метод применяется для измерения мгновенных пространственных распределений размеров (от 10 до 1000 мкм) капель в потоке. Основан на восстановлении размеров капель по частоте интерференционной картины от точечных источников света, возникающих на сферических каплях жидкости при освещении их мощным лазерным импульсом света (лазерный нож). Интерференционные образы видны в виде узких полосок по причине того, что в методе ІРІ используются цилиндрические линзы, сжимающие эти образы по одной из координат, для предотвращения их пространственного перекрытия. Регистрируется расфокусированное изображение этих же точечных источников, а точнее, картина интерференции света от них.

Метод IPI позволяет регистрировать мгновенные распределения диаметров капель в плоском поперечном сечении потока [31-33]. Этот метод достаточно хорошо себя зарекомендовал при исследованиях газокапельного течения при атомизации жидкого углеводородного топлива (дизельное топливо и отработанное моторное масло - непрозрачная жидкость) струей перегретого пара и воздуха [28]. Согласно теории рассеяния Ми [34], свет, отраженный и преломленный сферической поверхностью капли, создает на изображениях капель интерференционные полосы, частота которых пропорциональна диаметру капли. Цифровой анализ полученных изображений позволяет определить положение и размер капель. Отмечается, например, [35, 36], что метод ІРІ позволяет регистрировать как сферические, так и несферические капли. При измерении размера непрозрачных капель (какими являются капли ВУС), рассеянный свет содержит

только свет, который отражается от их поверхности, то есть излучатели, используемые для описания капли, распределяются только в положениях, которые непосредственно освещаются светом. Это означает, что рассеянный свет, собранный под углом рассеяния, содержит достаточно информации о размере капли с учетом утверждения [34] о том, что частота интерференционных полос пропорциональна диаметру капли.

На рис. 3 схематически показаны сечения и области струи, в которых осуществлялась регистрация капель для определения их размеров.

Высокоскоростная регистрация струи осуществлялась в ее областях на расстояниях 0–100, 101–225 и 226–350 мм (рис. 3, a) от сопла форсунки по продольной оси Z. Учитывая, что размер области регистрации кросскорреляционной камеры составляет 35×35 мм (S), а струя в сечении имеет форму треугольника, для получения более полной информации о среднем размере капель ВУС ее сечение разделялось на множество областей S, в которых осуществлялась их регистрация кросскорреляционной камерой (рис. 3, 6). В процессе обработки полученных результатов при помощи программного обеспечения ActualFlow учитывались только зафиксированные в струе капли (рис. 3, 6).

Процесс распыления всех составов ВУС (табл. 1) осуществлялся при давлении ВУС 0,05 МПа и давлении воздуха 0,3 МПа.

Результаты экспериментов

Вязкость топлив является одним из важнейших параметров, определяющих характеристики их

распыления [37]. Поэтому первостепенно нами приведены исследования изменения вязкости ВУС. Жидкие топлива, в том числе и ВУС, обладающие относительно небольшими значениями вязкости (не более 1200 мПа·с [20]) лучше подвержены диспергированию в среде окислителя в условиях высоких температур камер сгорания. На рис. 4 представлено изменение динамической вязкости исследованных составов ВУС при фиксированной скорости сдвига шпинделя вискозиметра в зависимости от количества пирогенетической жидкости в составе суспензии и продолжительности обработки в роторном гидродинамическом генераторе кавитации.

Результаты экспериментов показали, что динамическая вязкость ВУС изменяется с ростом концентрации пирогенетической жидкости и временем обработки суспензии в роторном гидродинамическом генераторе кавитации. Добавка в состав ВУС 10 % по массе пирогенетической жидкости приводит к росту значения динамической вязкости на 28 % в сравнении двухкомпонентным водоугольным топливом (рис. 4). Продолжительность подготовки суспензии при этом составляет 27 с. При увеличении количества пирогенетической жидкости в составе суспензии до 20 % по массе значение вязкости ВУС увеличивается на 79 % (в сравнении с двухкомпонентным водоугольным топливом). Зависимость, иллюстрирующая влияние пирогенетической жидкости на значение динамической вязкости ВУС, позволяет сделать вывод о том, что вязкость суспензии существенно увеличивается (рис. 4).

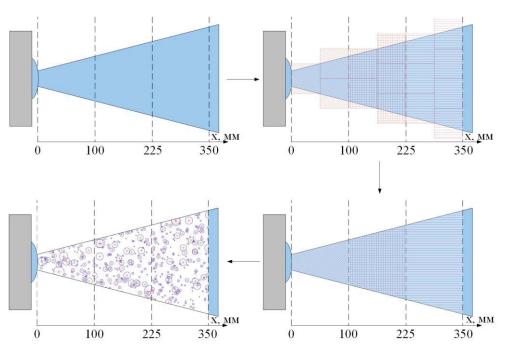
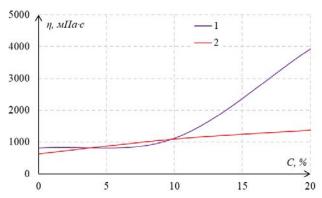



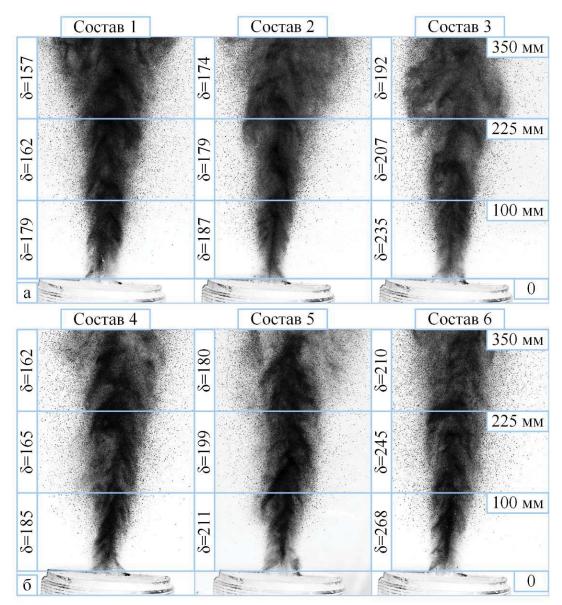
Рис. 3. Сечения и области регистрации капель ВУС

Fig. 3. Cross-sections and areas of registration of coal-water suspension (CWS) droplets

Рис. 4. Изменения динамической вязкости ВУС в зависимости от продолжительности обработки в роторном гидродинамическом генераторе кавитации: 1 – 27 c; 2 – 90 c

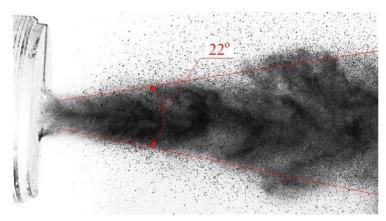
Fig. 4. Changes in CWS dynamic viscosity depending on duration of treatment in the rotary hydrodynamic cavitation generator: 1 – 27 s; 2 – 90 s

Объясняется это тем, что за 27 с кавитационной обработки ВУС суспензия еще не совсем гомогенизирована, в ней могут присутствовать агломераты суспензии, образованные за счет содержания остаточных углеводородов пиролизного масла в виде крупных капель. Увеличение времени обработки ВУС в роторном гидродинамическом генераторе кавитации до 90 с иллюстрирует существенное снижение значения динамической вязкости ВУС. Так, для двухкомпонентного водоугольного топлива значение динамической вязкости суспензии снижается на 22 %, в сравнении с ВУС, обрабатываемой 27 с в РГДГК. Для трехкомпонентной ВУС (с 20 % по массе пирогенетической жидкости) при более продолжительной обработке в роторном гидродинамическом генераторе кавитации вязкость снижается лишь на 65 %, в сравнении с ВУС, обрабатываемой 27 с в РГДГК. Зависимость, иллюстрирующая изменение динамической вязкости ВУС в течение 90 с, имеет более равномерный вид (практически прямолинейная зависимость). Изменение динамической вязкости водоугольной суспензии составляет 54 %. Вязкость суспензии изменяется умеренно в исследованном диапазоне концентрации пирогенетической жидкости. Отсутствуют резкие изменения (рис. 4). Проведенные исследования влияния пирогенетической жидкости в составе ВУС и продолжительности обработки суспензии в роторном гидродинамическом генераторе кавитации показали, что такой способ приготовления водоугольных суспензий позволяет снизить значение их вязкости даже при введении в их состав третьих компонент.


Результаты экспериментальных исследований среднего размера капель в трех исследованных областях струи показали положительное влияние обработки водоугольных суспензии в роторном гидро-

динамическом генераторе кавитации. На рис. 5, 6 представлены кадры высокоскоростной съемки процессов распыления ВУС пневматической форсункой с указанием значений средних размеров капель суспензии в исследованных областях и среднего угла раскрытия струи. Введение в состав водоугольных топлив третьей компоненты — пирогенетической жидкости, способствует увеличению среднего размера капель в струе в зависимости от величины добавки третьей компоненты аналогично [27].

Экспериментально установлено, что после 27 с обработки в роторном гидродинамическом генераторе кавитации двухкомпонентного водоугольного топлива средний размер капель суспензии в области исследования на отрезке 226-350 мм от сопла форсунки снижается на 12 %. После введения в состав ВУС 10 и 20 % по массе пирогенетической жидкости снижение среднего размера капель в этой же области исследования снижается лишь на 7 и 18 %, соответственно. Увеличение продолжительности обработки в роторном гидродинамическом генераторе кавитации двухкомпонентного водоугольного топлива до 90 с способствует снижению среднего размера капель на 13 %. Для трехкомпонентных ВУС, с добавками 10 и 20 % по массе пирогенетической жидкости, снижение среднего размера капель в струе составляет 15 и 22 %, соответственно.


На рис. 7 в виде гистограмм показано изменение среднего размера капель в трех областях исследования для всех составов ВУС (табл. 1).

Анализ результатов (рис. 7) показал, что по мере роста (с 27 до 90 с) продолжительности обработки ВУС в роторном гидродинамическом генераторе кавитации средний размер капель в исследованных областях струи увеличивается. При этом вязкость таких ВУС снижается (рис. 4). Обусловлено это увеличением плотности суспензий после их продолжительной кавитационной обработки. Этот параметр, так же как и вязкость, оказывает влияние на процессы диспергирования капель суспензии. Например, для составов ВУС с добавками 20 % по массе пирогенетической жидкости и обработанных в роторном гидродинамическом генераторе кавитации в течение 27 и 90 с значение плотности составляет 1230 и 1300 кг/м³. Увеличение плотности при этом составляет 5,5 %. В целом после обработки ВУС в роторном гидродинамическом генераторе кавитации наблюдается снижение среднего размера капель. Использование таких трехкомпонентных ВУС в сочетании с их кавитационной обработкой в роторном гидродинамическом генераторе кавитации позволит обеспечить достаточно неплохую мелкодисперсную струю, снизит времена задержки зажигания капель, увеличит полноту сгорания топлива.

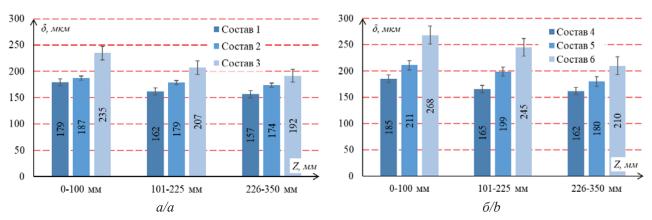


Рис. 5. Средний размер капель ВУС в исследованных областях струи в зависимости от продолжительности обработки в роторном гидродинамическом генераторе кавитации: a) 27 c; б) 90 c

Fig. 5. Average size of CWS droplets in the studied areas of the jet, depending on the duration of treatment in a rotary hydrodynamic cavitation generator: a) 27 s; b) 90 s

Puc. 6. Угол раскрытия струи **Fig. 6.** Jet spraying angle

Рис. 7. Изменения среднего размера капель ВУС в трех областях струи в зависимости от продолжительности обработки в роторном гидродинамическом генераторе кавитации: a) 27 c; б) 90 c

Fig. 7. Changes in the average size of CWS droplets in three areas of the jet depending on the duration of treatment in a rotary hydrodynamic cavitation generator: a) 27 s; b) 90 s

Заключение

Представлены результаты экспериментальных исследований влияния кавитационной обработки водоугольных суспензий в составе с пирогенетической жидкостью на средний размер капель в струе. Эксперименты по приготовлению водоугольных суспензий в составе с пирогенетической жидкостью показали рост значения динамической вязкости суспензии. Установлено, что за 90 с обработки суспензии в роторном гидродинамическом генераторе кавитации ее вязкость снижается на величину до 65 % в сравнении с аналогичной, но кратковременной обработкой. При длительной обработке водоугольной суспензии в кавитационном генераторе характер изменения практически прямолиней-

ный. Изменение динамической вязкости водоугольной суспензии составляет 54 %. Экспериментально установлено, что после 27 с обработки в роторном гидродинамическом генераторе кавитации двухкомпонентного водоугольного топлива средний размер капель суспензии в области исследования снижается на 12 %. Увеличение продолжительности обработки двухкомпонентного водоугольного топлива до 90 с способствует снижению среднего размера капель на 13 %. Для трехкомпонентных водоугольных суспензий, с добавками 10 и 20 % по массе пирогенетической жидкости, снижение среднего размера капель в струе составляет 15 и 22 %, соответственно.

СПИСОК ЛИТЕРАТУРЫ

- 1. Выявление оптимальных режимов ультразвукового воздействия для распыления вязких жидкостей методом математического моделирования / В.Н. Хмелев, Р.Н. Голых, А.В. Шалунов, А.В. Шалунова // Южно-Сибирский научный вестник. -2012. -№ 2 (2). -C. 15−19.
- 2. Распыление жидкости при импульсном воздействии / Н.В. Коровина, О.Б. Кудряшова, А.А. Антонникова, Б.И. Ворожцов // Известия вузов, Физика. 2013. Т. 56. № 9-3. С. 169–171.
- 3. Дуйшеев Т. Тонкое распыление жидкости без внешнего подвода энергии возмущения // Научный журнал «Физика». 2015. № 2. С. 95–99.
- 4. Mudawar I., Estes K.A. Optimizing and prediction CHF in spray cooling of a surface // Journal of Heat Transfer. 1996. Vol. 118. P. 672–679.
- 5. Primary break-up and atomization characteristics of a nasal spray / K. Shrestha, J.V. Strien, N. Singh, K. Inthavong // PloS One. 2020. Vol. 15 (8). e0236063.
- 6. Bayvel L.P., Orzechowski Z. Liquid atomization // Taylor&Francis. 1993. 476 p.
- 7. Miller P. The measurement of spray drift // Pesticide Outlook. 2003. Vol. 14 (5). P. 205—209.
- 8. Liquid film dispersion on horizontal circular tubes under spray impingement / Y.-T. Lee, S. Hong, L.-H. Chien, W.-H. Lin, A.-S. Yang // International Journal of Heat and Mass Transfer. 2020. Vol. 160. 120223.
- 9. Лысак И.А., Лысак Г.В. Расчет поля скоростей эжекционного устройства для распыления вязких жидкостей // Ползуновский альманах. 2016. № 2. С. 68–70.
- 10. Tretola G., Navarro-Martinez S., Vogiatzaki K. Primary break-up characterisation and droplet statistics of multi-hole sprays using a probabilistic surface density methodology // International Journal of Multiphase Flow. 2022. Vol. 152. 104039.
- 11. Volkov R.S., Kuznetsov G.V., Strizhak P.A. Water droplet deformation in gas stream: impact of temperature difference between liquid and gas // International Journal of Heat and Mass Transfer. 2015. Vol. 85. P. 1–11.
- 12. Баранова М.П., Кулагин В.А., Тарабанько В.Е. Природа стабилизации водоугольных топливных суспензий // Журнал прикладной химии. -2011.-T.84.-N 6. -C.916-921.
- 13. On electricity consumption and economic growth in China / C. Zhang, K. Zhou, S. Yang, Z. Shao // Renewable and Sustainable Energy Reviews. 2017. Vol. 76. P. 353–368.

- 14. Glushkov D., Kuznetsov G., Paushkina K. Switching coal-fired thermal power plant to composite fuel for recovering industrial and municipal waste: Combustion characteristics, emissions, and economic effect // Energies. 2020. Vol. 13 (1). 259.
- 15. Anthropogenic emissions from the combustion of composite coal-based fuels / A.D. Nikitin, G.S. Nyashina, A.F. Ryzhkov, P.A. Strizhak // Science of the Total Environment. 2021. Vol. 772. 144909.
- 16. Arsenic and selenium distribution and speciation in coal and coal combustion by-products from coal-fired power plants / J. Xie, X.-D. Niu, K.-Q. He, M.-D. Shi, S.-J. Yu, C.-G. Yuan, J.-F. Liu // Fuel. 2021. Vol. 292. 120228.
- 17. Современные проблемы газификации водоугольного топлива (краткий обзор) / А.Ю. Радзюк, Е.Б. Истягина, В.А. Кулагин, А.В. Жуйков // Журнал Сибирского федерального университета. Серия: Техника и технологии. 2021. Т. 14. № 5. С. 487—506.
- 18. Kurgankina M.A., Nyashina G.S., Strizhak P.A. Prospects of thermal power plants switching from traditional fuels to coal-water slurries containing petrochemicals // Science of The Total Environment. 2019. Vol. 671. P. 568–577.
- 19. Characteristics of particle size and velocity of droplets of coal water slurry subjected to air-blast electrostatic atomization using a phase Doppler particle analyzer / J. Zheng, Y. Xu, Q. Wang, H. He // Journal of Electrostatics. 2019. Vol. 98. P. 40–48.
- Dispersion and flow properties of charcoal oil slurries (ChOS) as potential renewable industrial liquid fuels / L.M.E.F. Loureiro, P.B.F. Gil, F.V. Vieira de Campos, L.J.R. Nunes, J.M.F. Ferreira // Journal of the Energy Institute. – 2018. – Vol. 91 (6). – P. 978–983.
- 21. Gvozdyakov D.V., Zenkov A.V., Kaltaev A.Z. Characteristics of spraying and ignition of coal-water fuels based on lignite and liquid pyrolysis products of wood waste // Energy. 2022. Vol. 257. 124813.
- 22. Gvozdyakov D.V., Zenkov A.V., Lavrinenko S.V. Quasi-hot spraying of coal-water slurries with pyrogenetic water additives // Chemical Engineering Research and Design. 2022. Vol. 186. P. 587–598.
- 23. Gvozdyakov D., Zenkov A. Improvement of atomization characteristics of coal-water slurries // Energy. 2021. Vol. 230. 120900.
- 24. Gvozdyakov D., Zenkov A. Influence of petrochemicals on jet characteristics after coal-water fuel spraying // Fuel Processing Technology. 2021. Vol. 218. 106864.
- 25. Gvozdyakov D., Zenkov A. Nozzles for spraying coal-water fuels // Applied Sciences. 2023. Vol. 13 (21). 12006.
- 26. Coal-water slurry atomization in a new pneumatic nozzle and combustion in a low-power industrial burner / E.Yu. Shadrin, I.S. Anufriev, E.B. Butakov, E.P. Kopyev, S.V. Alekseenko, L.I. Maltsev, O.V. Sharypov // Fuel. 2021. Vol. 303. 121182.
- 27. Влияние кавитационной обработки на свойства водоугольных суспензий с добавками пирогенетической жидкости / Д.В. Гвоздяков, А.В. Зенков, Л.И. Мальцев, Ю.С. Поджаров // iPolytech Journal. 2023. Т. 27. № 2. С. 297–309.
- 28. Study of liquid hydrocarbons atomization by supersonic air or steam jet / I.S. Anufriev, E.Yu. Shadrin, E.P. Kopyev, S.V. Alekseenko, O.V. Sharypov // Applied Thermal Engineering. 2019. Vol. 163. 114400.
- 29. Experimental and numerical investigation of aerodynamics of a pneumatic nozzle for suspension fuel / S.V. Alekseenko, I.S. Anufriev, A.A. Dekterev, V.A. Kuznetsov, L.I. Maltsev, A.V. Minakov, M.Yu. Chernetskiy, E.Yu. Shadrin, O.V. Sharypov // International Journal of Heat and Fluid Flow. 2019. Vol. 77. P. 288–298.
- 30. Experimental study of an impinging jet with different swirl rates / S.V. Alekseenko, A.V. Bilsky, V.M. Dulin, D.M. Markovich // International Journal of Heat and Fluid Flow. 2007. Vol. 28 (6). P. 1340–1359.
- 31. Integral characteristics of water droplet evaporation in high-temperature combustion products of typical flammable liquids using SP and IPI methods / G.V. Kuznetsov, P.A. Strizhak, R.S. Volkov, O.V. Vysokomornaya // International Journal of Thermal Sciences. 2016. Vol. 108. P. 218–234.
- 32. Bilskiy A.V., Lozhkin Yu.A., Markovich D.M. Interferometric technique for measurement of droplet diameter // Thermophysics and Aeromechanics. 2011. Vol. 18 (1). P. 1–12.
- 33. Investigation of the structure of a polydisperse gas-droplet jet in the initial region. Experiment and numerical simulation / Yu.A. Lozhkin, D.M. Markovich, M.A. Pakhomov, V.I. Terekhov // Thermophysics and Aeromechanics. 2014. Vol. 21 (3). P. 294–307
- 34. Van de Hulst H.C. Light scattering by small particles. New York: Dover Publ., 1981. 470 p.
- 35. Hybrid spherical particle field measurement based on interference technology / J. Sun, H. Zhang, J. Li, Y. Zhou, D. Jia, T. Liu // Measurement Science and Technology. 2017. Vol. 28 (3). P. 1–7.
- 36. Ruiz S.G., Vetrano M.R., Van Beeck J. Feasibility of using glory and speckle patterns for sizing spherical and irregular particles // Applied Optics. 2014. Vol. 53 (21). P. 4722–4728.
- 37. Effect of the physical properties of liquid and ALR on the spray characteristics of a pre-filming airblast nozzle / M.M. Tareq, R.A. Dafsari, S. Jung, J. Lee // International Journal of Multiphase Flow. 2020. Vol. 126. 103240.

Информация об авторах

Гвоздяков Дмитрий Васильевич, кандидат технических наук, доцент, доцент НОЦ И.Н. Бутакова Инженерной школы энергетики Национального исследовательского Томского политехнического университета, Россия, 634050, г. Томск, пр. Ленина, 30. dim2003@tpu.ru; https://orcid.org/0000-0002-7866-9180

Зенков Андрей Викторович, кандидат технических наук, доцент НОЦ И.Н. Бутакова Инженерной школы энергетики Национального исследовательского Томского политехнического университета, Россия, 634050, г. Томск, пр. Ленина, 30. avz41@tpu.ru; https://orcid.org/0000-0002-7763-3266

Мальцев Леонид Иванович, доктор технических наук, главный научный сотрудник Института теплофизики имени С.С. Кутателадзе СО РАН, Россия, 630090, г. Новосибирск, пр. Академика Лаврентьева, 1. maltzev@itp.nsc.ru; https://orcid.org/0000-0002-4699-8289

Поджаров Юрий Сергеевич, лаборант Института теплофизики имени С.С. Кутателадзе СО РАН, Россия, 630090, г. Новосибирск, пр. Академика Лаврентьева, 1. yura_p@ngs.ru

Поступила в редакцию: 20.11.2023

Поступила после рецензирования: 01.12.2023

Принята к публикации: 21.02.2024

REFERENCES

- 1. Khmelev V.N., Golykh R.N., Shalunov A.V., Shalunova A.V. Identification of optimal ultrasonic exposure modes for spraying viscous liquids by mathematical modeling. *Yuzhno-Sibirskiy nauchnyy vestnik*, 2012, no. 2 (2), pp. 15–19. (In Russ.)
- 2. Korovina N.V., Kudryashova O.B., Antonnikova A.A., Vorozhtsov B.I. Spraying of liquid under pulsed action. *Izvestiya vuzov. Fizika*, 2013, vol. 56, no. 9-3, pp. 169–171. (In Russ.)
- 3. Duysheyev T. Fine atomization of liquid without external supply of disturbance energy. *Nauchnyy zhurnal Fizika*, 2015, no. 2, pp. 95–99. (In Russ.)
- 4. Mudawar I., Estes K.A. Optimizing and prediction CHF in spray cooling of a surface. *Journal of Heat Transfer*, 1996, vol. 118, pp. 672–679.
- 5. Shrestha K., Strien J.V., Singh N., Inthavong K. Primary break-up and atomization characteristics of a nasal spray. *PloS One*, 2020, vol. 15 (8), e0236063.
- 6. Bayvel L.P., Orzechowski Z. Liquid atomization. Taylor&Francis, 1993, 476 p.
- 7. Miller P. The measurement of spray drift. Pesticide Outlook, 2003, vol. 14 (5), pp. 205–209.
- 8. Lee Y.-T., Hong S., Chien L.-H., Lin W.-H., Yang A.-S. Liquid film dispersion on horizontal circular tubes under spray impingement. *International Journal of Heat and Mass Transfer*, 2020, vol. 160, 120223.
- 9. Lysak I.A., Lysak G.V. Calculation of the velocity field of an ejection device for spraying viscous liquids. *Polzunovskiy almanakh*, 2016, no. 2, pp. 68–70. (In Russ.)
- 10. Tretola G., Navarro-Martinez S., Vogiatzaki K. Primary break-up characterisation and droplet statistics of multi-hole sprays using a probabilistic surface density methodology. *International Journal of Multiphase Flow*, 2022, vol. 152, 104039.
- 11. Volkov R.S., Kuznetsov G.V., Strizhak P.A. Water droplet deformation in gas stream: Impact of temperature difference between liquid and gas. *International Journal of Heat and Mass Transfer*, 2015, vol. 85, pp. 1–11.
- 12. Baranova M.P., Kulagin V.A., Tarabanko V.E. The nature of stabilization of coal-water fuel suspensions. *Zhurnal prikladnoy khimii*, 2011, vol. 84, no. 6, pp. 916–921. (In Russ.)
- 13. Zhang C., Zhou K., Yang S., Shao Z. On electricity consumption and economic growth in China. *Renewable and Sustainable Energy Reviews*, 2017, vol. 76, pp. 353–368.
- 14. Glushkov D., Kuznetsov G., Paushkina K. Switching coal-fired thermal power plant to composite fuel for recovering industrial and municipal waste: combustion characteristics, emissions, and economic effect. *Energies*, 2020, vol. 13 (1), 259.
- 15. Nikitin A.D., Nyashina G.S., Ryzhkov A.F., Strizhak P.A. Anthropogenic emissions from the combustion of composite coalbased fuels. *Science of the Total Environment*, 2021, vol. 772, 144909.
- 16. Xie J., Niu X.-D., He K.-Q., Shi M.-D., Yu S.-J., Yuan C.-G., Liu J.-F. Arsenic and selenium distribution and speciation in coal and coal combustion by-products from coal-fired power plants. *Fuel*, 2021, vol. 292, 120228.
- 17. Radzyuk A.Yu., Istyagina E.B., Kulagin V.A., Zhuykov A.V. Modern problems of coal-water fuel gasification (a brief overview). *Zhurnal Sibirskogo federalnogo universiteta. Seriya: Tekhnika i tekhnologii*, 2021, vol. 14, no. 5, pp. 487–506. (In Russ.)
- 18. Kurgankina M.A., Nyashina G.S., Strizhak P.A. Prospects of thermal power plants switching from traditional fuels to coal-water slurries containing petrochemicals. *Science of The Total Environment*, 2019, vol. 671, pp. 568–577.
- 19. Zheng J., Xu Y., Wang Q., He H. Characteristics of particle size and velocity of droplets of coal water slurry subjected to airblast electrostatic atomization using a phase Doppler particle analyzer. *Journal of Electrostatics*, 2019, vol. 98, pp. 40–48.
- 20. Loureiro L.M.E.F., Gil P.B.F., Vieira de Campos F.V., Nunes L.J.R., Ferreira J.M.F. Dispersion and flow properties of charcoal oil slurries (ChOS) as potential renewable industrial liquid fuels. *Journal of the Energy Institute*, 2018, vol. 91 (6), pp. 978–983.
- 21. Gvozdyakov D.V., Zenkov A.V., Kaltaev A.Z. Characteristics of spraying and ignition of coal-water fuels based on lignite and liquid pyrolysis products of wood waste. *Energy*, 2022, vol. 257, 124813.
- 22. Gvozdyakov D.V., Zenkov A.V., Lavrinenko S.V. Quasi-hot spraying of coal-water slurries with pyrogenetic water additives. *Chemical Engineering Research and Design*, 2022, vol. 186, pp. 587–598.
- 23. Gvozdyakov D., Zenkov A. Improvement of atomization characteristics of coal-water slurries. *Energy*, 2021, vol. 230, 120900.
- Gvozdyakov D., Zenkov A. Influence of petrochemicals on jet characteristics after coal-water fuel spraying. Fuel Processing Technology, 2021, vol. 218, 106864.
- 25. Gvozdyakov D., Zenkov A. Nozzles for spraying coal-water fuels. Applied Sciences, 2023, vol. 13 (21), 12006.
- 26. Shadrin E.Yu., Anufriev I.S., Butakov E.B., Kopyev E.P., Alekseenko S.V., Maltsev L.I., Sharypov O.V. Coal-water slurry atomization in a new pneumatic nozzle and combustion in a low-power industrial burner. *Fuel*, 2021, vol. 303, 121182.
- 27. Gvozdyakov D.V., Zenkov A.V., Maltsev L.I., Podzharov Yu.S. Effect of cavitation treatment on the properties of coal-water suspensions with pyrogenetic liquid additives. *iPolytech Journal*, 2023, vol. 27, no. 2, pp. 297–309. (In Russ.)
- 28. Anufriev I.S., Shadrin E.Yu., Kopyev E.P., Alekseenko S.V., Sharypov O.V. Study of liquid hydrocarbons atomization by supersonic air or steam jet. *Applied Thermal Engineering*, 2019, vol. 163, 114400.
- Alekseenko S.V., Anufriev I.S., Dekterev A.A., Kuznetsov V.A., Maltsev L.I., Minakov A.V., Chernetskiy M.Yu., Shadrin E.Yu., Sharypov O.V. Experimental and numerical investigation of aerodynamics of a pneumatic nozzle for suspension fuel. *International Journal of Heat and Fluid Flow*, 2019, vol. 77, pp. 288–298.
- 30. Alekseenko S.V., Bilsky A.V., Dulin V.M., Markovich D.M. Experimental study of an impinging jet with different swirl rates. *International Journal of Heat and Fluid Flow*, 2007, vol. 28 (6), pp. 1340–1359.

- 31. Kuznetsov G.V., Strizhak P.A., Volkov R.S., Vysokomornaya O.V. Integral characteristics of water droplet evaporation in high-temperature combustion products of typical flammable liquids using SP and IPI methods. *International Journal of Thermal Sciences*, 2016, vol. 108, pp. 218–234.
- 32. Bilskiy A.V., Lozhkin Yu.A., Markovich D.M. Interferometric technique for measurement of droplet diameter. *Thermophysics and Aeromechanics*, 2011, vol. 18 (1), pp. 1–12.
- 33. Lozhkin Yu.A., Markovich D.M., Pakhomov M.A., Terekhov V.I. Investigation of the structure of a polydisperse gas-droplet jet in the initial region. Experiment and numerical simulation. *Thermophysics and Aeromechanics*, 2014, vol. 21 (3), pp. 294–307.
- 34. Van de Hulst H.C. Light scattering by small particles. New York, Dover Publ., 1981. 470 p.
- 35. Sun J., Zhang H., Li J., Zhou Y., Jia D., Liu T. Hybrid spherical particle field measurement based on interference technology. *Measurement Science and Technology*, 2017, vol. 28 (3), pp. 1–7.
- 36. Ruiz S.G., Vetrano M.R., van Beeck J. Feasibility of using glory and speckle patterns for sizing spherical and irregular particles. *Applied Optics*, 2014, vol. 53 (21), pp. 4722–4728.
- 37. Tareq M. M., Dafsari R. A., Jung S., Lee J. Effect of the physical properties of liquid and ALR on the spray characteristics of a pre-filming airblast nozzle. *International Journal of Multiphase Flow*, 2020, vol. 126, 103240.

Information about the authors

Dmitry V. Gvozdyakov, Cand. Sc, Associate Professor, National Research Tomsk Polytechnic University, 30, Lenin avenue, Tomsk, 634050, Russian Federation. dim2003@tpu.ru; https://orcid.org/0000-0002-7866-9180 **Andrey V. Zenkov**, Cand. Sc, Associate Professor, National Research Tomsk Polytechnic University, 30, Lenin avenue, Tomsk, 634050, Russian Federation. avz41@tpu.ru; https://orcid.org/0000-0002-7763-3266

Leonid I. Maltzev, Dr. Sc, Chief Researcher, Institute of Thermophysics of the Siberian Branch of the Russian Academy of Sciences, 1, Academician Lavrentiev avenue, Novosibirsk, 630090, Russian Federation. maltzev@itp.nsc.ru; https://orcid.org/0000-0002-4699-8289

Yury S. Podzharov, Laboratory Assistant, Institute of Thermophysics of the Siberian Branch of the Russian Academy of Sciences, 1, Academician Lavrentiev avenue, Novosibirsk, 630090, Russian Federation. yura_p@ngs.ru

Received: 20.11.2023 Revised: 01.12.2023 Accepted: 21.02.2024 УДК 504.55.054:622(470.6)

DOI: 10.18799/24131830/2024/3/4297 Шифр специальности ВАК: 25.00.22

Перспектива разработки гидрогенного месторождения Семизбай

В.И. Голик 1,2 , Ю.И. Разоренов 3 , М.Ф. Мицик 4

¹ Северо-Кавказский горно-металлургический институт, Россия, г. Владикавказ ² Московский политехнический университет, Россия, г. Москва ³ Южно-Российский государственный политехнический университет, Россия, г. Новочеркасск ⁴ Донской государственный технический университет в г. Шахты, Россия, г. Шахты

[⊠]v.i.golik@mail.ru

Аннотация. Актуальность исследования обусловлена тем, что гидрогенные месторождения разрабатывают комбинированными технологиями, а критерии комбинирования технологий разработаны недостаточно. Цель: выбор оптимального способа разработки месторождения с учетом особенностей слагающих его урановых руд. Объекты: месторождение песчаникового типа Семизбай, залегающее в рыхлых осадочных породах локализовано в пределах участка длиной 36 км при ширине 10 км. Методы: анализ теории и практики разработки месторождений, нахождение зависимостей между показателями эксплуатации, моделирование, методы математической статистики, технико-экономические расчеты и апробацию некоторых положений. Результаты. Дана характеристика систем разработки гидрогенных месторождений, и обоснована необходимость комбинирования технологий добычи металлов выщелачиванием с традиционными технологиями в условиях месторождения. Детализированы альтернативные технологии выщелачивания металлов с использованием взаимодействующих скважин и с выщелачиванием металлов в куче. Уточнен механизм и различия условий выщелачивания урана в плывунном массиве и в куче. Выполнена сравнительная характеристика альтернативных вариантов разработки месторождения с указанием, в том числе, их достоинств и недостатков. Определено, что параметры выщелачивания зависят от скорости и эффективности вскрытия новых реакционных площадей с разным механизмом съема урана с минеральных частиц. Доказано, что эффективность разработки гидрогенных месторождений повышается комбинированием процессов скважинной гидродобычи руд и кучного выщелачивания металлов. Предложена модель последовательности принятия решений с произвольным источником информации по критерию дисконтированной прибыли от добычи. Выводы. Результаты исследования могут быть востребованы при переоценке запасов, модернизации систем разработки и оптимизации методов управления качеством продукции горного производства. Рекомендованные методы контроля комбинированной разработки гидрогенных месторождений способствуют повышению полноты использования недр.

Ключевые слова: гидрогенное месторождение, комбинирование технологий, выщелачивание урана, скважина, куча, гидродобыча

Для цитирования: Голик В.И., Разоренов Ю.И., Мицик М.Ф. Перспектива разработки гидрогенного месторождения Семизбай // Известия Томского политехнического университета. Инжиниринг георесурсов. – 2024. – Т. 335. – № 3. – С. 81–91. DOI: 10.18799/24131830/2024/3/4297

UDC 504.55.054:622(470.6)

DOI: 10.18799/24131830/2024/3/4297

Prospect of developing a hydrogenic deposit Semizbay

V.I. Golik^{1,2⊠}, Yu.I. Razorenov³, M.F. Mizik⁴

¹ North-Caucasian Mining and Metallurgical Institute (State Technological University), Vladikavkaz, Russian Federation

² Moscow Polytechnic University, Moscow, Russian Federation

³ South Russian State Polytechnic University, Novocherkassk, Russian Federation

⁴Institute of Service and Entrepreneurship, branch of DSTU in Shakhty, Shakhty, Russian Federation

[⊠]v.i.golik@mail.ru

Abstract. Relevance. The fact that hydrogenic deposits are developed using combined technologies, and the criteria for combining technologies have not been sufficiently developed. Aim. To select the optimal method of deposit development, taking into account the characteristics of the uranium ores composing it. Objects. The Semizbai sandstone deposit, which lies in loose sedimentary rocks, is localized within a 36 km long section with a width of 10 km. Methods. Analysis of the theory and practice of field development, finding dependencies between operational indicators, modeling, methods of mathematical statistics, technical and economic calculations and approbation of some provisions. Results. The authors have given characteristic of systems for developing hydrogenic deposits and substantiated the necessity of combining metal extraction technologies by leaching with traditional technologies in the conditions of the deposit. Alternative technologies for metal leaching using interacting wells and with metal leaching in a pile are detailed. The mechanism and differences in the conditions of uranium leaching in a quicksand array and in a heap was clarified. The authors have carried out comparative characteristic of alternative options for field development, indicating, among other things, their advantages and disadvantages. It was determined that leaching parameters depend on speed and efficiency of opening new reaction areas with a different mechanism for removing uranium from mineral particles. It is proved that the efficiency of the development of hydrogenic deposits is increased by combining the processes of borehole hydro extraction of ores and heap leaching of metals. The authors proposed the model of decision-making sequence with an arbitrary source of information based on the criterion of discounted profit from mining. Conclusions. The results of the study may be in demand when revaluing reserves, modernizing systems for the development and optimization of methods for managing the quality of mining products. The recommended methods of monitoring the combined development of hydrogenic deposits contribute to increasing the completeness of subsurface use.

Keywords: hydrogenic deposit, combination of technologies, uranium leaching, well, heap, hydro production

For citation: Golik V.I., Razorenov Yu.I., Mizik M.F. Prospect of developing a hydrogenic deposit Semizbay. *Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering*, 2024, vol. 335, no. 3, pp. 81–91. DOI: 10.18799/24131830/2024/3/4297

Введение

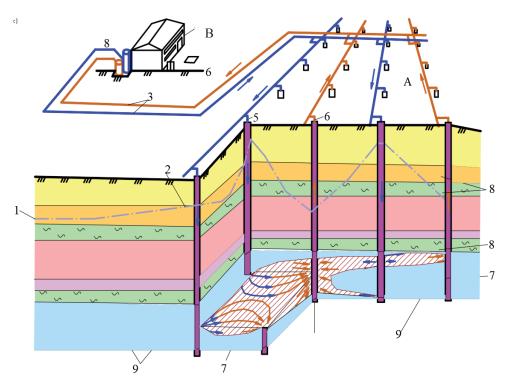
Развитие специальных способов добычи минерального сырья делает актуальной проблему расширения сырьевой базы за счет вовлечения в передел ранее недоступных для отработки запасов руд [1–5].

Отработка гидрогенных месторождений руд в сложных горно-геологических условиях требует новых технических решений [6–11]. Одним из таких решений является сочетание способов скважинной гидродобычи с кучным выщелачиванием. При этом в процессе гидро-размывания массива осуществляется технологическая подготовка руд.

С 70-х гг. прошлого века в СССР, США, Канаде, Германии, Чехословакии, Болгарии и др. технологически развитых странах значительная часть урана и меди добывается кучным выщелачиванием. Способ перспективен для добычи титана, ванадия, марганца, железа, кобальта, никеля, цинка, селена, молибдена, золота и других металлов.

Наиболее распространены скважинные системы выщелачивания металлов из руд, в основе которых лежит феномен растворения металла фильтрационным потоком реагента, движущимся по рудоносному водопроницаемому пласту от закачных скважин к откачным. При оптимальном режиме технологии обеспечивается максимальная локализация зоны циркуляции растворов, уменьшаются потери реагента, предотвращаются осложнения в работе растворо-транспортных установок.

Ряд гидрогенных месторождений не могут разрабатываться традиционными технологиями. В таких случаях эффективны комбинированные технологии добычи металлов. Критерии комбинирования


технологий в новых экономических условиях разработаны недостаточно. Добыча руд комбинированными геотехнологиями улучшает полноту использования недр, увеличивает сырьевую базу и уменьшает ущерб окружающей среде [12—19].

Низкое содержание металлов, обводненность, слабая устойчивость пород и другие особенности ограничивают использование традиционных технологий разработки, поэтому целью работ последнего времени является модернизация технологий разработки месторождений руд на основе комбинирования специальных методов их добычи и переработки, например, скважинной гидродобычи руд и кучного выщелачивания металлов [6, 8, 18].

Месторождения, пригодные для разработки методами скважинного подземного выщелачивания, относятся к экзогенным и объединены в группу «гидрогенных». Выщелачивающие растворы контактируют с полезным ископаемым и достигают выдающих скважин. Обогащаясь металлами, они становятся «продуктивными», откачиваются на дневную поверхность и поступают на переработку, например, методом сорбции—десорбции.

Типичным представителем рассматриваемой группы месторождений является месторождение песчаникового типа Семизбай, залегающее в рыхлых осадочных породах.

Оно эксплуатируется путем избирательного перевода ионов природного урана в продуктивный раствор в недрах. Хвосты переработки остаются в выработанном пространстве, в отличие от традиционных методов добычи, где затраты на нейтрализацию ущерба от их хранения достигают больших размеров.

Рис. 1. Участок скважинного выщелачивания: комплексы: А – добычной; В – перерабатывающий; 1 – нижний уровень воды; 2 – верхний уровень воды; 3 – растворопроводы; 4 – цех работы с растворами; 5 – закачные скважины; 6 – откачные скважины; 7 – горная масса; 8 – водоупорный слой; 9 – граница оруденения

Fig. 1. Well leaching site: complexes: A - mining; B - transporting; 1 - lower water level; 2 - upper water level; 3 - mortar pipelines; 4 - processing workshop; 5 - injection wells; 6 - pumping wells; 7 - rock mass; 8 - water-resistant layer; 9 - boundary of mineralization

Опытно-промышленные работы начались в 1984 г., промышленная отработка продолжалась до 1989 г. Работы показали возможность добычи урана способом подземного выщелачивания и выявили ее недостатки. Поэтому проблемы выщелачивания урана из руд месторождения Семизбай приобретают все большую актуальность.

Основной рудовмещающей структурой является эрозионно-тектоническая депрессия, представленная древней долиной, на территории которой оруденение локализовано в пределах участка длиной 36 км при ширине 10 км.

Рудные образования по вещественному составу не отличаются от вмещающих пород и характеризуются постепенным снижением содержания металлов до фоновых.

Залежи представлены обводненными, прерывистыми жилами, существенно различающимися по размерам. Мощность залежей 0,2...7,3 м, а площадь изменяется в переделах 4...930 тыс. м².

Схема разработки выемочных участков системой скважинного выщелачивания, применяемой и в настоящее время, представлена на рис. 1.

Целью исследования является выбор оптимального способа разработки месторождения с учетом особенностей слагающих его руд.

Методы исследования

Комплекс исследований включает в себя анализ теории и практики разработки месторождений, нахождение зависимостей между показателями эксплуатации, моделирование, методы математической статистики, технико-экономические расчеты и апробацию некоторых положений [20–26].

Анализируется теория и практика разработки гидрогенных месторождений и предлагается альтернативная технология. В качестве представителя рассматриваемой группы месторождений рассматривается урановое месторождение Семизбай, и дается его краткая характеристика и история. Методом итерационного моделирования сравниваются варианты добычи металлов.

Из технологий разработки гидрогенных месторождений выделяются конкурирующие системы со взаимодействующими скважинами и комбинированные системы, которые исследуются с описанием характерных признаков и количественных показателей процессов, которые позволяют увеличить роль конвекционного обмена в ходе реакций.

Лабораторные исследования выполняются на моделях, физико-механические свойства пород и закладочных смесей определяются с обработкой результатов методами математической статистики.

Для определения возможностей использования конкурирующих технологий методом итерационного моделирования сравниваются варианты добычи и переработки руд.

Результаты исследования

В ходе анализа систем разработки гидрогенных месторождений на основе геотехнологических методов добычи, возможных к применению, выделяются системы со взаимодействующими скважинами и комбинированные системы, сочетающие традиционную технологию добычи с выщелачиванием.

Типизация возможных к применению технологий добычи металлов выщелачиванием в условиях месторождения представлена в табл. 1.

Таблица 1. Типизация условий для выщелачивания **Table 1.** Typification of conditions for leaching

	Виды выщелачивания				
Показатели	Types of leaching				
Indicators	Кучное	Скважинное			
	Bunch	Borehole			
Морфологический тип руд	Любые	Пласты			
Morphological type of ores	Any	Layers			
Глубина, м/Depth, m	1200	201200			
Мощность рудных тел, м Power of ore bodies, m	530	Любая/Any			
Обводненность, м³/ч Water content, m³/h	200500	Любая/Any			
Коэффициент фильтрации Filtration coefficient	>0,5-5,0 м/с	>0,5-5,0 м/с.			
Температура, град. Temperature, deg.	t+4+40	+4+40			
Содержание сульфидов Content of sulfides, %	до 5/up to 5	до 10/up to 10			
Содержание глинистых пород Content of clay rocks, %	до 15/up to 15	до 20/up to 20			
Содержание мышьяка Arsenic content, %	0,21	12			
Содержание сурьмы Antimony content, %	0,21	13			
Содержание органики Organic content, %	15	57			

Эффективность вариантов систем разработки во многом определяется затратами на сооружение гидроизоляционного основания и улавливание продуктивных растворов.

Выщелачивание металлов с использованием скважин

В 80-х гг. прошлого столетия промышленная эксплуатация месторождения осуществлялась по схеме, разработанной в Целинном горнохимическом комбинате с участием автора настоящей статьи, с использованием скважин.

Технологические скважины располагают через 10...25 м друг от друга. Производительность закачки растворов выщелачивания составляет 2...3 м³/ч,

а откачки продукционных растворов $3...5 \text{ m}^3/\text{ч}$, т. е. с превышением откачки над закачкой для предупреждения возможного растекания растворов за пределы добычных блоков.

Растворы перерабатывают на промплощадке месторождения в модульных установках с извлечением металлов на ионообменных смолах и активированных углях. Производительность комплекса по переработке растворов колеблется в пределах $30...50 \, \text{м}^3/\text{ч}$.

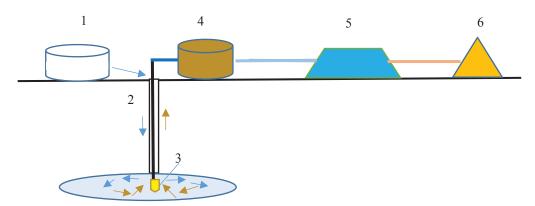
Технология добычи металлов выщелачиванием включает в себя взаимосвязанные процессы:

- вскрытие скважинами эксплуатационного блока размерами 30...35×10...15 м;
- подготовка рудного тела к выщелачиванию;
- выщелачивание или перевод металлов в рабочий раствор на месте залегания руды;
- извлечение металлов из продукционных растворов гидрометаллургическими методами;
- рекультивация недр с нейтрализацией остаточных растворов и промывкой погашаемого выработанного пространства водными потоками.

Применяемая технология позволяет добывать металлы из запасов месторождения, которые традиционным способом добыть нельзя.

Выщелачивание металлов со скважинной гидродобычей руд

Альтернативой системе скважинного выщелачивания может быть комбинированная система разработки, сочетающая элементы выщелачивания по скважинам и в куче (рис. 2).


Отделение руды от массива осуществляется гидромониторной струей, а выдача пульпы с содержанием частиц размерами до 50 мм на поверхность — гидроэлеватором. Такая крупность оптимальна для выщелачивания металлов.

Эффективность выщелачивания металлов из рудных частиц крупностью 3...40 мм исследована в лабораторных перколяторах диаметром 150 см, высотой 100 см, обеспечивающих подачу 3 %-ного раствора серной кислоты со скоростью 2,0...3,0 дм³/ч.

После пропускания 500 дм³ раствора извлечение металла составило 62 %, что превышает этот показатель на гидрометаллургическом заводе.

Для измерения фильтрационных способностей руд в куче применим метод межскважинного акустического сканирования, сущность которого состоит в определении звукового давления в точке излучения и вычислении на этой основе коэффициента звукопоглощения рудной массы.

Фильтрационная способность выщелачиваемых руд является функцией их неоднородности и зависит от взаимодействия переменных факторов, в том числе зависимости скорости упругих волн от плотности, крупности и разрыхления минерального сырья.

Рис. 2. Схема комбинирования технологий скважинной гидродобычи и кучного выщелачивания: 1 – вода для бурения; 2 – скважина для выдачи добытой руды; 3 –гидромонитор; 4 – узел подготовки руды; 5 – куча руды; 6 – узел извлечения металлов из раствора

Fig. 2. Scheme of combining technologies of borehole hydraulic extraction and heap extraction: 1 – water for drilling; 2 – well for extracted ore; 3 – hydraulic monitor; 4 – ore preparation unit; 5 – ore pile; 6 – unit for metal extraction from solution

Для определения количественных значений переменных факторов в куче генерируют колебания, которые улавливаются светолучевыми осциллографами и датчиками. Вместе с зарядом в скважину помещают датчики учета взрыва, по вступлениям которых определяют время движения волн напряжений и неоднородностей руды в массиве кучи. Скорость распространения волн напряжений является основным критерием фильтрационной способности выщелачиваемых руд.

Количественные значения скорости распространения волн напряжений в массиве определены по показателям датчиков в скважинах, пробуренных в куче выщелачивания.

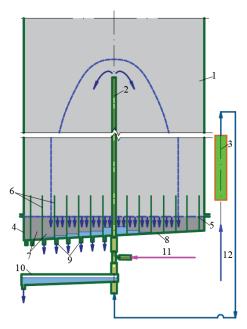
Скорость распространения волн напряжений в руде с коэффициентом разрыхления 1,2–1,3 и диаметром куска до 4 мм составила 640 м/с (табл. 2).

Таблица 2. Скорость распространения волн напряжений

Table 2. Propagation velocity of stress waves

Опыты	Датчики	Расстояние, м	Время, с	Скорость, м/с		
Experiments	Sensors	Distance, m	Time, s	Speed, m/s		
	1	0,3	0,0005	670		
Nº 1	3	0,9	0,0014	660		
	5	1,5	0,0023	645		
	1	0,3	0,0005	640		
Nº 2	3	0,9	0,0014	635		
	5	1,5	0,0025	590		
	1	0,3	0,0004	705		
Nº 3	3	0,9	0,0013	695		
	5	1,5	0,0022	680		
	1	0,3	0,0004	695		
Nº 4	3	0,9	0,0013	685		
	5	1,5	0,0026	570		
	1	0,3	0,0005	600		
Nº 5	3	0,9	0,0015	590		
	5	1,5	0,0028	540		
640 м/с (m/s)						

Установлено, что с повышением плотности руды в 1,2 раза скорость распространения волн напряжений увеличивается в 1,4 раза. По базовой скорости волн и скорости фильтрации можно прогнозировать скорость фильтрации в куче, сформированной извлеченной по скважинам руде, около 2 м/с, что в полной мере отвечает условиям технологии с выщелачиванием.


Закономерности растекания рабочих и продукционных растворов выщелачивания в куче исследованы на стенде, в который засыпали руду с коэффициентом разрыхления 1,80 и 1,70 (рис. 3).

Стенд оборудован днищем — 4, позволяющим разделить поток реагентов на участки с различной скоростью движения растворов и степенью заполнения междукускового пространства с помощью закрепленных на перфорированном диске — 5 цилиндров и образующих приемные — 6 и расходные — 7 отсеки, имеющие общее дно — 8. Расходные отсеки обеспечивают сток жидкостей посредством патрубков — 9. Слив осуществляется через кран — 10. Поддув воздуха производится через кран — 11. Раствор — 12 поступает в систему через фильтр — 3.

При изменении разрыхления с 1,80 до 1,70 степень заполнения междукускового пространства уменьшилась в два раза.

Основой добычи руды через скважины является разрушение рудовмещающего массива струей напорной воды. Регулируя размеры минеральных частиц при разрушении массива водными струями под давлением, обеспечивают необходимую для кучного выщелачивания металлов крупность рудных кусков.

Основной недостаток гидро-добычных снарядов — необходимость опережающего расширения зоны влияния скважины. Перевод монитора в горизонтальное положение увеличивает зону размыва до 10 м. Гидромониторный расширитель применяют до глубины 150 м, при этом на глубине до 80 м размер куска не превышает 40 мм.

Puc. 3. Схема стенда для исследования растекания раствора

Fig. 3. Scheme of the stand for studying a solution spreading

Показатели гидро-выемки руд характеризуются данными: коэффициент разубоживания 0,30...0,45, потери руды 25...30 %, производительность 5...7 т/ч. С увеличением затопления гидроэлеватора его коэффициент полезного действия увеличивается.

Для разрушения горной породы давление струи на контакте с породой должно быть выше сопротивления сдвига. Потери напора, вызываемые внешней средой, приводят к уменьшению кинематической энергии и скорости движения струи по мере удаления от насадки. Снижение скорости приводит к расширению струи, расходу кинетической энергии и разрушению струи.

Структура и параметры струи в затопленном забое определяются давлением на выходе, вязкостьюплотностью и т. п.

Для месторождения Семизбай параметры отбойки могут быть определены расчетом при параметрах:

- глубина залегания рудного пласта 80 м;
- мощность пласта 3 м.

Свойства вмещающих пород приведены в табл. 3. Гидрогеологические условия локализации оруденения сведены в табл. 4.

При показателе гидравлического разрушения породы τ_s =4,5 кг/см² массив разрушается в пределах 1,25 м от гидромонитора, поэтому диаметр выемочных камер может быть максимум 2,5 м.

Практика отработки участка песчано-глинистых рудоносных отложений на предприятии атомной отрасли характеризуется рядом показателей: глубина залегания рудных тел 30...75 м, мощность 0,5...1 м, обводненность слабая, диаметр техноло-

гических скважин 425 мм. Характеристика гидроагрегата: давление в подводящем ставе 50 атм.; давление в отводящем ставе 14 атм.; производительность по пульпе 330 м 3 /ч; производительность по горной массе 7...10 т/ч; масса снаряда 4400 кг; масса става 10500 кг.

Таблица 3. Гидравлические показатели работы скважины **Table 3.** Hydraulic indicators of well performance

Показатели Indicators	Единицы из- мерения Units of measurement	Значение Values
Дебит скважин/Well flow rate	м ³ /с (m ³ /s)	390
Статический уровень от поверхности Static level from the surface	м/m	3,55
Высота напора/Head height	м/m	80
Коэффициент фильтрации Filtration coefficient	м/c (m/s)	2

Таблица 4. Гидрогеологические свойства пород

 Table 4.
 Hydrogeological properties of rocks

Вмещающие породы Host rocks	Сцепление, кг/см² Clutch, kg/cm²	Угол внутреннего трения, град. Internal friction angle, deg.
Глина/Clay	1,170	34,7
Песчаник Sandstone	1,833	27,3
Песок/Sand	0,791	24,7
Алевролит Siltstone	2,165	21,0

Обсуждение

Технология подземного скважинного выщелачивания эффективна при разработке гидрогенных месторождений с коэффициентом фильтрации более 0,5 м/сутки. Условием ее применения является наличие водоупоров в кровле и почве рудного тела.

Просачивание продуктивных растворов в неактивных зонах массива происходит с потерей как растворов реагентов, так и металлов. С увеличением расстояния между скважинами содержание металлов в продуктивных растворах понижается.

Металлы в раствор извлекаются по пути фильтрации растворов, а скорость фильтрации растворов зависит от природной пористости или техногенного разрыхления минеральной среды.

Считается, что природная гидрогеохимическая среда обладает способностью к самовосстановлению и обеспечивает рекультивацию подземных вод рудовмещающих горизонтов, но этот вопрос исследован недостаточно полно.

Результаты исследований позволяют заключить, что комбинирование элементов традиционных систем разработки и систем выщелачивания отвечает условиям разработки гидрогенных месторождений (табл. 5).

Таблица 5. Варианты разработки месторождения

Table 5. Field development options

Фактория		Варианты/Variants						
Факторы Factors	С взаимодействующими скважинами	В кучах со скважинной гидродобычей руд						
ractors	With interacting wells	In piles with borehole hydro mining of ores						
	Универсальность, простота, минимизация	Управляемость процессом в куче, снижение потерь руд в						
Достоинства	воздействия на среду	недрах и при переработке						
Advantages	Versatility, simplicity, minimization of	Controllability of the process in the pile, reduction of ore losses in						
	environmental impact	the subsurface and during processing						
	Потери растворов, потери запасов руд в	Повышенные требования к прочности руд, двухстадийность						
Недостатки	недрах при кольматации	процесса						
Disadvantages	Loss of solutions, loss of ore reserves in the	Increased requirements for ore strength, two stage process						
	subsurface during colmatation							
	Ухудшение качества гидросреды с влиянием	Ухудшение качества экосистем окружающей среды с влиянием						
Риски	на флору и фауну	на флору и фауну						
Risks	Deterioration of the quality of the hydro	Deterioration of the quality of environmental ecosystems with an						
	environment with an impact on flora and fauna	impact on flora and fauna						
Возможности со-	Разработка способов гидроизоляции	Совершенствование выдачи руд по скважинам, обеспечение про-						
вершенствования	блоков и средств интенсификации процесса	цесса выщелачивания в кучах при отрицательной температуре						
Opportunities for	Development of methods for waterproofing	Perfection of ore delivery through wells, ensuring leaching in heaps						
improvement	blocks and means of process intensification	at negative temperature						
	Применим при разработке месторождений	Применимость при разработке ценных руд без включений						
Резюме	с большими запасами руд средней ценности	прочных пород						
Resume	It is applicable in the development of deposits	It is applicable in the development of valuable ores without						
	with large reserves of ores of average value	inclusions of strong rocks						

Способ скважинной гидродобычи рекомендуется для отработки пористых, рыхлых и слабосвязанных залежей и плывунов.

Параметры извлечения металлов выщелачиванием описываются кинетическим уравнением концентрационного поля [12]:

$$p\frac{\partial a}{\partial t} + v\frac{\partial a}{\partial x} = -\varphi,$$

где a — содержание металлов в продукционном растворе выщелачивания, кг/м³; φ — масса вещества, переходящего в раствор в единицу времени, кг/м³; ν — скорость фильтрации растворов, м/с; p — эффективная пористость выщелачиваемых руд, %; x — продольная координата пространства, м; t — время выщелачивания, с.

Уравнение внешне-диффузионной массопередачи:

$$\varphi = ks\varepsilon$$
,

где k — коэффициент массопередачи; s — суммарная реакционная площадь пород, ${\rm M}^2/{\rm M}^3$; ε — извлечение металла в раствор, ${\rm Kr/M}^3$.

Сумма реакционных площадей в единице объема отделяемых от массива рудных частиц:

$$S = f(r),$$

где r – диаметр элементарного куска-продукта СГД. В раствор может быть извлечено металла:

$$M = O \cdot b \cdot e \cdot k$$
,

где M – количество металлов, масс. ед.; β – содержание металлов в руде, мас. ед./ед. объема; ε – из-

влечение металла в раствор, относ. ед.; k – константа реакции; Q – объем руды, ед. объема.

Параметрами кучного выщелачивания можно управлять, увеличивая долю конвекционного обмена.

На начальном этапе руда реагирует с реагентом в форме конвекционного обмена:

$$\frac{\partial m_I}{\partial t} = k_I \cdot \varepsilon \cdot s_I.$$

Под влиянием реагентов верхний слой частицы разрушается, обеспечивая извлечение:

$$\frac{\partial m_2}{\partial t} = k_2 \cdot \varepsilon \cdot s_2.$$

На заключительном этапе основную роль играют внутридиффузионные процессы в слое новообразований толщиной:

$$\frac{\partial b}{\partial t} = \frac{k_c}{\gamma} \cdot k_g \cdot \frac{\mathcal{E}_3}{b} ,$$

где γ – плотность вещества новообразования.

Параметры извлечения в этой, заключительной, стадии кучного выщелачивания зависят от скорости и эффективности вскрытия новых реакционных площадей. Извлечение из внутренних участков минералов:

$$\frac{\partial m_3}{\partial t} = k_g \cdot \frac{\mathcal{E}_3}{b} \cdot (s_1 - s_2).$$

Уравнения математического баланса и кинетические уравнения формируют математическую модель, сконструированную авторами:

$$\begin{cases}
p \frac{\partial a}{\partial t} + v \frac{\partial a}{\partial x} = k_2 \varepsilon_2 s_2 + k_g \frac{\varepsilon_3}{b} (s_1 - s_2) + k_1 \varepsilon_1 s_1 \\
\frac{\partial s_2}{\partial t} = k_p \varepsilon_2 s_p \\
\frac{\partial b}{\partial t} = \frac{k_c}{g} k_g \frac{\varepsilon_3}{b} \\
\frac{\partial \varepsilon}{\partial t} = \frac{\partial (\varepsilon_1 + \varepsilon_2 + \varepsilon_3)}{\partial t}
\end{cases}$$

Результаты исследования согласуются с выводами Российских и зарубежных исследователей данного направления горного производства [27–33].

Выводы

Эффективность разработки гидрогенных месторождений повышается комбинированием процессов скважинной гидродобычи руд и кучного выщелачивания металлов и описывается моделью опти-

мальной последовательности принятия решений с произвольным источником информации по критерию дисконтированной прибыли от добычи, в том числе, некондиционных руд.

Научные основы комбинирования специальных технологий могут быть востребованы при переоценке запасов, модернизации систем разработки и оптимизации методов управления качеством продукции горного производства.

Рекомендованные методы контроля процессов комбинированной разработки гидрогенных месторождений способствуют снижению себестоимости добычи и повышению полноты использования недр.

Выбор эффективных вариантов комбинирования традиционных и новых технологий обеспечивается соответствием их совокупности природных и техногенных факторов разработки гидрогенных месторождений и оптимизируется предлагаемой авэкономической моделью.

СПИСОК ЛИТЕРАТУРЫ

- 1. Insitu leaching technology for uranium deposits / E.S. Oryngozhin, E.V. Fedorov, Zh.N. Alisheva, N.A. Mitishova // Eurasian Mining. −2021. − № 2. − P. 31–35.
- 2. Ghorbani Y., Franzidis J.-P., Petersen J. Heap leaching technology current state, innovations, and future directions: a review // Mineral Processing and Extractive Metallurgy Review. 2016. Vol. 37. № 2. P. 73–119.
- 3. Алтаев Ш.А., Чернецов Г.Е., Орынгожин Е.С. Технология разработки гидрогенных урановых месторождений Казахстана. Алматы: ИГД им. Д.А. Кунаева, 2003. 294 с.
- 4. Цой С., Жусупбеков С.С., Еркебалаев Ж. Разработка нового способа вскрытия и эксплуатации гидрогенных месторождений урана // Вестник КазНТУ им. К.И. Сатпаева. 2012. № 6 (94). С. 65–72.
- 5. Голик В.И., Брюховецкий О.С., Габараев О.З. Технологии разработки месторождений урановых руд. М.: МГИУ, 2007. 130 с.
- 6. Efficiency gains when using activated mill tailings in underground mining / V.S. Brigida, V.I. Golik, R.V. Klyuev, L.B. Sabirova, A.R. Mambetalieva, Yu.I. Karlina // Metallurgist. 2023. Vol. 67. № 3–4. DOI: 10.1007/s11015-023-01526-z.
- 7. Sánchez F., Hartlieb P. Innovation in the mining industry: technological trends and a case study of the challenges of disruptive innovation // Mining, Metallurgy & Exploration. 2020. Vol. 37. Iss. 5. P.1385–1399.
- Technology for nonwaste recovery of tailings of the Mizur mining and processing plant / V.I. Golik, R.V. Klyuev, N.V. Martyushev, D.A. Zyukin, A.I. Karlina // Metallurgist. 2023. Vol. 66. № 11–12. P. 1476–1480. DOI: 10.1007/s11015-023-01462-y.
- 9. Аликулов Ш.Ш. Интенсификация технологических процессов подземного выщелачивания урана из слабопроницаемых руд // Известия вузов. Горный журнал. 2017. № 1. С. 78–81.
- 10. Перспективы освоения прогнозных ресурсов урана Витимского района / Г.И. Авдонин, А.С. Салтыков, Д.А. Прохоров, И.Н. Солодов // Уран: геология, ресурсы, производство: матер. V Междунар. симпозиума. М., ВИМС, 2021. С. 123–130.
- 11. Assessment of amenability of sandstonehosted uranium deposit for in-situ recovery / L.L. Kuhar, K. Bunney, M. Jackson, J. Oram, A. Rao // Hydrometallurgy. 2018. Vol. 179. P. 157–166.
- 12. Теория и практика добычи полезных ископаемых для комбинированных способов выщелачивания / В.К. Бубнов, Э.К. Спирин, В.И. Голик, А.М. Капканщиков, Ю.Н. Смирнов, А.Е. Воробьев, А.М. Сытников, Л.И. Евсеев, В.И. Пигульский, С.П. Заборцев, Н.К. Руденко, В.М. Береза, В.А. Шамонин. Акмола: Жана-Арка, 1992. 545 с.
- 13. Актуальные вопросы добычи цветных, редких и благородных металлов / В.К. Бубнов, В.И. Голик, А.М. Капканщиков, А.Е. Воробьев, З.М. Хадонов, И.В. Поляцкий, Н.К. Руденко, А.В. Югай, О.З. Габараев, Т.В. Чекушина. Акмола: Жана-Арка, 1995. 601 с.
- 14. Utilization of mineral waste: a method for expanding the mineral resource base of a mining and smelting company / J. Rybak, S. Gorbatyuk, K. Bujanovna-Syuryun, A. Khairutdinov, Y. Tyulyaeva, P. Makarov // Metallurgist. 2021. Vol. 64. P. 851–861.
- 15. Исследование ультразвукового воздействия на ионообменные процессы при производстве урана методом подземного скважинного выщелачивания / А.В. Кононов, С.Н. Гончаренко, Д.А. Асанов, О.О. Масленников // Цветные металлы. 2020. № 4. С. 50–57.
- 16. Загрязнение подземных вод и самоочищение при производстве урана в процессе выщелачивания на месте / М. Носков, И. Солодов, А. Кеслер, Т. Теровская // Разведка, добыча, производство, Спрос и предложение, экономика и экологические проблемы: Международный симпозиум по урановому сырью для ядерного топливного цикла. Вена, 2018. С. 307–310.
- 17. Уральский горный и московский горный: взаимодействие вузов / А.В. Душин, Н.Г. Валиев, Ю.А. Лагунова, А.Г. Шорин // Горный журнал. -2018. -№ 4. C. 4-10.

- Prospects for return of valuable components lost in tailings of light metals ore processing / V.I. Golik, R.V. Klyuev, N.V. Martyushev, D.A. Zyukin, A.I. Karlina // Metallurgist. 2023. Vol. 67. № 1–2. P. 96–103. DOI: 10.1007/s11015-023-01493-5.
- 19. Orrego P., Hernandez J., Reyes A. Uranium and molybdenum recovery from copper leaching solutions using, ion exchange // Minerals Engineering. 2019. Vol. 184. P. 116–122.
- 20. Перспективы извлечения золота и попутных ценных металлов из отработанных и действующих блоков урановых месторождений / Т.С. Дуйсебаева, А.Ф. Вершков, Б.О. Дуйсебаев, И.М. Камберов, С.А. Дюсембаев // Актуальные проблемы урановой промышленности: сб. тр. IX Международная науч.-практ. конф. Алматы, 2019. Ч. 1. С. 256.
- 21. Разработка геофильтрационной модели для сопровождения добычи урана методом подземного выщелачивания на Хиагдинском месторождении / М.К. Волкова, П.Ю. Василевский, Е.В. Кортунов, В.Н. Самарцев, В.А. Лехов и др. // Подземная гидросфера: матер. Всероссийского совещания по подземным водам востока России с международным участием (XXIII совещание по подземным водам Сибири и Дальнего Востока). Иркутск: Институт земной коры СО РАН, 2021. С. 454–457.
- 22. A study of uranium-ore agglomeration parameters and their implications during heap leaching / E. Hoummady, F. Golfier, M. Cathelineau, J. Neto, E. Lefevre // Minerals Engineering. 2018. Vol. 127. P. 22–31.
- 23. Trials at depth with Vesi[™] a new ground water monitoring technology for ISR operations / D. Caruso, M. Vepsalainen, K., McGregor Miao Chen, D. Marley et al. // Alta 2020 Online Conference. Perth, Australia, 2020. P. 88–99.
- 24. Исследование гидродинамических параметров при подземном выщелачивании путем физического моделирования / Ш.Ш. Аликулов, М.А. Курбанов, У.З. Шарафутдинов, И.У. Халимов // Горный вестник Узбекистана. 2019. № 1. С 77–82
- 25. Uranium recovery from sandstone-type uranium deposit by acid in-situ leaching an example from the Kujieertai / Yipeng Zhou, Guangrong Li, Lingling Xu, Liu Jin Hui, Sun Zhanxue, Shi Weijun // Hydrometallurgy. 2020. Vol. 191. № 105209. P. 345–350.
- 26. Lagneau V., Regnault O., Descostes M. Industrial deployment of reactive transport simulation: an application to uranium in situ recovery // Reviews in Mineralogy and Geochemistry. 2019. Vol. 85. Iss. 1. P. 499–528.
- 27. Lööw J., Abrahamsson L., Johansson J. Mining 4.0 the impact of new technology from a work place perspective // Mining, Metallurgy & Exploration. 2019. Vol. 36. Iss. 4. P. 701–707.
- 28. Клюев Р.В., Басков И.И., Майер А.В. Комплексный анализ генетических особенностей минерального вещества и технологических свойств полезных компонентов Джезказганского месторождения // Устойчивое развитие горных территорий. 2019. № 11 (3). С. 321–330.
- 29. Пухова В.П., Воропанова Л.А. Очистка сточных вод горно-обогатительных комбинатов с использованием натуральных продуктов // Устойчивое развитие горных территорий. − 2019. № 2. С. 134–141.
- 30. Техногенные залежи полезных ископаемых: проблемы перехода к экономике замкнутого цикла / М.Н. Игнатьева, В.В. Юрак, А.В. Душин, В.Е. Стровский // Горная наука и техника (Россия). 2021. Т. 6 (2). С. 73–89.
- 31. Подрезов Д.Р. Задачи совершенствования управления и повышения эффективности функционирования технологических блоков рудника подземного скважинного выщелачивания урана // Горные науки и технологии. − 2020. − № 5 (2). − С 131–153
- 32. Валиев Н.Г., Головырин С.С., Макаров В.В. К вопросу об использовании систем искусственного интеллекта в процедурах аудита современного горного производства (проблематика решения задач современного горного производства с использованием мультиагентных систем) // Горный информационно-аналитический бюллетень (научнотехнический журнал). − 2017. − № \$23. − С. 134–139.
- 33. Uncertainty quantification for uranium production in mining exploitation by In Situ Recovery / J. Langanay, T. Romary, I. Freulon et al. // Computational Geosciences. 2021. Vol. 25. № 3. P. 831–850.

Информация об авторах

Владимир Иванович Голик, доктор технических наук, профессор, профессор кафедры горного дела Северо-Кавказского горно-металлургического института, Россия, 362021, г. Владикавказ, ул. Николаева, 44; профессор кафедры металлургии, Московский политехнический университет, Россия, 107023, г. Москва, ул. Б. Семеновская, 38. v.i.golik@mail.ru; http://orcid.org/0000-0002-1181-8452

Юрий Иванович Разоренов, доктор технических наук, профессор, ректор Южно-Российского государственного политехнического университета, Россия, 346428, г. Новочеркасск, ул. Просвещения, 132. yiri1963@mail.ru; http://orcid.org/0000-0001-8171-0749

Михаил Федорович Мицик, кандидат технических наук, доцент кафедры математики и прикладной информатики, Институт сферы обслуживания и предпринимательства, филиал Донского государственного технического университета в г. Шахты, Россия, 346527, г. Шахты, ул. Шевченко 147. m_mits@mail.ru; http://orcid.org/0000-0002-6746-2053

Поступила в редакцию: 19.06.2023

Поступила после рецензирования: 21.11.2023

Принята к публикации: 21.02.2024

REFERENCES

- 1. Oryngozhin E.S., Fedorov E.V., Alisheva Zh.N., Mitishova N.A. Insitu leaching technology for uranium deposits. *Eurasian Mining*, 2021, no. 2, pp. 31–35.
- 2. Ghorbani Y., Franzidis J.-P., Petersen J. Heap leaching technology current state, innovations, and future directions. *Mineral Processing and Extractive Metallurgy Review*, 2016, vol. 37, no. 2, pp. 73–119.
- 3. Altaev Sh.A., Chernetsov G.E., Oryngozhin E.S. *Technology of development of hydrogenic uranium deposits in Kazakhstan*. Almaty, IGD named after D.A. Kunaev Publ., 2003. 294 p. (In Russ.)
- 4. Tsoi S., Zhusupbekov S.S., Yerkebalaev Zh. Development of a new method for the discovery and exploitation of hydrogenic uranium deposits. *Bulletin of KazNTU named after K.I. Satpayev*, 2012, no. 94, pp. 65–72. (In Russ.)
- 5. Golik V.I. Bryukhovetskoy O.S., Gabaraev O.Z. Technologies for the development of uranium ore deposits. Moscow, MGIU Publ., 2007. 130 p. (In Russ.)
- 6. Brigida V.S., Golik V.I., Klyuev R.V., Sabirova L.B., Mambetalieva A.R., Karlina Yu.I. Efficiency gains when using activated mill tailings in underground mining. *Metallurgist*, 2023, vol. 67, no. 3–4. DOI: 10.1007/s11015-023-01526-z.
- 7. Sánchez F., Hartlieb P. Innovation in the mining industry: technological trends and a case study of the challenges of disruptive innovation. *Mining, Metallurgy & Exploration*, 2020, vol. 37, Iss. 5, pp.1385–1399.
- 8. Golik V.I., Klyuev R.V., Martyushev N.V., Zyukin D.A., Karlina A.I. Technology for nonwaste recovery of tailings of the Mizur mining and processing plant. *Metallurgist*, 2023, vol. 66, no. 11–12, pp. 1476–1480. DOI: 10.1007/s11015-023-01462-y.9.
- 9. Alikulov Sh.Sh. Intensification of technological processes of underground leaching of uranium from weakly permeable ores. *Izvestiya vuzov. Mining magazine*, 201, no. 1, pp. 78–81. (In Russ.)
- 10. Avdonin G.I., Saltykov A.S., Prokhorov D.A., Solodov I.N. Prospects for the development of predictive uranium resources of the Vitim district. *Uran: geology, resources, production. Materialy V International Symposium.* Moscow, VIMS Publ., 2021. pp. 123–130. (In Russ.)
- 11. Kuhar L.L., Bunney K., Jackson M., Oram J., Rao A. Assessment of amenability of sand-stonehosted uranium deposit for in-situ recovery. *Hydrometallurgy*, 2018, vol. 179, pp. 157–166.
- 12. Bubnov V.K., Spirin E.K., Golik V.I., Kapkanshchikov A.M., Smirnov Yu.N., Vorobyev A.E., Sytnikov A.M., Evseev L.I., Pigulsky V.I., Zabortsev S.P., Rudenko N.K., Bereza V.M., Shamonin V.A. *Theory and practice of mining minerals for combined leaching*. Akmola, Jean-Arc Publ., 1992. 545 p. (In Russ.)
- 13. Bubnov V.K., Golik V.I., Kapkanshchikov A.M., Vorobyev A.E., Khadonov Z.M., Polyatsky I.V., Rudenko N.K., Yugai A.V., Gabaraev O.Z., Chekushina T.V. *Current issues of extraction of non-ferrous, rare and precious metals*. Akmola, Jean-Ar c Publ., 1995. 601 p. (In Russ.)
- 14. Rybak J., Gorbatyuk S., Bujanovna-Syuryun K., Khairutdinov A., Tyulyaeva Y., Makarov P. Utilization of mineral waste: a method for expanding the mineral resource base of a mining and smelting company. *Metallurgis*, 2021, vol. 64, pp. 851–861.
- 15. Kononov A.V., Goncharenko S.N., Asanov D.A., Maslennikov O.O. Investigation of ultrasonic effects on ion exchange processes in the production of uranium by the method of underground borehole leaching. *Non-ferrous metals*, 2020, no. 4, pp. 50–57. (In Russ.)
- 16. Noskov M., Solodov I., Kesler A., Terovskaya T. Groundwater pollution and self-purification in the production of uranium during on-site leaching. *International Symposium on Uranium raw materials for the nuclear fuel cycle. Exploration, Extraction, Production, Supply and Demand, economics and environmental problems (URAM-2018)*. Vienna, 2018. pp. 307–310. (In Russ.)
- 17. Dushin A.V., Valiev N.G., Lagunova Yu.A., Shorin A.G. Ural mining and Moscow mining: interaction of universities. *Mining Journal*, 2018, no. 4, pp. 4–10. (In Russ.)
- 18. Golik V.I., Klyuev R.V., Martyushev N.V., Zyukin D.A., Karlina A.I. Prospects for return of valuable components lost in tailings of light metals ore processing. *Metallurgist*, 2023, vol. 67, no. 1–2, pp. 96–103. DOI: 10.1007/s11015-023-01493-5.
- 19. Orrego P., Hernandez J., Reyes A. Extraction of uranium and molybdenum from copper leaching solutions using ion exchange. *Mineral engineering*, 2019, vol. 184, pp. 116–122.
- 20. Duisebaeva T.S., Vershkov A.F., Duisebaev B.O., Kamberov I.M., Dyusembaev S.A. Prospects for extracting gold and associated precious metals from spent and active blocks of uranium deposits. *Actual problems of uranium industry. IX International Scientific and Practical Conference.* Almaty, 2019. P. 1, pp. 256. (In Russ.)
- 21. Volkova M.K., Vasilevsky P.Yu., Kortunov E.V., Samartsev V.N., Lekhov V.A. Development of a geofiltration model to support uranium mining by underground leaching at the Khiagdinsky deposit. *Underground hydrosphere. Materials of All-Russian Meeting on Groundwater of the East of Russia with international participation (XXIII Meeting on Groundwater of Siberia and the Far East).* Irkutsk, Institute of the Earth's Crust SB RAS Publ., 2021, pp. 454–457. (In Russ.)
- 22. Hoummady E., Golfier F., Cathelineau M., Neto J., Lefevre E. A study of uranium-ore agglomeration parameters and their implications during heap leaching. *Minerals Engineering*, 201, vol. 127, pp. 22–31.
- 23. Caruso D., Vepsalainen M., McGregor K., Miao Chen, Marley D. Trials at depth with Vesi™ is a new ground water monitoring technology for ISR operations. *Alta 2020 Online Conference*. Perth, Australia, 2020. pp. 88–99.
- 24. Alikulov Sh.Sh., Kurbanov M.A., Sharafutdinov U.Z., Khalimov I.U. Investigation of hydrodynamic parameters during underground leaching by physical modeling. *Gorny vestnik Uzbekistan*, 2019, no. 1, pp. 77–82. (In Russ.)
- 25. Yipeng Zhou, Guangrong Li, Lingling Xu. Uranium recovery from sandstone-type uranium deposit by acid in-situ leaching an example from the Kujieertai. *Hydrometallurgy*, 2020, vol. 191, no. 105209.
- 26. Lagneau V., Regnault O., Descostes M. Industrial deployment of reactive transport simu-lation: an application to uranium In situ Recovery. *Reviews in Mineralogy and Geochemistry*, 2019, vol. 85, Iss. 1, pp. 499–528.
- 27. Lööw J., Abrahamsson L., Johansson J. Mining 4.0 the impact of new technology from a work place perspective. *Mining, Metallurgy & Exploration*, 2019, vol. 36, Iss. 4, pp. 701–707.
- 28. Klyuev R.V., Bosikov I.I., Mayer A.V. Complex analysis of genetic features of mineral substance and technological properties of useful components of Dzhezkazgan deposit. *Sustainable Development of Mountain Territories*, 2019, no. 11 (3), pp. 321–330. (In Russ.)

- 29. Pukhova V. P., Voropanova L. A. Wastewater treatment of mining and processing plants using the natural products. *Sustainable Development of Mountain Territories*, 2019, no. 2, pp. 134–141. (In Russ.)
- 30. Ignatyeva M.N., Yurak V.V., Dushin A.V., Strovsky V.E. Technogenic mineral accumula-tions: problems of transition to circular economy. *Mining Science and Technology*, 2021, no. 6 (2), pp. 73–89. (In Russ.)
- 31. Podrezov D.R. Tasks of improving the management and increasing the efficiency of the technological blocks of the underground borehole uranium leaching mine. *Mining Sciences and Technologies*, 2020, no. 5 (2), pp. 131–153. (In Russ.)
- 32. Valiev N.G., Golovyrin S.S., Makarov V.V. On the use of artificial intelligence systems in audit procedures of modern mining production (problems of solving problems of modern mining production using multi-agent systems). *Mining information and analytical Bulletin (scientific and technical journal)*, 2017, no. S23, pp. 134–139. (In Russ.)
- 33. Langanay J., Romary T., Freulon I. Uncertainty quantification for uranium production in mining exploitation by In Situ Recovery. *Computational Geosciences*, 2021, vol. 25, no. 3, pp. 831–850.

Information about the authors

Vladimir I. Golik, Dr. Sc., Professor, North-Caucasian Mining and Metallurgical Institute (State Technological University), 44, Nikolaev street, Vladikavkaz, 362021, Russian Federation; Moscow Polytechnic University, 38, B. Semenovskaya street, Moscow, 107023, Russian Federation. v.i.golik@mail.ru; http://orcid.org/0000-0002-1181-8452

Yuri I. Razorenov, Dr. Sc., Professor, South Russian State Polytechnic University, 132, Prosveshcheniya street, Novocherkassk,346428, Russian Federation. yiri1963@mail.ru; http://orcid.org/0000-0001-8171-0749 **Mikhail F., Mizik**, Cand. Sc., Associate Professor, Institute of Service and Entrepreneurship, branch of DSTU in Shakhty, 147, Shevchenko street, Shakhty, 346527, Russian Federation. m_mits@mail.ru; http://orcid.org/0000-0002-6746-2053

Received: 19.06.2023 Revised: 21.11.2023 Accepted: 21.02.2024 УДК 504.45(504.4.054)

DOI: 10.18799/24131830/2024/3/4524 Шифр специальности ВАК: 1.6.21

Условия формирования гидрохимического режима р. Вихорева и Усть-Вихоревского залива (Усть-Илимское водохранилище)

П.Г. Долгих[⋈], В.И. Полетаева, М.В. Пастухов

Институт геохимии им. А.П. Виноградова СО РАН, Россия, г. Иркутск [™]pdolgikh@igc.irk.ru

Аннотация. Актуальность исследования обусловлена необходимостью контроля за гидрохимическим режимом водоемов, в значительной степени подверженных антропогенным воздействиям. Цель: изучить пространственное распределение концентраций главных ионов и микроэлементов и выделить природные и антропогенные факторы формирования гидрохимического состава р. Вихорева и Усть-Вихоревского залива Усть-Илимского водохранилища. Объекты: воды р. Вихорева до и после поступления сточных вод Братской промышленной зоны, Усть-Вихоревский залив (Вихоревская и Бурдойская часть) Усть-Илимского водохранилища. Методы. Главные ионы определены с использованием стандартных методов, принятых в гидрохимических исследованиях, Сорг – титриметрическим методом, кислород - йодометрическим методом. Определение в воде концентраций ртути выполнено атомно-абсорбционным методом, других микроэлементов - методом масс-спектрометрии с индуктивной связанной плазмой *Результаты*. В воде р. Вихорева после поступления сточных вод Братской промышленной зоны обнаружены значительные преобразования ее гидрохимического состава. По акватории реки наблюдается снижение концентраций O_2 (до 0.3 мг O_2/π) и повышение концентрации C_{орг} (до 131 мг/л), SO₄²⁻ (до 262 мг/л), К⁺ (до 10,6 мг/л), Cl⁻ (до 220 мг/л), Na⁺ (до 240 мг/л), Mn (до 248,5 мкг/л), Cr (до 7,4 мкг/л), в меньшей степени Al (до 224,1 мкг/л), Co (до 0,26 мкг/л), Cu (до 5,4 мкг/л), Zn (до 43,2 мкг/л), Cd (до 0,126 мкг/л), Pb (до 0,40 мкг/л), Hg (до 0,0032 мкг/л). В водах Усть-Вихоревского залива концентрации большинства компонентов основного ионного состава и микроэлементов снижаются, по сравнению с водой р. Вихорева, в поверхностных водах. В придонных водах зафиксированы максимальные концентрации Мп (511,5 мкг/л), Fe (1567,2 мкг/л), Co (0,80 мкг/л), Pb (0,77 мкг/л). Основной ионный состав и концентрация микроэлементов в воде р. Вихорева определяется прежде всего антропогенным фактором. Вместе с этим в гидрохимический режим реки вносят свой вклад и природные факторы. На гидрохимию Усть-Вихоревского залива влияет как поступление вод высокозагрязненной реки, так и формирующие его воды русловой части Усть-Илимского водохранилища.

Ключевые слова: загрязнение, главные ионы, микроэлементы, р. Вихорева, Усть-Илимское водохранилище

Благодарности: Исследование проведено в рамках выполнения государственного задания по Проекту № 0284-2021-0003.

Для цитирования: Долгих П.Г., Полетаева В.И., Пастухов М.В. Условия формирования гидрохимического режима р. Вихорева и Усть-Вихоревского залива (Усть-Илимское водохранилище) // Известия Томского политехнического университета. Инжиниринг георесурсов. – 2024. – Т. 335. – № 3. – С. 92–107. DOI: 10.18799/24131830/2024/3/4524

UDC 504.45(504.4.054)

DOI: 10.18799/24131830/2024/3/4524

Conditions of formation of Vikhoreva river and Ust-Vikhorevsky bay hydrochemical regime (Ust-Ilimsk reservoir)

P.G. Dolgikh[⊠], V.I. Poletaeva, M.V. Pastukhov

Vinogradov Institute of Geochemistry SB RAS, Irkutsk, Russian Federation

□ pdolgikh@igc.irk.ru

Abstract. Relevance. The necessity to control the hydrochemical regime of water bodies significantly affected by anthropogenic impacts. Aim. To study the spatial distribution of major ions and trace element concentrations and identify

natural and anthropogenic formation factors of the hydrochemical composition of the Vikhoreva river and Ust-Vikhorevsky bay of the Ust-Ilimsk reservoir. Objects. Waters of the Vikhoreva river before and after inflow of wastewater from the Bratsk industrial zone, waters of the Ust-Vikhorevsky bay (Vikhorevskaya and Burdoyskaya parts) of the Ust-Ilimsk reservoir. Methods. Determination of micronutrients concentrations in water was performed by inductive coupled plasma mass spectrometry, mercury - by atomic absorption method. Cations and anions were determined using standard methods accepted in hydrochemical studies, Sorg - by titrimetric method, oxygen - by iodometric method. Results. In the Vihoreva river water after wastewater inflow from the Bratsk industrial zone, significant transformations of its hydrochemical composition were detected. Along the water area of river decrease of O₂ concentrations (up to 0.3 mg O₂/l) and increase of Corg (up to 131 mg/l), SO₄²⁻ (up to 262 mg/l), K⁺ (up to 10.6 mg/l), Cl⁻ (up to 220 mg/l), Na⁺ (up to 240 mg/l), Mn (up to 248.5 mg/l), Cr (up to 7.4 mg/l), to a lesser extent Al (up to 224.1 mg/l), Co (up to 0.26 mg/l), Cu (up to 5.4 mg/l), Zn (up to 43.2 mg/l), Cd (up to 0.126 mg/l), Pb (up to 0.40 mg/l), Hg (up to 0.0032 mg/l) are observed. In surface waters of the Ust-Vikhorevsky bay concentrations of most components of the main ionic composition and trace elements decrease, as compared to the Vikhoreva river water. Maximum concentrations of Mn (511.5 mg/l), Fe (1567.2 mg/l), Co (0.80 mg/l), Pb (0.77 mg/l) were detected in bottom waters. The main ionic composition and trace element concentrations in the Vihoreva river water are determined primarily by anthropogenic factor. At the same time, the hydrochemical regime of the river is effected by natural factors. Inflow of both waters of the highly polluted and forming waters of the channel part of the Ust-Ilimsk reservoir impacts the hydrochemistry of the Ust-Vikhorevsky bay.

Keywords: pollution, major ions, trace elements, Vikhoreva river, Ust-Ilimsk reservoir

Acknowledgements: The study was performed by the governmental assignment in terms of Project № 0284-2021-0003.

For citation: Dolgikh P.G., Poletaeva V.I., Pastukhov M.V. Conditions of formation of Vikhoreva river and Ust-Vikhorevsky bay hydrochemical regime (Ust-Ilimsk reservoir). *Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering*, 2024, vol. 335, no. 3, pp. 92–107. DOI: 10.18799/24131830/2024/3/4524

Введение

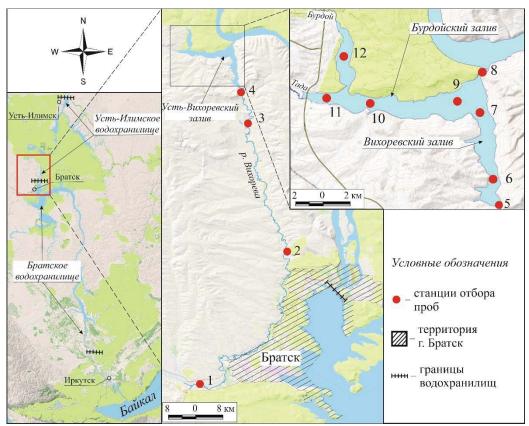
В настоящее время гидрохимический состав большинства водоемов зависит не только от природных, но и от антропогенных факторов [1, 2]. Среди потенциально опасных веществ антропогенного происхождения микроэлементы, в том числе металлы, занимают приоритетное место. Эти элементы, находящиеся в водной среде в концентрациях ниже 1 мг/л, с одной стороны, играют важную роль в гидросистемах [3], с другой – обладают высокой токсичностью и биодоступностью [4, 5].

Основным источником загрязняющих веществ для водных экосистем являются предприятия различных отраслей промышленности, расположенные на побережье водоема. Путями поступления загрязнителей с территорий промышленных зон на акваторию водоема является атмосферный перенос, поверхностный (дождевой и талый) сток и, несомненно, самый опасный – сточные воды [6, 7]. Сточные воды предприятий, обогащенные органическими и неорганическими веществами, являются мощными источниками загрязнения не только водных объектов, в которые они непосредственно поступают. Большинство рек, протекающих в зонах крупных промышленных зон и принимающих на себя основную техногенную нагрузку, сами становятся источником загрязнения для водоемов, в которые они впадают [8, 9].

Показательным примером миграции загрязняющих веществ в цепи «источник загрязнения — небольшой водоток — крупный водоем» является поступление сточных вод Братской промышленной зоны в р. Вихорева и далее в Усть-Илимское водохранилище, которое является неотъемлемой частью

крупнейшей в мире Байкало-Ангарской пресноводной системы. С территории Братской промышленной зоны, включающей предприятия химической, металлургической, лесоперерабатывающей и других видов промышленности, более семидесяти лет в небольшой водоток – р. Вихорева (левый приток р. Ангара) – поступают огромные количества разнообразных веществ антропогенного происхождения. На протяжении нескольких десятилетий р. Вихорева относится к наиболее загрязненным рекам РФ, а ее воды по степени загрязненности характеризуются как «очень загрязненные» и «грязные» [10, 11]. Несмотря на усовершенствование и реконструкцию основных технологических объектов предприятий Братской промышленной зоны и сокращение количества загрязняющих веществ в сточных водах, в открытой печати нередко появляются сообщения о фактах катастрофического воздействия антропогенной деятельности на всю экосистему р. Вихорева. Так, например, «природоохранной прокуратурой установлено, что в р. Вихорева в результате кислородного голодания погибло несколько сотен особей рыб различных пород» [12], «массовая гибель рыбы в р. Вихорева произошла в связи с превышением предельно допустимых концентраций диметилсульфида, хлороформа, нефтепродуктов, фенола и лигнина» [13] и т. д. В связи с этим исследования, сосредоточенные на сборе информации о качественных характеристиках и их пространственных изменениях в водной среде р. Вихорева и Усть-Илимском водохранилище, чрезвычайно важны для эффективного управления водными ресурсами.

Наиболее полное исследование, направленное на изучение влияния сточных вод на гидрохимический состав р. Вихорева, было проведено Т.А. Стрижевой [14] в 1974–1984 гг. Автором подробно изучена пространственно-временная динамика концентрации главных ионов и биогенных компонентов в воде р. Вихорева, р. Ангаре, образованного после зарегулирования реки Усть-Вихоревского залива и акватории Усть-Илимского водохранилища. В начале XXI в. исследования акцентировались на определении концентраций специфических для деревоперерабатывающего производства загрязняющих веществ в р. Вихорева и Вихоревском заливе [15], а также концентраций основных ионов и биогенных компонентов в водной среде всего Усть-Илимского водохранилища [16, 17]. Показано, что, несмотря на анонсированные природоохранные мероприятия, негативное воздействие сточных вод предприятий Братской промышленной зоны на р. Вихорева продолжается и, как и прежде, обусловлено значительным увеличением концентраций сульфидов, сероводорода, взвешенных и биогенных веществ, сульфат ионов, ионов хлора и натрия и др. загрязнителей в водах реки. Помимо специфичных для каждого вида промышленности загрязняющих веществ, в окружающую среду потенциально может поступать большой спектр и других органических и неорганических соединений. Исследований, направленных на изучение концентраций микроэлементов в водной среде загрязненной р. Вихорева, не проводились. Всё это обусловило цель работы – выявление закопространственного распределения номерностей концентраций главных ионов и микроэлементов, а также выделение природных и антропогенных факторов формирования гидрохимического состава р. Вихорева и Усть-Вихоревского залива Усть-Илимского водохранилища.


Объекты и методы

Объект исследования. Глубокое малопроточное Усть-Илимское водохранилище, созданное на р. Ангаре, является третьим водохранилищем в каскаде Ангарских ГЭС. Природный ресурсный потенциал во многом определил специфику промышленности всей Восточной Сибири. Помимо крупных энергетических комплексов в бассейне р. Ангары и ее водохранилищ расположены предприятия химической, металлургической, лесоперерабатывающей и других видов промышленности, сгруппированные в крупные промышленные зоны. Деятельность предприятий этих зон существенно преображает геохимический облик абиотических и биотических компонентов всей водной системы [18, 19]. К одной из таких зон относится расположенная в бассейне Усть-Илимского водохранилища промышленная зона г. Братска, в состав которой входят предприятия гидроэнергетики, Братского лесопромышленного комплекса (БЛПК), крупнейший в России Братский алюминиевый завод (БрАЗ), завод ферросплавов и т. д.

По гидрологическим характеристикам р. Вихорева относится к небольшим водотокам. Длина реки 296 км, ширина до 25 м, глубина до 2 м, средние скорости течения от 0,1 до 2,8 м/с. Загрязнение реки началось уже при создании Вихоревского лесозаготовительного комбината (1956 г.). Далее при развитии промышленной инфраструктуры г. Братска были введены в эксплуатацию БЛПК (в настоящее время АО Группа «Илим») и БрАЗ. Помимо промышленных отходов в р. Вихорева поступают коммунальные стоки г. Братска и г. Вихоревка. С пуском производств БЛПК, БрАЗ и развитием г. Братска суммарный расход сточных вод в период зимней межени в 3-4 раза превышал естественный водный сток реки [14]. Из всего объема сточных вод, проходящих через очистные сооружения и поступающих в р. Вихорева, до нормативных показателей очищается только 1 %, а недостаточно очищенными сбрасывается 99 % [20]. Качественный состав и степень загрязненности сточных вод зависят от вида вырабатываемой продукции, мощности предприятий, вида и типа применяемого оборудования, а также выбранного метода очистки сточных вод. Многолетнее поступление сточных вод Братской промышленной зоны определило, что формирование Усть-Вихоревского залива, состоящего из двух частей (Вихоревский залив и Бурдойский залив), во время заполнения Усть-Илимского водохранилища уже происходило на фоне интенсивного загрязнения р. Ангары и р. Вихорева.

Станции отбора проб воды р. Вихорева (точки наблюдений (т.н.) 1–4), Вихоревского залива (т.н. 5–8) и Бурдойского залива (т.н. 9–12) Вихоревского залива Усть-Илимского водохранилища показаны на рис. 1. Отбор проб проведен батометром ОсеапТеst110A. В воде р. Вихорева, заливов Бурдой и Тада пробы отбирались с поверхностного слоя воды, в Усть-Вихоревском заливе с двух горизонтов: поверхностного – с глубины 0,5 м и придонного – в метровом слое от дна.

Пробы воды для определения концентраций микроэлементов (Al, Cr, Mn, Fe, Cu, Zn, As, Cd, Pb, Hg) отобраны в контейнеры объемом15 мл, Hg — объемом 1 л, главных ионов (HCO_3^- , Cl^- , $SO_4^{2^-}$, Ca^{2^+} , Mg^{2^+} , Na^+ , K^+ и Сорг) — объемом 1,5 л. На месте отбора пробы воды для определения Hg консервировались 2 % $KMnO_4$ (0,5 мл/л) и 50 % H_2SO_4 (1 мл/л), других микроэлементов — подкислены HNO_3 . Аналитические работы проведены в Центре коллективного пользования «Изотопно-геохимических исследований» Института геохимии им. А.П. Виноградова CO PAH (Γ . Uркутск, V0 россия).

Рис. 1. Карта-схема станций отбора проб воды: 1 – 10 км ниже г. Вихоревка (выше г. Братска); 2 – 1 км ниже сточных вод промышленной зоны г. Братска; 3 – 14 км выше устья реки; 4 – 1 км выше устья; Вихоревский залив: 5 – впадение р. Вихорева в залив; 6 – 2 км ниже устья р. Вихорева; 7 – перед слиянием Вихоревского и Бурдойского заливов; 8 – устье Усть-Вихоревского залива; Бурдойский залив: 9 – перед слиянием Бурдойского и Вихоревского заливов; 10 – слияние заливов Тада и Бурдой; 11 – зал. Тада; 12 – зал. Бурдой

Fig. 1. Map-scheme of water sampling stations: 1 – 10 km below the town of Vikhorevka (above the town of Bratsk); 2 – 1 km below the sewage of the industrial zone of Bratsk; 3 – 14 km above the mouth of the river; 4 – 1 km above the mouth; Vikhorevsky Bay: 5 – the river Vikhoreva inflow into the Bay; 6 – 2 km below the mouth of Vikhoreva river; 7 – before the confluence of Vikhorev and Burdoy bays; 8 – mouth of Ust-Vikhorev bay; Burdoy bay: 9 – before the confluence of Burdoy and Vikhorev bays; 10 – confluence of Tada and Burdoy bays; 11 – Tada bay; 12 – Burdoy Bay

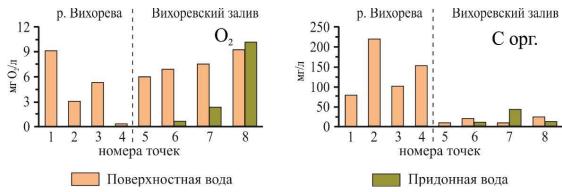
Определение в воде концентраций Al, Cr, Mn, Fe, Cu, Zn, As, Cd, Pb выполнено методом массспектрометрии с индуктивной связанной плазмой (ICP-MS) на масс-спектрометре ELEMENT-2 (Thermo Finnigan, Bremen, Германия), Hg – атомноабсорбционным методом на анализаторе РА-915 с приставкой РП-91 (методом «холодного пара»). Катионы (Ca²⁺, Mg²⁺, Na⁺, K⁺) и анионы (HCO₃⁻, Cl⁻, SO_4^{2-}) определены с использованием стандартных методов [21]. Для определения концентраций органического углерода (Сорг) рассчитано химическое потребление кислорода титриметрическим методом с последующим перерасчетом по эквивалентному отношению углерода к кислороду. Концентрации растворенного кислорода определены в полевых условиях йодометрическим методом.

Результаты и обсуждение

Длительную временную динамику техногенного влияния стоков Братской промышленной зоны хорошо отражают органолептические характеристики вод р. Вихорева. В работе [14] показано, что до создания Усть-Илимского водохранилища коричневые воды высокозагрязненной реки при впадении резко контрастировали с голубовато-зелеными водами р. Ангары. Загрязненный поток характеризовался низкой прозрачностью (0,15-0,30 м), специфическим запахом, высокой цветностью и, самое показательное, устойчивой пеной и различными плавающими примесями (хлопья, слизь, радужные пятна и др.) на водной поверхности. В этот период зона влияния р. Вихорева распространялась по р. Ангаре на расстояние более 100 км. Создание водохранилища привело к улучшению качественных характеристик вод самой реки и зоны ее влияния, которая ограничивалась 10 км ниже по течению от устья реки [14]. В период настоящих исследований специфический запах, высокая цветность и пена отмечались на участках реки, приближенных к сбросам сточных вод. В районе слияния р. Вихорева и Вихоревского залива характерные органолептические показатели загрязненных вод диагностируются менее четко, прозрачность воды 0,9 м.

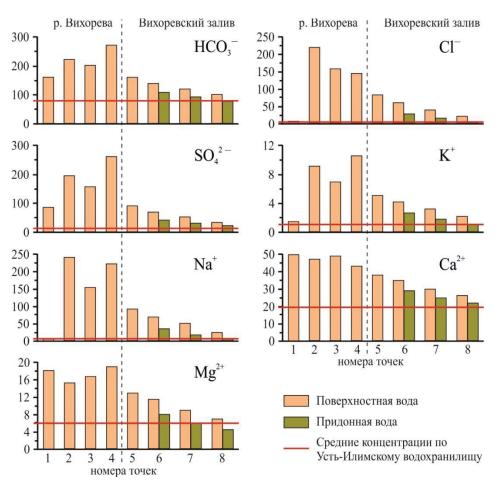
Органическое вещество и кислородный режим

Одной из важнейших характеристик, определяющих эколого-геохимическую обстановку любого водного объекта, является концентрация растворенного кислорода в воде [22]. В соответствии с требованиями, предъявляемыми к составу поверхностных вод рыбохозяйственного назначения РФ, содержание кислорода в водах не должно быть ниже 6 мг O_2/π [23]. Считается, что гидробионты начинают испытывать стресс при концентрациях кислорода от 3 до 5 мг O_2/π [22], а при концентрации 2 мг O_2 /л и менее водоем не может поддерживать удовлетворительные для жизнедеятельности гидробионтов условия [24]. Вода т.н. 1, расположенной выше стоков промышленной зоны г. Братска и поэтому принятой для оценки техногенного воздействия на р. Вихорева в качестве условно фоновой станции, содержит количество кислорода, достаточное для удовлетворительного существования гидробионтов и поддержания окислительной обстановки (рис. 2). После поступления сточных вод концентрация О2 резко снижается, дефицит кислорода наблюдается на всем протяжении реки. Наиболее ярко это проявляется перед устьем реки (т. н. 4), где концентрация кислорода в воде падает до критических значений -0.3 мг O_2/π . Несомненно, что такой кислородный режим реки определяет стрессовые условия для гидробионтов, которые сопровождаются тяжелыми последствиями для их жизнедеятельности, вплоть до гибели.


Специфичный для сульфатцеллюлозного и деревообрабатывающего производств состав сточных вод БЛПК включает в себя большие количества взвешенных и органических (лигнин, нефтепродукты, метанол, фенол и т. д.) веществ [10]. Их при-

сутствие в р. Вихорева после впадения сточных вод (т.н. 2) определяется значительным увеличением концентрации Сорг, по сравнению с условно фоновым содержанием. Ниже по течению, вплоть до самого устья реки, концентрация Сорг остается повышенной. В связи с этим выделенное снижение концентраций кислорода в воде р. Вихорева свидетельствует об окислении большого количества органических веществ, поступающих со сточными водами.

В воде Вихоревского залива концентрации О2 подвержены значительным вариациям (рис. 2). Несмотря на увеличение его концентраций в поверхностных слоях воды до нормативных для водоемов рыбохозяйственного назначения, в придонных слоях залива фиксируются близкие к нулю значения $(0.59 \text{ мг } O_2/\pi)$. Только на выходе из Усть-Вихоревского залива концентрация кислорода по всей толще воды выше 9 мг О2/л. Концентрации Сорг в воде залива значительно снижаются, по сравнению с водой реки, составляя в среднем 12,1 мг/л. Воды Бурдойского залива содержат концентрации кислорода, достаточные для удовлетворительного обитания гидробионтов (табл. 1). Показатели органического вещества, составляющие в зал. Тада, зал. Бурдой и в районе их слияния 9,1-10,6 мг/л, увеличиваются в районе слияния Бурдойского и Вихоревского залива.


Главные ионы

Минерализация вод Вихоревского залива изменяется от 136,2 до 487,5 мг/л, Бурдойского залива – от 136,4 до 217,8 мг/л. Реакция среды близкая к нейтральной или слабощелочная (7,25–8,20). Более высокая минерализация определена в водах р. Вихорева (от 326,8 до 982,4 мг/л), величина рН слабощелочная (до 8,20). Концентрации главных ионов в воде р. Вихорева и в Усть-Вихоревском заливе показаны на рис. 3 и в табл. 1.

Рис. 2. Концентрация кислорода и органического углерода в воде р. Вихорева и Вихоревского залива. Примечание: Номера точек соответствует точкам наблюдений, указанных на рис. 1

Fig. 2. Concentration of oxygen and organic carbon in the water of the Vikhoreva river and Vikhorevsky bay. Note: Point numbers correspond to the observation points indicated in Fig. 1

Рис. 3. Концентрации главных ионов (мг/л) в воде р. Вихорева и Вихоревском заливе (точки наблюдений соответствуют точкам наблюдений на рис. 1). Средние концентрации в воде русловой части Усть-Илимского водохранилища приведены по [16]

Fig. 3. Concentrations of major ions (mg/l) in the water of the Vikhoreva river and Vikhorevsky bay (observation points correspond to the observation points in Fig. 1). Average concentrations in the water of the channel part of the Ust-llimsk reservoir are given according to [16]

Таблица 1. Концентрации главных ионов, кислорода и органического вещества в Бурдойском заливе (мг/л)

 Table 1.
 Concentrations of major ions, oxygen and organic matter in the Burdoy bay (mg/l)

Точки наблюдений Observation points	HCO ₃ -	Cl-	SO ₄ ²⁻	K+	Na+	Ca ²⁺	Mg ²⁺	02	Сорг
11	99,6	12,2	20,8	1,7	15,5	26,1	7,3	6,69	9,1
12	120,0	11,4	22,0	1,8	14,6	29,0	10,0	8,92	9,4
10	107,8	16,6	29,2	2,0	20,7	27,8	8,0	9,39	10,6
9 (π)/(s)*	105,9	20,4	32,4	2,2	22,0	27,0	7,0	9,31	19,7
9 (д)/(b)*	82,5	5,0	12,4	1,2	7,7	22,0	4,9	6,87	21,3

^{* –} n – поверхностная, д – придонная вода/s – surface, b – bottom water.

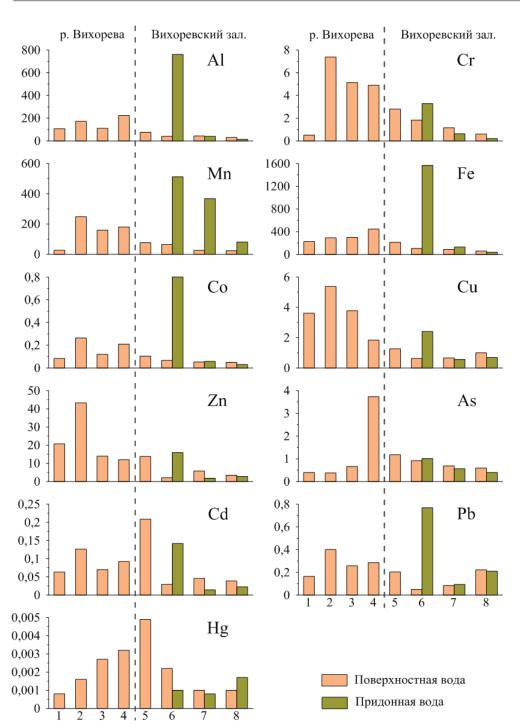
В воде условно фоновой станции р. Вихорева (т.н. 1), по сравнению с русловой частью Усть-Илимского водохранилища, определены более высокие концентрации HCO_3^- , SO_4^{2-} , Ca^{2+} , Mg^{2+} , K^+ и близкие концентрации Cl^- и Na^+ (рис. 3). Такие гидрохимические показатели реки обуславливают природные факторы их формирования: фильтрация сульфатно-гидрокарбонатных подземных вод в днище долины реки [25] и выщелачивание гипсов, распространенных в ее бассейне [14]. Вместе с

этим доминирующим анионом в воде реки, так же как в Усть-Илимским водохранилище [16], является HCO_3^- , катионом — Ca^{2+} . Концентрации SO_4^{2-} >CI $^-$, Mg^{2+} >Nа $^+$ >K $^+$. К компонентам основного ионного состава, концентрации которых в водной среде увеличиваются под воздействием антропогенных факторов, относятся в основном Cl^- и SO_4^{2-} [26, 27]. Состав сточных вод Братской промышленной зоны также включает в себя большие количества хлорид- и сульфат-ионов. Так, в 1997 г. в

р. Вихорева за год сброшено 12860 т сульфат-иона, 30650 т хлорид-иона [10]. В 2016 г. приводятся еще большие значения поступающих в реку загрязняющих веществ: 27800 т сульфат-иона, 49989 т хлорид-иона [11]. Несомненно, для небольшой реки такие значительные объемы загрязняющих веществ отражаются в резком увеличении концентраций Cl⁻ и SO_4^{2-} в воде (рис. 3). Данных по концентрациям Na⁺ и K⁺в сточных водах в официальных источниках не приводится. Вместе с этим на их антропогенное происхождение указывает значительное повышение (в 61 и 6 раз, соответственно) концентраций этих ионов в воде т.н. 2, по сравнению с т.н. 1. После поступления сточных вод в воде р. Вихорева концентрации $Cl^->SO_4^2->HCO_3^-$, концентрации $Na^{+}>Ca^{2+}>Mg^{2+}>K^{+}$.

В водах т.н. 3 и 4 р. Вихорева и т.н. 5–8 Вихоревского залива доминирующим анионом остается HCO_3^- . Концентрации SO_4^{2-} >СГ, за исключением т.н. 3, в которой $C\Gamma$ > SO_4^{2-} . Соотношение катионов в воде реки и залива остается сходным с т.н. 2: Na^+ > Ca^{2+} > Mg^{2+} > K^+ . Только в придонной воде т.н. 8 Вихоревского залива Ca^{2+} , так же как в водах Усть-Илимского водохранилища, становится преобладающим. Далее следуют Na^+ > Mg^{2+} > K^+ .

Закономерное последовательное уменьшение компонентов техногенного происхождения в р. Вихорева и Вихоревском заливе по мере течения вод от источника загрязнения наблюдается только для ионов хлора (рис. 3). Во всех точках наблюдения залива концентрации основных ионов в поверхностной воде выше, чем в русловой части Усть-Илимского водохранилища (рис. 3). Только в придонной воде устья Усть-Вихоревского залива (т.н. 8) концентрации главных ионов становятся близки к средним показателям по всему водохранилищу. Результаты исследования показали, что по всему Вихоревскому заливу концентрации главных ионов в поверхностном слое выше, по сравнению с придонным (рис. 3). Подобное явление, отмеченное и в предыдущих исследованиях [14], связано с растеканием более теплых, подогретых сточными водами вод р. Вихорева, по поверхности холодных вод р. Ангары.


Основной ионный состав Бурдойского залива формируется с участием поступающих в него рек Тады и Бурдой [16]. Ближе к устьевым участкам рек (т.н. 11 и 12) концентрации SO_4^{2-} , Cl^- , Na^+ – основных компонентов, поступающих с сточными водами Братской промышленной зоны, ниже, чем в т.н. 10 Бурдойского залива. Так же как в Вихоревском заливе в т.н. 9, концентрации катионов и анионов в поверхностной воде повышены, по сравнению с придонной. Выделенные особенности пространственного распределения главных ионов по-

казывают, что обмен вод между смежными частями Усть-Вихоревского залива, определяющийся гидродинамическими параметрами водоема, способствует распространению загрязненных вод р. Вихорева в Бурдойскую часть.

Микроэлементы

Концентрации микроэлементов в воде р. Вихорева, Вихоревском и Бурдойском заливах (рис. 4, табл. 2, 3) характеризуются широким диапазоном значений, мкг/л: Al (5,3–761,1), Cr (0,19–3,29), Mn (16,2–511,5), Fe (27,0–1567,2), Co (0,03–0,80), Cu (0,53-8,18), Zn (1,8-43,3), As (0,38-3,74), Cd (0,014–0,209), Pb (0,05–0,77) и Hg (0,0005–0,0049). Сравнение концентраций потенциально опасных микроэлементов с нормативами качества водоемов показывает, что в воде р. Вихорева и Вихоревском заливе зафиксированы концентрации Al, Mn, Fe, Cu и Zn, превышающие предельно-допустимые нормы водоемов рыбохозяйственного назначения (ПДКрбх), Al, Mn и Fe – предельно-допустимые нормы для водоемов питьевого назначения (ПДКпв) (табл. 3). В воде Бурдойского залива концентрации Мп в придонной воде т.н. 9 выше ПДКпв, концентрации Мп во всех т.н. и Си в т.н. 10 и 11 выше ПДКрбх.

Известно, что сравнение гидрохимических характеристик с официально утвержденными нормативами, не учитывающими природные условия формирования водоема, не дает адекватной оценки их качества [28]. Более объективно оценить антропогенное воздействие позволяют характеристики фоновых водных объектов, находящиеся с изучаемым водоемом в близких географических и климатических зонах. Для водоемов бассейна р. Ангары к таким водным объектам относится исток самой реки [29]. Результаты исследования показывают, что средние концентрации всех изучаемых микроэлементов в воде р. Вихорева и Вихоревском заливе значительно выше, чем их концентрации в истоке р. Ангары (табл. 3). Бурдойский залив характеризуется меньшими концентрации микроэлементов, чем р. Вихорева и Вихоревский залив. Однако их концентрации, за исключением Zn, также выше, чем в истоке р. Ангары. Преобразования гидрохимического состава происходят уже в вышерасположенных водохранилищах Ангарского каскада ГЭС, в воде которых концентрации микроэлементов увеличиваются за счет природных и антропогенных факторов [30]. Концентрации Al, Cr, Mn, Fe, Cu, Zn, As и Cd в воде р. Вихорева, Al, Cr, Mn, Fe, As и Cd в воде Вихоревского залива, Zn в воде Бурдойского залива выше, чем в русловой части Усть-Илимского водохранилища и Братского водохранилища (табл. 3).

Puc. 4. Концентрации микроэлементов (мкг/л) в водах р. Вихорева и Вихоревского залива **Fig. 4.** Concentrations of trace elements (µg/l) in the Vikhoreva river waters, Vikhorevsky bay

Таблица 2. Концентрации микроэлементов в Бурдойской части Вихоревского залива (мкг/л)

Table 2. Concentrations of trace elements in the Burdoy part of Vikhorevsky bay $(\mu g/l)$

Точки наблюдений Observation points	Al	Cr	Mn	Fe	Со	Cu	Zn	As	Cd	Pb	Hg
11	16,2	0,28	90,7	37,6	0,04	0,57	1,9	0,51	0,05	0,07	0,0010
12	13,3	0,19	36,2	27,0	0,07	0,53	2,4	0,53	0,05	0,09	0,0005
10	24,8	0,39	55,6	40,9	0,05	8,18	3,4	0,53	0,11	0,16	0,0022
9 (π)/(s)*	23,5	0,49	16,2	38,5	0,04	1,03	1,9	0,59	0,04	0,08	0,0021
9 (д)/(b)*	5,3	0,19	139,6	23,9	0,03	2,04	3,3	0,49	0,04	0,06	0,0010

^{* –} n – поверхностная, д – придонная вода/s – surface, b – bottom water.

Таблица 3. Средние концентрации микроэлементов в водах р. Вихорева, Вихоревского залива, р. Ангары и ее водохранилищ (мкг/л)

Table 3. Average concentrations of trace elements in the waters of the Vikhoreva river, Vikhorevsky bay, Angara river and its reservoirs $(\mu g/l)$

Водный объект Water body	Al	Cr	Mn	Fe	Со	Cu	Источник Source	
р. Вихорева/Vikhoreva river	153,5	4,49	153,8	316,3	0,17	3,65		
Вихоревская часть залива Vikhorevskaya part of the bay	143,3	1,51	164,3	314,7	0,17	1,03	Настоящее исследование Present study	
Бурдойская часть залива Bourdoy part of the bay	16,6	0,31	67,7	33,6	0,04	2,47		
Усть-Илимское водохранилище Ust-llimsk reservoir	10,2	0,79	9,0	-	-	1,55	[31]	
Братское водохранилище Bratsk reservoir	12,9	0,19	22,9	22,4	-	0,84	[30]	
Исток р. Ангары/Angara river source	1,86	0,08	2,72	2,96	0,01	0,56	[29]	
ПДКпв/ПДКрбх MACpv/PCrbh	200/40	50/20	100/10	300/100	100/10	1000/1	[32]	
	Zn	As	Cd	Pb	Н	[g	Источник Source	
р. Вихорева/Vikhoreva river	22,5	1,29	0,088	0,28	0,0	021		
Вихоревская часть залива Vikhorevskaya part of the bay	6,5	0,76	0,072	0,23	0,0	018	Настоящее Исследование	
Бурдойская часть залива Bourdoy part of the bay	2,6	0,53	0,058	0,09	0,0014		Present study	
Усть-Илимское водохранилище Ust-Ilimsk reservoir	9,2	-	-	1,2	-		[31]	
Братское водохранилище Bratsk reservoir	3,8	0,37	0,023	0,11	0,0042		[30]	
Исток р. Ангары/Angara river source	3,0	0,40	0,022	0,08	-	-	[29]	
ПДКпв/ПДКрбх MACpv/PCrbh	5000/10	10/50	1/5	10/6			[32]	

В воде условно фоновой для р. Вихорева станции (т.н. 1) концентрации Al (107,0 мкг/л), Fe (226,8 мкг/л), Си (3,62 мкг/л) и Zn (20,7 мкг/л) уже значительно выше, чем в Усть-Илимском водохранилище. В материалах статистической отчетности по стокам, образованным в результате деятельности лесопромышленного и энергетического комплексов Братской промышленной зоны, а также хозяйственно-бытовых сточных вод г. Братска, приводятся данные только по количеству поступающего в воды р. Вихорева железа, фактический сброс которого в 1997 г. составил 161,5 т/год [10]. Через 20 лет его концентрация в промышленных стоках снизилась, сброс сократился до 24 т/год [11]. В период исследований концентрации Fe в воде т.н. 2 после поступления сточных вод возрастают незначительно (с 226,8 до 292,7 мкг/л) (рис. 4).

При отсутствии информации о количестве загрязняющих веществ, поступающих со сточными водами и диффузным стоком с промышленных зон, для оценки воздействия антропогенных источников используют сравнение концентраций загрязняющих веществ в воде незагрязненных (условно фоновых) и загрязненных участков водоема [31]. В большей степени сброс сточных вод оказывает влияние на увеличение в воде р. Вихорева концентраций Мп (в 10 раз) и Сг (в 14 раз), в меньшей степени – Al, Co, Cu, Zn, Cd, Pb, Hg (до 3 раз). Кон-

центрации As не изменяются. На техногенное происхождение некоторых выделенных микроэлементов указывают также исследования, проведенные при изучении влияния Братской промышленной зоны на химический состав почв прилегающих к ней территорий [33]. Эти исследования показали, что выбросы БрАЗ приводят к поступлению в окружающую среду около 1300 т алюминия. К загрязняющим веществам лесопромышленного комплекса относятся Fe и Mn. Эти микроэлементы в значительных количествах находятся и в золе ТЭЦ-6. В почве вблизи промышленных предприятий г. Братска обнаружены повышенные концентрации Zn, Cu, Pb.

Результаты пространственного распределения микроэлементов по течению р. Вихорева показывают, что после поступления сточных вод последовательное снижение концентраций в водной среде характерно только для Cr, Zn, Cu. Концентрации Hg и As, напротив, увеличиваются. Распределение Al, Mn, Fe, Cd, Pb в воде реки неравномерно. Смешение вод р. Вихорева и Вихоревского залива (т.н. 5) приводит к уменьшению высоких концентраций Al, Cr, Mn, Fe, Cu, As, Pb в водной среде. Основным фактором самоочищения на этом участке является многократное разбавление загрязненных вод реки водами Вихоревского залива, формирующимися под влиянием вод русловой части Усть-

Илимского водохранилища. В отличие от главных ионов, характерной особенностью для большинства изучаемых микроэлементов является приуроченность их максимальных концентраций не к основному источнику техногенного загрязнения — стокам Братской промышленной зоны, а к акватории Вихоревского залива (рис. 4). В водах загрязненной реки определены только максимальные концентрации Cu, As, Cr и Zn. Самые высокие концентрации Al, Mn, Fe, Pb и Co зафиксированы в т.н. 6, Cd и Hg — в т.н. 5 Вихоревского залива.

Сравнительный анализ концентраций микроэлементов по глубине Вихоревского залива не выявил полученную для главных ионов закономерность, которая показала превышение концентрации
последних в поверхностных водах над придонными. Напротив, при более равномерных концентрациях большинства микроэлементов в поверхностных слоях воды залива выделяются точки наблюдений, в которых определены их значительные
концентрации в придонных слоях (рис. 4). Особенно в т.н. 6 Вихоревского залива, расположенной в
2 км ниже устья р. Вихорева.

В Бурдойском заливе увеличение концентраций большинства микроэлементов происходит от устьевых участков зал. Тада и зал. Бурдой к участку слияния Бурдойского и Вихоревского заливов (табл. 2). Так же как в Вихоревском, в придонных слоях воды Бурдойского залива концентрации Мп, Сu, Zn повышены, по сравнению с поверхностными.

Из рассматриваемых микроэлементов выделяется Мп, который в связи со значительным увеличением концентраций в р. Вихорева после поступления сточных вод является одним из основных микроэлементов техногенного происхождения. Его концентрации в придонных слоях (81,4-511,5 мкг/л) воды Усть-Вихоревского залива во всех точках наблюдений значительно выше, чем в поверхностных (16,2-76,2 мкг/л). Известно, что Мn при высоких положительных значениях Ећ водной среды легко окисляется, переходит в нерастворимую форму и переносится в составе взвеси [34]. Миграция Мп может происходить с большим количеством взвешенных веществ, содержащихся в воде р. Вихорева. На участке смешения р. Вихорева и Вихоревского залива при уменьшении скорости течения поступающая с водой реки взвесь, содержащая гидроксиды Mn, Fe, Al и др. микроэлементов, начинает оседать, приводя к увеличению их концентраций в придонных слоях воды.

В водоемах, подверженных антропогенным нагрузкам, за счет адсорбции, соосаждения и гидролиза только небольшая часть потенциально опасных микроэлементов растворятся в водной среде, их значительная часть накапливается в донных отложениях [35, 36]. Формирование донных

отложений Вихоревского залива происходило в экстремальных условиях непрерывного поступления огромных количеств загрязняющих веществ как органического, так и неорганического происхождения. Ранее результаты исследования химического состава донных отложений Усть-Илимского водохранилища [37] выделили Вихоревский залив как аномальную зону, в которой депонируются вещества техногенного происхождения, поступающие в р. Вихорева со сточными водами Братской промышленной зоны. В представленной работе концентрации Mn, Al, Fe в донных отложениях не рассматриваются. Вместе с этим в донных отложениях района т.н. 6 определены самые высокие для всего Усть-Илимского водохранилища концентрации Zn, Co, As, Pb, Cd, Hg и повышенные Cr и Cu. Известно, что при изменении гидрологических условий водохранилища донные отложения могут являться мощным источником вторичного загрязнения не только водной среды, но и всей экосистемы водоема [38, 39]. В связи с этим высокие концентрации Mn, а также Al, Fe, Zn, Cu, Cd и Pb в придонной воде Вихоревского и Бурдойского заливов указывают на их вторичное поступление из загрязненных донных отложений.

Корреляционный анализ

При выделении природных и антропогенных факторов формирования гидрохимического состава идентификацию основных источников поступления элементов в водные объекты проводят с использованием статистических методов, в частности определением коэффициентов корреляции и применением факторного анализа [40]. Результаты корреляционной матрицы, позволившей оценить взаимосвязь концентраций микроэлементов с главными ионами, растворенным кислородом и Сорг в воде р. Вихорева и Усть-Вихоревского залива, суммированы в табл. 4. Выделение факторов, объединивших между собой параметры гидрохимического состава, проведено с помощью многомерного факторного анализа (рис. 5).

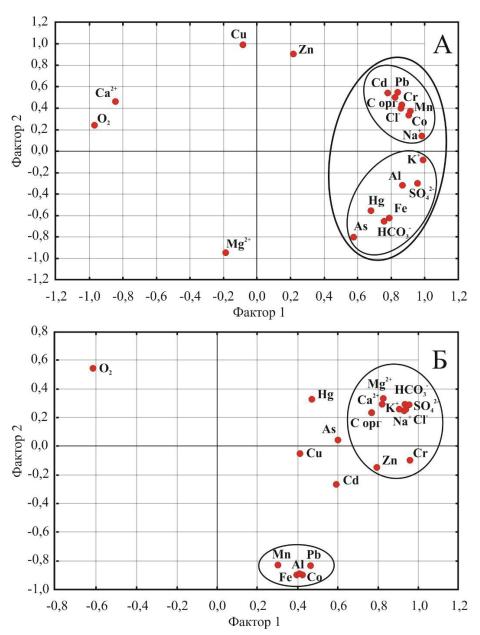
Результаты корреляционного анализа между основными ионами показали, что для вод р. Вихорева достоверную положительную корреляцию, указывающую на наличие общего источника поступле- SO_4^{2-} c HCO_3^- (r=0,91, p<0,01), ния, имеют $Na^{+}(r=0.89, p<0.01)$ и $K^{+}(r=0.96, p<0.01)$, Na^{+} с Cl^{-} (r=0.94, p<0.01). И если корреляционные связи сульфат-ионов, ионов хлора, натрия и калия логично объясняются поступлением этих компонентов со сточными водами Братской промышленной зоны, то взаимосвязь сульфат- и гидрокарбонат-ионов обусловлена природными факторами формирования гидрохимического состава, выделенными для вод р. Вихорева (подземные воды и состав пород бассейна реки).

Техногенное происхождение микроэлементов в воде р. Вихорева достоверно показывает их коэффициенты корреляции с главными для предприятий деревоперерабатывающей промышленности грязнителями (табл. 4). В большей степени это корреляционные зависимости между С1-, Na+и Мп (r=0.99 и r=0.97, p<0.01), Cl^- , Na^+ и Cr (r=0.98,r=0.94, p<0.01), Cl^- , Na^+ μ Pb $(r=0.93 \mu)$ r=0.90, p<0.01). Факторный анализ выделил большую группу элементов (HCO_3^- , SO_4^{2-} , Cl^- , Na^+ , K^+ , Al, Cr, Mn, Fe, Co, Cd, Pb, Hg, Copг), объединенную Фактором 1 (рис. 5, А). Для р. Вихорева фактор 1 является наиболее значимым (доля общ. 64 %) и отражает вклад техногенной составляющей в ее гидрохимический состав. Вместе с этим в пределах Фактора 1 можно выделить две группы. В первую группу объединяются элементы, которые имеют в большей степени техногенное происхождение: Cl⁻, $Na^{\scriptscriptstyle op},~K^{\scriptscriptstyle op},$ Cr, Mn, Co, Pb и Сорг. Во вторую – элементы как техногенного, так и природного происхождения: HCO_3^- , SO_4^{2-} , Al, Fe, Hg. Такое выделение групп соответствует результатам пространственного распределения основных ионов и микроэлементов, которое показало, что на концентрации HCO_3^- и SO_4^{2-} в воде реки, помимо стоков Братской промышленной зоны, оказывает влияние субаквальная разгрузка подземных вод. Микроэлементный состав подземных вод, разгружающихся в долину р. Вихорева, не изучен. Поэтому коэффициенты корреляции микроэлементов с гидрокарбонатионом, который не относится к основным загрязняющим веществам Братской промышленной зоны, но является основным компонентом сульфатногидрокарбонатных подземных вод, определяют природные источники их поступления. Значимые положительные коэффициенты корреляции НСО₃ As (r=0.94, p<0.01),определены

Table 4.

(r=0,95, p<0,01), а также Fe (r=0,99, p<0,01). Концентрации Fe, относящегося к специфичным загрязнителям Братской промышленной зоны [10, 11], после поступления сточных вод незначительно повышаются в воде р. Вихорева, достигая наибольших значений в устье реки.

В Усть-Вихоревском заливе взаимосвязь между главными ионами близка к функциональной (r=0.87-0.99, p<0.01). Корреляционные зависимости между микроэлементами и главными ионами значительно ослабевают (табл. 4). Из рассматриваемых микроэлементов только Ст и Нд достоверно взаимосвязаны с SO_4^{2-} , $C\Gamma$, Na^+ , K^+ , а также As, коррелирующий с компонентами основного ионного состава. В Усть-Вихоревском заливе взаимосвязи между изучаемыми компонентами определены 2 факторами (рис. 5, Б). Фактор 1 (доля общ. 51 %) объединяет между собой главные ионы, а также Cr, Zn и Сорг, Фактор 2 (доля общ. 24 %) – Mn, Fe, Al, Рь, Со. Фактором 1 объединена ассоциация компонентов, распределение которых сходно при смешении вод загрязненной реки и формирующих Вихоревский и Бурдойский заливы вод русловой части Усть-Илимского водохранилища. Фактор 2 выделил элементы с переменной валентностью - Мп и Fe. Концентрация этих элементов в водной среде значительно зависит от смены окислительновосстановительных условий, приуроченных к границе вода-донные отложения и определяющих процессы разложения органического вещества, накопленного в донных отложениях за длительный период техногенной эмиссии. Выделенные Фактором 2 в одну группу Mn, Fe, а также Al, Рb и Со являются микроэлементами, поступающими из высокозагрязненных донных отложений в водную среду.


Таблица 4. Значимые коэффициенты корреляции (p<0,01) в воде р. Вихорева и Усть-Вихоревском заливе

Элемент	Коэффициент корреляции						
Element	Correlation coefficient						
	р. Вихорева/Vikhoreva river	Усть-Вихоревский залив/Ust-Vikhorevsky bay					
Al	(+)*SO ₄ ²⁻ , Fe; (-) Ca, O ₂	(+) Cr, Mn, Fe, Co, Zn, Pb					
Cr	(+) Cl ⁻ , Na ⁺ , Mn, Pb	(+) SO ₄ ²⁻ , Cl ⁻ , Na ⁺ , K ⁺ , Al, Fe, Co, Zn, As, Cd					
Mn	(+) Cl-, Na+, K+, Cr, Co, Pb, Copr.	(+)Al, Fe,Co, Pb; (-):O ₂					
Fe	(+) HCO ₃ -, SO ₄ ²⁻ , Al, As; (-) Ca, O ₂	(+) Al, Cr, Mn, Co, Zn, Pb; (-):O ₂					
Со	(+) Na+, Mn, Cd, Pb, Copr.	(+) Al, Cr, Mn, Fe, Zn, Pb; (-):O ₂					
Cu	(-) Mg ²⁺	(-) Mg ²⁺					
Zn	**	(+) Al, Cr, Fe, Co, As, Cd, Pb					
As	(+) HCO ₃ ⁻, Fe; (−) Ca ²⁺	(+) HCO ₃ -, SO ₄ 2-, Cl-, Ca ²⁺ , Mg ²⁺ , Na+, K+, Cr, Zn, Cd					
Cd	(+)Co, Pb, Copr.	(+)Cr, Zn, As					
Pb	(+) Cl-, Na+, Cr, Mn, Co, Cd, Copr.	(+) Al, Mn, Fe, Co, Zn					
Нσ	(+) HCO ₂ -	(+)SO ₄ 2- Cl- N ₂ + K+					

Significant correlation coefficients (p<0.01) in the water of the Vikhoreva river and Ust-Vikhorevsky bay

нд (+) нсоз⁻ (+) нсоз⁻ (+) - отрицательная корреляция, ** – нет значимых корреляций.

^{*-(+)} – positive correlation, (-) – negative correlation, ** – no significant correlations.

Рис. 5. Факторный анализ концентраций главных ионов, микроэлементов, растворенного кислорода и Сорг в водах р. Вихорева (A) и Усть-Вихоревского залива (Б)

Fig. 5. Factor analysis of the concentrations of major ions, trace elements, dissolved oxygen and Corg in the waters of the Vikhoreva river (A) and Ust-Vikhorevsky bay (B)

Заключение

Исследования, проведенные в р. Вихорева и Усть-Вихоревском заливе Усть-Илимского водохранилища, позволили выделить основные особенности гидрохимического режима водоемов, в значительной степени подверженных антропогенной нагрузке. Помимо кислородного режима и режима главных ионов, впервые определен микроэлементный состав вод высокозагрязненной реки и залива, формирование которого происходило под высоким техногенным прессом. Результаты исследования показали, что, несмотря на снижение техногенной нагрузки, загрязнение, связанное с поступлением

сточных вод Братской промышленной зоны в р. Вихорева, продолжается. После поступления сточных вод происходит обогащение вод реки, в большей степени $\mathrm{SO_4}^{2-}$, Cl^- , Na^+ , K^+ , Cr , Mn , Co , Pb и Copr . Чрезвычайно низкие концентрации $\mathrm{O_2}$, определенные в воде реки, создают неблагоприятные условия для местной флоры и фауны. Помимо антропогенного фактора, на формирование режима главных ионов и микроэлементов в воде р. Вихорева большое влияние оказывает субаквальная разгрузка подземных вод, влияющая на концентрацию, в основном $\mathrm{HCO_3}^-$, $\mathrm{SO_4}^{2-}$, Al , Fe и Hg .

Поступление загрязненных вод р. Вихорева оказывает воздействие на гидрохимический состав Усть-Вихоревского залива: весь Вихоревский залив и устьевая часть Бурдойского залива. В поверхностных водах заливов зафиксированы концентрации кислорода удовлетворительные для обитания гидробионтов, в придонных водах Вихоревского залива концентрации кислорода значительно ниже установленных нормативов. Уменьшение концентраций главных ионов и микроэлементов, поступающих с р. Вихорева, в воде Усть-Вихоревского залива связано в первую очередь с разбавлением высокозагрязненных вод реки водами русловой части Усть-Илимского водохранилища. При этом распределение главных ионов и микроэлементов в водной толще залива неоднородно. Концентрации главных

ионов в поверхностных водах выше, чем в придонных. Увеличение концентраций микроэлементов, в основном Mn, Fe, Al, Pb и Co, в придонных водах, по сравнению с поверхностными, указывает на вторичное загрязнение экосистемы залива, связанное с долговременной аккумуляцией в донных отложениях веществ антропогенного происхождения.

Привнос в водоемы веществ техногенного происхождения с промышленными стоками, их накопление в донных осадках и последующее вторичное поступление в водную среду создают неблагоприятные условия для жизнедеятельности гидробионтов. В связи с этим впервые полученные данные по микроэлементному составу вод могут рассматриваться как отправная точка для дальнейшего мониторинга загрязнения всей пресноводной экосистемы.

СПИСОК ЛИТЕРАТУРЫ

- 1. Herail geochemistry of Chilean rivers within the central zone: distinguishing the impact of mining, lithology and physical weathering / J. Viers, S. Carretier, Y. Auda, O.S. Pokrovsky, P. Seyler, F. Chabaux, V. Regard, V. Tolorza, G. Hearail // Aquatic Geochemistry. 2019. Vol. 25. P. 27–48. DOI: 10.1007 / s10498-019-09350-1.
- 2. Hydro chemical characteristics and human health risk assessment of surface water in the Danjiang river source basin of the middle route of China's south-to-north water transfer project / L. Lin, Y. Zhang, X. Qian, Y. Wang // Water 2023. Vol. 25. 2203. DOI: 10.3390/w15122203.
- 3. Gaillardet J., Viers J., Dupré B. Trace elements in river waters // Treatise Geochemistry. 2003. Vol. 5. P. 605. DOI: 10.1016 /B0-08-043751-6/05165-3.
- 4. Industrial metal pollution in water and probabilistic assessment of human health risk / N. Saha, M.S. Rahman, M.B. Ahmed, J.L. Zhou, H.H. Ngo, W. Guo // J. Environ. Manag. 2017. Vol. 185. P. 70–78. DOI: 10.1016/j.jenvman.2016.10.023.
- 5. Моисеенко Т.И. Биодоступность и экотоксичность металлов в водных системах: критические уровни загрязнения // Геохимия. 2019. Т. 64. № 7. С. 675–688. DOI: 10.31857/S0016-7525647675-688.
- 6. Kaur J., Kaur V., Pakade Y.B. A study on water quality monitoring of Buddha Nullah, Ludhiana, Punjab (India) // Environ Geochem Health. 2021. Vol. 43. P. 2699–2722. DOI: 10.1007/s10653-020-00719-8.
- 7. Risk assessment of dissolved trace elements and heavy metals in the upper reaches of the Yangtze river, China / Y. Chen, F. Xiong, D. Zhai, H. Liu, X. Duan, D. Chen, W. Jiang, B. Li // Water. 2023. Vol. 15. 1330. DOI: 10.3390/w15071330.
- 8. Влияние крупных притоков на содержание тяжелых металов в воде и донных отложениях реки Амур / Л.М. Кондратьева, В.С. Канцыбер, В.Е. Зазулина, Л.С. Боковенко // Тихоокеанская геология. − 2006. − Т. 25. − № 6. − С. 103−114.
- 9. Global Biogeochemical Implications of mercury discharges from rivers and sediment burial / H. Amos, D. Jacob, D. Kocman, H. Horowitz, Y. Zhang, S. Dutkiewicz, M. Horvat, E. Corbitt, D. Krabbenhoft, E. Sunderland // Environmental Science and Technology. 2014. Vol. 48 (16). P. 9514–9522. DOI: 10.1021/es502134t
- 10. Государственный доклад «О состоянии и об охране окружающей среды Иркутской области в 1997 году» / под ред. Ю.Н. Удодова. Иркутск: Облмашинформ, 1999. 299 с.
- 11. Государственный доклад «О состоянии и об охране окружающей среды Иркутской области в 2016 году» / под ред. А.В. Крючкова. Иркутск: ООО «Мегапринт», 2017. 274 с.
- 12. Про ЧП на реке Вихорева из официальных источников // Братский городской сайт. Братск, Россия, 2015. URL: https://bratsk.org/2015/07/02/About-the-state-of%20-mergency-on-the-rive-Vihoerva-from-official sources?ysclid=llkn77w3ti564970284 (дата обращения 15.11.2023).
- 13. Рыба погибла. В Братске возбудили уголовное дело из-за сброса химикатов в реку // Иркутск онлайн. Иркутск, Россия, 2022. URL: https://ircity.ru/text/ecology/2022/06/02/71379038/?ysclid=llkmlm2rux845167091 (дата обращения 15.11.2023).
- 14. Стрижева Т.А. Условия и особенности формирования гидрохимического режима, состава и качества вод искусственных водоемов Восточной Сибири (на примере Усть-Илимского водохранилища). дис. ... канд. геол.-минерал. наук. Иркутск, 1985. 211 с.
- 15. Варданян М.А., Яблокова И.А. Результаты гидрохимического мониторинга вод р. Вихоревой за 2010–2013 гг. // Труды БрГУ. Серия: Естественные и инженерные науки. 2014. Т. 1. С. 362–366.
- 16. Полетаева В.И., Долгих П.Г., Пастухов М.В. Особенности формирования гидрохимического режима Усть-илимского водохранилища // Вода: химия и экология. 2017. № 10. С. 11–17.
- 17. Долгих П.Г., Полетаева В.И. Распределение биогенных элементов в воде р. Вихорева и Вихоревского залива Усть-Илимского водохранилища при техногенном воздействии // Вопросы естествознания. – 2018. – № 3 (17). – С. 58–63.
- 18. Pastukhov M.V., Poletaeva V.I., Tirskikh E.N. Long-term dynamics of mercury pollution of the Bratsk reservoir bottom sediments, Baikal region, Russia // IOP Conf. Series: Earth and Environmental Science. 2019. Vol. 321:012041. DOI: 10.1088/1755-1315/321/1/012041.
- 19. Changes in water hydrochemistry in bays of the Bratsk Reservoir caused by forest harvesting operations / V.I. Poletaeva, M.V. Pastukhov, N.A. Zagorulko, G.A. Belogolova // Water Resources. 2018. Vol. 45 (3). P. 369–378. DOI: 10.1134/S0097807818030119.

- 20. Магомедов М.М. Природа Усть-Илимского района / под ред. Л.М. Корытного. Иркутск: Изд-во Ин-та географии CO PAH, 2003. 143 с.
- 21. Руководство по химическому анализу поверхностных вод суши: ч. 1 / под ред. Л.В. Боевой. Ростов-на-Дону: НОК, 2009. 1044 с.
- 22. Chapra S.C., Camacho L.A., McBride G.B. Impact of global warming on dissolved oxygen and BOD assimilative capacity of the world's rivers: modeling analysis // Water. 2021. Vol. 13. 2408. DOI: 10.3390/w13172408.
- 23. Контроль химических и биологических параметров окружающей среды / под ред. Л.К. Исаева. СПб: Экологоаналитический информационный центр «Союз», 1998. – 896 с.
- 24. Vaquer-Sunyer R., Duarte C.M. Thresholds of hypoxia for marine biodiversity // Proc. Natl Acad. Sci. USA 2008. Vol. 105. P. 15452–15457. DOI: 10.1073/pnas.0803833105.
- 25. Шенькман Б.М. Гидрохимическая зональность и формирование химического состава подземных вод // Усть-Илимское водохранилище. Подземные воды и инженерная геология территории. Новосибирск: Наука, 1975. С. 45–84.
- 26. Major element chemistry of the Changjiang (Yangtze River) / J. Chen, F. Wang, X. Xia, L. Zhang // Chemical Geology 2002. Vol. 187. P. 231–255. DOI: 10.1016/S0009-2541(02)00032-3.
- 27. Li S., Ye C., Zhang Q. 11-year change in water chemistry of large freshwater Reservoir Danjiangkou, China // Journal of Hydrology 2017. Vol. 551. P. 508–517. DOI: 10.1016/j.jhydrol.2017.05.058.
- 28. Моисеенко Т.И. Оценка качества вод и «здоровья» экосистем с позиций экологической парадигмы // Водное хозяйство России. 2017. № 3. С. 104–124.
- 29. Poletaeva V.I., Pastukhov M.V., Dolgikh P.G. Trace element compositions and water quality assessment in the Angara river source (Baikal region, Russia) // Water. 2022. Vol. 14. 3564. DOI: 10.3390/w14213564.
- 30. Poletaeva V.I., Pastukhov M.V., Tirskikh E.N. Dynamics of trace element composition of Bratsk reservoir water in different periods of anthropogenic impact (Baikal region, Russia) // Archives of Environmental Contamination and Toxicology. 2021. Vol. 80. P. 531–545. DOI: 10.1007/s00244-021-00819-1
- 31. Карнаухова Г.А. Гидрохимия Ангары и водохранилищ Ангарского каскада // Водные ресурсы. 2008. Т. 35. № 1. С. 72–80.
- 32. СанПиН 1.2.3685-21. Гигиенические нормативы и требования к обеспечению безопасности и (или) безвредности для человека факторов среды обитания. Утверждены Постановлением от 28 января 2021 г. № 2. Зарегистрировано в Минюсте России 29 января 2021 г. № 62296. М.: Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека. Главный государственный санитарный врач Российской Федерации, 2021. 1025 с.
- 33. Рунова Е.М., Чжан С.А., Пузанова О.А. Воздействие загрязняющих веществ на почву в районе города Братска // Лесной вестник. -2008, -№ 1, -C, 148-151.
- 34. Pokrovsky O.S., Schott J., Dupre B. Trace element fractionation and transport in boreal rivers and soil pore waters of permafrost-dominated basaltic terrain in Central Siberia // Geochim. Cosmochim. Acta. 2006. Vol. 70. P. 3239–3260. DOI: 10.1016/j.gca.2006.04.008.
- 35. Identification and apportionment of hazardous elements in the sediments in the Yangtze River estuary / J. Wang, R. Liu, H. Wang, W. Yu, F. Xu, Z. Shen // Environ. Sci. Pollut. Res. 2015. Vol. 22. P. 20215–20225. DOI: 10.1007/s11356-015-5642-9
- 36. Source identification and ecological risk of potentially harmful trace elements in lacustrine sediments from the middle and lower reaches of Huaihe river / M. Xu, R. Wang, W. Sun, D. Wang, X. Wu // Water. 2023. Vol. 15. 544. DOI: 10.3390/w15030544.
- Poletaeva V.I., Pastukhov M.V., Dolgikh P.G. Geochemical characteristics of microelement distribution in surface sediments of Ust-Ilimsk Reservoir // IOP Conf. Series: Earth and Environmental Science. – 2019. – Vol. 321:012042. DOI: 10.1088/1755-1315/321/1/012042.
- 38. Arnason J.G., Fletcher B.A. A 40+ year record of Cd, Hg, Pb, and U deposition in sediments of Patroon Reservoir, Albany County, NY, USA // Environ. Pollut. 2003. Vol. 123. P. 383–391. DOI: 10.1016/s0269-7491(03)00015-0.
- 39. Arsenic pollution of sediments in China: an assessment by geochemical baseline / L.F. Han, B. Gao, H. Hao, J. Lu, D.Y. Xu // Sci. Total Environ. 2019. Vol. 651. P. 1983–1991. DOI: 10.1016/j.scitotenv.2018.09.381.
- 40. Applying chemical and statistical analysis methods to evaluate water and stream sediments around the coal mine area in Dazhu, China / D. Deng, Y. Wu, B. Ren, H. Yin // Water. 2023. Vol. 15. 1421. DOI: 10.3390/w15071421.

Информация об авторах

Павел Геннадьевич Долгих, младший научный сотрудник Института геохимии им. А.П. Виноградова СО РАН, Россия, 664033, г. Иркутск, ул. Фаворского, 1A. pdolgikh@igc.irk.ru

Вера Игоревна Полетаева, кандидат геолого-минералогических наук, старший научный сотрудник Института геохимии им. А.П. Виноградова СО РАН, Россия, 664033, г. Иркутск, ул. Фаворского, 1A. alieva@igc.irk.ru; https://orcid.org/0000-0002-3139-5864

Михаил Владимирович Пастухов, кандидат биологических наук, старший научный сотрудник Института геохимии им. А.П. Виноградова СО РАН, Россия, 664033, г. Иркутск, ул. Фаворского, 1A. mpast@igc.irk.ru; https://orcid.org/0000-0003-1078-7145

Поступила в редакцию: 28.12.2023

Поступила после рецензирования: 15.01.2024

Принята к публикации: 21.02.2024

REFERENCES

- 1. Viers J., Carretier S., Auda Y., Pokrovsky O.S., Seyler P., Chabaux F., Regard V., Tolorza V., Hearail G. Herail geochemistry of Chilean rivers within the central zone: distinguishing the impact of mining, lithology and physical weathering. *Aquatic Geochemistry*, 2019, vol. 25, pp. 27–48. DOI: 10.1007/s10498-019-09350-1.
- Lin L., Zhang Y., Qian X., Wang Y. Hydro chemical characteristics and human health risk assessment of surface water in the Danjiang river source basin of the middle route of China's south-to-north water transfer project. *Water*, 2023, vol. 25, 2203. DOI: 10.3390/w15122203.
- 3. Gaillardet J., Viers J., Dupré B. Trace elements in river waters. *Treatise Geochemistry*, 2003, vol. 5, pp. 605. DOI: 10.1016/B0-08-043751-6/05165-3.
- 4. Saha N., Rahman M.S., Ahmed M.B., Zhou J.L., Ngo H.H., Guo W. Industrial vmetal pollution in water and probabilistic assessment of human health risk. *J. Environ. Manag*, 2017, vol. 185, pp. 70–78. DOI: 10.1016/j.jenvman.2016.10.023.
- 5. Moiseenko T.I. Bioavailability and ecotoxicity of metals in aquatic systems: critical levels of pollution. *Geochemistry*, 2019, vol. 64, no. 7, pp. 675–688. (In Russ.) DOI: 10.31857/S0016-7525647675-688.
- 6. Kaur J., Kaur V., Pakade Y.B. A study on water quality monitoring of Buddha Nullah, Ludhiana, Punjab (India). *Environ Geochem Health*, 2021, vol. 43, pp. 2699–2722. DOI: 10.1007/s10653-020-00719-8.
- Chen Y., Xiong F., Zhai D., Liu H., Duan X., Chen D., Jiang W., Li B. Risk assessment of dissolved trace elements and heavy metals in the upper reaches of the Yangtze river, China. Water, 2023, vol. 15, 1330. DOI: 10.3390/w15071330.
- 8. Kondrateva L.M., Kantsyber V.S., Zazulina V.E., Bokovenko L.S. Influence of large tributaries on the content of heavy metals in water and bottom sediments of the Amur River. *Tikhookeanskaya geologiya*, 2006, vol. 25, no. 6, pp. 103–114. (In Russ.)
- 9. Amos H., Jacob D., Kocman D., Horowitz H., Zhang Y., Dutkiewicz S., Horvat M., Corbitt E., Krabbenhoft D., Sunderland E. Global biogeochemical implications of mercury discharges from rivers and sediment burial. *Environmental Science and Technology*, 2014, vol. 48, no. 16, pp. 9514–9522. DOI: 10.1021/es502134t
- 10. State report «On the state and protection of the environment of the Irkutsk region in 1997». Irkutsk, Oblmashinform Publ. house, 1999. 299 p. (In Russ.)
- 11. State report «On the state and protection of the environment of the Irkutsk region in 2013». Irkutsk, OOO «Megaprint» Publ. house, 2017. 274 p. (In Russ.)
- 12. About the emergency on the Vihoreva river from official sources. *Bratsk State Website*. (In Russ.) Available at: https://bratsk.org/2015/07/02/About-the-state-of%20-mergency-on-the-rive-Vihoerva-from-official sources?ysclid=llkn77w3ti564970284 (accessed 15 November 2023).
- 13. The fish died. A criminal case was opened in Bratsk because of dumping chemicals into the river. *Irkutsk online*. 2022. (In Russ.) Available at: https://ircity.ru/text/ecology/2022/06/02/71379038/?ysclid=llkmlm2rux845167091 (accessed 15 November 2023).
- 14. Strizheva T.A. Conditions and features of the formation of the hydrochemical regime, composition and quality of water in artificial reservoirs of Eastern Siberia (using the example of the Ust-Ilimsk reservoir. Cand. Diss. Irkutsk, 1985. 211 p. (In Russ.)
- 15. Vardanyan M.A., Yablokova I.A. Results of hydrochemical monitoring of river waters Vikhoreva for 2010–2013. *Trudy BrGU. Seriya: Estestvennye i inzhenernye nauki*, 2014, vol. 1, pp. 362–366. (In Russ.)
- 16. Poletaeva V.I., Dolgikh P.G., Pastukhov M.V. Features of the formation of the hydrochemical regime of the Ust-Ilimsk reservoir. *Voda: khimiya i ekologiya*, 2017, no. 10, pp. 11–17. (In Russ.)
- 17. Dolgikh P.G., Poletaeva V.I. Distribution of nutrients in river water. Vikhorev and Vikhorevsky Bay of the Ust-Ilimsk Reservoir under technogenic impact. *Voprosy estestvoznaniya*, 2018, no. 3 (17), pp. 58–63. (In Russ.)
- 18. Pastukhov M.V., Poletaeva V.I., Tirskikh E.N. Long-term dynamics of mercury pollution of the Bratsk reservoir bottom sediments, Baikal region, Russia. *IOP Conf. Series: Earth and Environmental Science*, 2019, vol. 321:012041. DOI: 10.1088/1755-1315/321/1/012041.
- 19. Poletaeva V.I., Pastukhov M.V., Zagorulko N.A., Belogolova G.A. Changes in water hydrochemistry in bays of the Bratsk reservoir caused by forest harvesting operations. *Water Resources*, 2018, vol. 45 (3), pp. 369–378. DOI: 10.1134/S0097807818030119.
- 20. Magomedov M.M. *Nature of the Ust-Ilimsk District*. Irkutsk, V.B. Sochava Institute of Geography SB RAS Publ. house, 2003. 143 p. (In Russ.)
- 21. Manual of chemical analysis of terrestrial surface waters: P. 1. Ed. by L.V. Boevaya. Rostov on Don, NOK Publ., 2009. 1044 p.
- 22. Chapra S.C., Camacho L.A., McBride G.B. Impact of global warming on dissolved oxygen and BOD assimilative capacity of the world's rivers: modeling analysis. *Water*, 2021, vol. 13, 2408. DOI: 10.3390/w13172408.
- Control of chemical and biological environmental parameters. Ed. by L.K. Isaev. St Petersburg, Environmental Analytical Information Center "Soyuz" Publ., 1998. 896 p.
- 24. Vaquer-Sunyer R., Duarte C.M. Thresholds of hypoxia for marine biodiversity. *Proc. Natl Acad. Sci. USA*, 2008, vol. 105, pp. 15452–15457. DOI: 10.1073/pnas.0803833105.
- 25. Shenkman B.M. Hydrochemical zoning and formation of groundwater chemical composition. *Podzemnye vody i inzhenernaya geologiya territorii*. Novosibirsk, Nauka Publ., 1975. pp. 45–84.
- 26. Chen J., Wang F., Xia X., Zhang L. Major element chemistry of the Changjiang (Yangtze River). *Chemical Geology*, 2002, vol. 187, pp. 231–255. DOI: 10.1016/S0009-2541(02)00032-3.
- 27. Li S., Ye C., Zhang Q. 11-Year change in water chemistry of large freshwater Reservoir Danjiangkou, China. *Journal of Hydrology*, 2017, vol. 551, pp. 508–517. DOI: 10.1016/j.jhydrol.2017.05.058.
- 28. Moiseenko T.I. Assessment of water quality and the "health" of ecosystems from the perspective of the ecological paradigm. *Vodnoe khozyaystvo Rossii*, 2017, no. 3, pp. 104–124. (In Russ.)
- 29. Poletaeva V.I., Pastukhov M.V., Dolgikh P.G. Trace element compositions and water quality assessment in the Angara river source (Baikal region, Russia). *Water*, 2022, vol. 14, 3564. DOI: 10.3390/w14213564.

- 30. Poletaeva V.I., Pastukhov M.V., Tirskikh E.N. Dynamics of trace element composition of Bratsk reservoir water in different periods of anthropogenic impact (Baikal region, Russia). *Archives of Environmental Contamination and Toxicology*, 2021, vol. 80, pp. 531–545. DOI: 10.1007/s00244-021-00819-1
- 31. Karnaukhova G.A. Hydrochemistry of the Angara and reservoirs of the Angara cascade. *Water Resources*, 2008, vol. 35, no. 1, pp. 71–79. (In Russ.)
- 32. Sanitary norms and rules of Russian Federation 1.2.3685-21. Hygienic standards and requirements for ensuring the safety and (or) harmlessness of environmental factors for humans. Approved by Resolution No. 2 of January 28, 2021. Moscow, Federal Service for Supervision of Consumer Rights Protection and Human Welfare. Chief State Sanitary Doctor of the Russian Federation Publ., 2021. 1025 p. (In Russ.)
- 33. Runova E.M., Chzhan S.A., Puzanova O.A. Impact of pollutants on soil in the Bratsk city area. *Lesnoy vestnik*, 2008, no. 1, pp. 148–151. (In Russ.)
- 34. Pokrovsky O.S., Schott J., Dupre B. Trace element fractionation and transport in boreal rivers and soil pore waters of permafrost-dominated basaltic terrain in Central Siberia. *Geochim. Cosmochim. Acta*, 2006, vol. 70, pp. 3239–3260. DOI: 10.1016/j.gca.2006.04.008.
- 35. Wang J., Liu R., Wang H., Yu W., Xu F., Shen Z. Identification and apportionment of hazardous elements in the sediments in the Yangtze River estuary. *Environ. Sci. Pollut. Res*, 2015, vol. 22, pp. 20215–20225. DOI: 10.1007/s11356-015-5642-9.
- 36. Xu M., Wang R., Sun W., Wang D., Wu X. Source identification and ecological risk of potentially harmful trace elements in lacustrine sediments from the middle and lower reaches of Huaihe River. *Water*, 2023, vol. 15, 544. DOI: 10.3390/w15030544.
- Poletaeva V.I., Pastukhov M.V., Dolgikh P.G. Geochemical characteristics of microelement distribution in surface sediments of Ust-Ilimsk Reservoir. *IOP Conf. Series: Earth and Environmental Science*, 2019, vol. 321:012042. DOI: 10.1088/1755-1315/321/1/012042.
- 38. Arnason J.G., Fletcher B.A. A 40+ year record of Cd, Hg, Pb, and U deposition in sediments of Patroon Reservoir, Albany County, NY, USA. *Environ. Pollut*, 2003, vol. 123, pp. 383–391. DOI: 10.1016/s0269-7491(03)00015-0.
- 39. Han L.F., Gao B., Hao H., Lu J., Xu D.Y. Arsenic pollution of sediments in China: an assessment by geochemical baseline. *Sci. Total Environ*, 2019, vol. 651, pp. 1983–1991. DOI: 10.1016/j.scitotenv.2018.09.381.
- 40. Deng D., Wu Y., Ren B., Yin H. Applying chemical and statistical analysis methods to evaluate water and stream sediments around the coal mine area in Dazhu, China. *Water*, 2023, vol. 15, 1421. DOI: 10.3390/w15071421.

Information about the authors

Pavel G. Dolgikh, Junior Researcher, Vinogradov Institute of Geochemistry SB RAS, 1 «A», Favorsky street, Irkutsk, 664033, Russian Federation. pdolgikh@igc.irk.ru

Vera I. Poletaeva, Cand. Sc., Senior Researcher, Vinogradov Institute of Geochemistry SB RAS, 1 «A», Favorsky street, Irkutsk, 664033, Russian Federation. alieva@igc.irk.ru

Mikhail V. Pastukhov, Cand. Sc., Senior Researcher, Vinogradov Institute of Geochemistry SB RAS, 1 «A», Favorsky street, Irkutsk 664033, Russian Federation. mpast@igc.irk.ru

Received: 28.12.2023 Revised: 15.01.2024 Accepted: 21.02.2024 УДК 550.42; 550.47

DOI: 10.18799/24131830/2024/3/4511 Шифр специальности ВАК: 25.00.09

Формы нахождения химических элементов в донных осадках в зонах разгрузки метан-содержащих флюидов на шельфе моря Лаптевых

И.А. Оберемок^{1,2™}, Н.В. Гусева¹, Ю.А. Моисеева¹, Д.В. Пургина¹, Н.А. Полтавская 1 , Е.В. Гершелис 1,2 , И.П. Семилетов 3,1

¹ Национальный исследовательский Томский политехнический университет, Россия, г. Томск ² Научно-технологический университет "Сириус", Россия, пгт Сириус ³ Тихоокеанский океанологический институт им. В.И. Ильичева ДВО РАН, Россия, г. Владивосток

[™]genuine.i@yandex.ru

Аннотация. Актуальность исследования обусловлена отсутствием данных о формах нахождения химических элементов в донных осадках моря Лаптевых, а также данных о количественных изменениях форм в ответ на просачивания метана. Цель работы заключается в выявлении особенностей форм нахождения химических элементов в донных осадках в условиях разгрузки метан-содержащих флюидов. Объекты: 9 образцов донных осадков, отобранных с трех горизонтов одной «сиповой» и двух фоновых станций внешнего шельфа-континентального склона моря Лаптевых в ходе экспедиции АМК-82 на борту «Академик М. Келдыш» осенью 2020 г. Методы. Для определения форм нахождения химических элементов в донных осадках использовалась методика последовательного выщелачивания BCR (the European Community Bureau of Reference), остаточная фракция определялась путем растворения в азотной кислоте. Полученные фракции анализировались методом ICP-MS (NexIon 300D, Perkin Elmer, Waltham, MA, USA). Для исследования состава органического вещества на молекулярном уровне использовался пиролиз (Rock-Eval 6 Turbo, Vinci Technologies). Результаты. Выявлено, что в сипах формируется тенденция к сдвигу геохимических условий в сторону увеличения подвижности элементов, вызванная, предположительно, аутигенным карбонатообразованием и аутигенным синтезом сульфидов. Более того, зафиксирован процесс роста восстанавливаемой фракции, связанной с оксидами и гидроксидами Fe. Мы предполагаем, что процесс разгрузки метан-содержащих флюидов играет значительную роль в обогащении аутигенных карбонатов U, Ni, Zn Co, оксидов железа - Sn и V, аутигенных сульфидов - Co, Mn и W. А также предполагаем потенциальное образование халькопирита в качестве аутигенного сульфида в местах разгрузки метана.

Ключевые слова: селективные вытяжки, последовательное выщелачивание, BCR, донные осадки, сипы, эмиссия метана, море Лаптевых, аутигенное карбонатообразование, аутигенное сульфидообразование

Благодарности: Исследование было поддержано Министерством науки и высшего образования Российской Федерации (Соглашение 075-10-2021-093).

Пиролитический анализ был выполнен при поддержке проекта Российского научного фонда (проект № 21-77-3000).

Для цитирования: Формы нахождения химических элементов в донных осадках в зонах разгрузки метансодержащих флюидов на шельфе моря Лаптевых / И.А. Оберемок, Н.В. Гусева, Ю.А. Моисеева, Д.В. Пургина, Н.А. Полтавская, Е.В. Гершелис, И.П. Семилетов // Известия Томского политехнического университета. Инжиниринг георесурсов. - 2024. - Т. 335. - № 3. - С. 108-123. DOI: 10.18799/24131830/2024/3/4511

UDC 550.42; 550.47

DOI: 10.18799/24131830/2024/3/4511

Elemental speciation of the sediments from cold methane seeps on the Laptev Sea shelf

I.A. Oberemok^{1,2⊠}, N.V. Guseva¹, Yu.A. Moiseeva¹, D.V. Purgina¹, N.A. Poltavskaya¹, E.V. Gershelis^{1,2}, I.P. Semiletov^{3,1}

National Research Tomsk Polytechnic University, Tomsk, Russian Federation
 Sirius University of Science and Technology, Sirius, Russian Federation
 Pacific Oceanological Institute, Russian Academy of Sciences, Vladivostok, Russian Federation

[⊠]genuine.i@yandex.ru

Abstract. *Relevance*. The lack of elemental speciation data in the bottom sediments of the Laptev Sea, as well as the absence of its quantitative changes in occurrence forms in response to methane emissions. *Aim*. To assess changes in the elemental speciation in areas where methane-containing fluids are discharged. *Objects*. Nine samples of bottom sediments taken from three horizons of one "cold seep" and two background stations of the outer shelf-continental slope of the Laptev Sea during the AMK-82 expedition aboard R/V "Academician M.V. Keldysh" in autumn 2020. *Methods*. Sequential extraction BCR (the European Community Bureau of Reference) was performed to determine the elemental speciation in surface sediments; the residual fraction was determined by dissolving in nitric acid. The obtained fraction solutions were analyzed by ICP-MS (NexIon 300D, Perkin Elmer, Waltham, MA, USA), Pyrolysis (Rock-Eval 6 Turbo, Vinci Technologies). *Results*. The trend towards an increase in element mobility has been identified as a result of a shift in geochemical conditions that is presumably caused by the authigenic carbonate and sulfide formation. Moreover, the increase in the recoverable fraction (associated only with Fe oxides/hydroxides) is highlighted. We assume that the process of unloading methane-containing fluids plays a significant role in enrichment of authigenic carbonates U, Ni, Zn Co, oxides Fe – Sn and V, authigenic sulfides – Co, Mn and W. We also assume the potential formation of chalcopyrite as an authigenic sulfide in methane discharge areas.

Keywords: selective extraction, sequential extraction, BCR, sediments, cold seep, methane emission, Laptev Sea, authigenic carbonate formation, authigenic sulfide formation

Acknowledgements: The study was supported by the Ministry of Science and Higher Education of the Russian Federation (Agreement 075-10-2021-093).

Pyrolytic analysis was carried out with the support of the Russian Science Foundation (project no. 21-77-3000).

For citation: Oberemok I.A., Guseva N.V., Moiseeva Yu.A., Purgina D.V., Poltavskaya N.A., Gershelis E.V., Semiletov I.P. Elemental speciation of the sediments from cold methane seeps on the Laptev Sea shelf. *Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering*, 2024, vol. 335, no. 3, pp. 108–123. DOI: 10.18799/24131830/2024/3/4511

Введение

Донные осадки являются депонирующей средой, в которой происходит накопление химических элементов и органического вещества (ОВ) с одной стороны, но и обогащение поровых вод различными соединениями, поступающими в результате их растворения, с другой. Химический состав донных осадков — это результат сложных взаимодействий в системе «поровые воды — донные осадки — ОВ».

Мобильность химических элементов в системе «поровые воды – донные осадки – ОВ» определяется влиянием большого количества факторов, в т. ч. составом пород, геохимическими параметрами водной среды, микробиологической активностью. Выявить особенности миграции химических элементов в донных осадках не всегда бывает возмож-

но только по их валовому содержанию. В этой связи ценную геохимическую информацию дают исследования форм нахождения химических элементов с применением метода селективного выщелачивания, особенно для выявления источников вещества, обоснования механизмов его транспортировки, процессов захоронения или эмиссии химических элементов из донных осадков, а также для оценки экологических рисков. Именно поэтому для понимания комплексной геохимической картины необходимы знания о существующих формах нахождения химических элементов и физикохимических процессах, происходящих на границе «осадок-вода» [1].

Особый интерес вызывают характерные особенности химического состава донных осадков в ме-

стах массированной разгрузки флюида, которые могут проявляться в виде грязевых вулканов, термальных источников и холодных сипов («cold seeps»). Сип — это место разгрузки неравновесных метан-содержащих флюидов на границе «осадок—вода» [2]. Для понимания процессов, определяющих особенности химического состава донных осадков, информативны их литологические особенности формирования и сейсмотектоническая история исследуемого района, которая может играть значимую роль в формировании каналов разгрузки глубинного газожидкостного флюида в поверхностные осадки и водную толщу.

Синергия комплексных биогеохимических и геологических исследований позволяет выявить особенности не только миграции специфических химических элементов, ассоциированных с минеральной и/или органической матрицей в системе «суша—шельф», но и состава восходящих потоков флюида, которые наиболее выражены в районах с высокой сейсмотектонической активностью. В этом контексте моря Восточной Арктики (МВА) (море Лаптевых, Восточно-Сибирское море, российский сектор Чукотского моря), которые представляют наиболее широкий и мелководный шельф Мирового океана, являются одним из наиболее привлекательных объектов исследования.

Подводная мерзлота шельфа МВА в последние 30 лет деградирует с удвоенной скоростью по сравнению со скоростями предшествующих десятилетий [3]. Так, в море Лаптевых задокументировано более 700 мест разгрузки геофлюида (в т. ч. инфильтрации метана различной интенсивности) [4, 5], что придает данному району статус глобального эмитента метана — второго по значимости парникового газа [6–12].

Концентрации растворенного метана в придонной воде в зонах выхода метановых сипов достигают 300–650 нМ, а иногда – 5000 нМ [7, 13]. В среднем концентрации метана в верхних горизонтах водной толщи над метановыми сипами и на удалении от них имеют сопоставимые значения в пределах 25,9–50,4 нМ [14], что свидетельствует о значительном перенасыщении метаном поверхностных вод шельфа МВА, относительно равновесных к атмосфере вод Тихого (5–7 нМ) и Атлантического океанов (3,5–4 нМ) [15, 16]. Столь массированная эмиссия метана, безусловно, отражается на геохимическом облике донных осадков моря Лаптевых.

Для количественного прогнозирования выброса метана из донных отложений моря Лаптевых в водную толщу и атмосферу необходимо выявить генезис флюида. Для этих целей используется молекулярный и изотопный анализ состава ОВ и метана в районах газовых сипов [17–20]. В том числе

перспективными представляются методы геохимии, которые позволяют использовать формы нахождения химических элементов для изучения и верификации различных гипотез о механизме происхождения глубинного флюида, включая абиогенные магматические источники [21].

Формы нахождения элементов информативны для оценки задокументированных в сиповых областях процессов аутигенного синтеза карбонатов и сульфидов, протекающих в сульфат-метановой транзитной зоне (СМТЗ) и являющихся косвенным проявлением силы СМТЗ в роли нивелирующего барьера для эмиссионного потока метана [22].

В этой связи целью данного исследования является выявление особенностей поведения химических элементов в донных осадках в условиях эмиссии метана на шельфе моря Лаптевых с применением метода селективной экстракции по методике BCR [23, 24].

Материалы и методы исследования Район исследования

Район исследования покрывает зону внешнего шельфа до границы с континентальным склоном в северо-восточной части моря Лаптевых. Оно является окраинным материковым морем Северного ледовитого океана, заключенным между полуостровом Таймыр и архипелагом Северная Земля с запада и Новосибирскими островами на востоке. Море Лаптевых является самым мелководным и ледовитым морем Арктического бассейна. Оно преимущество расположено в зоне шельфа, поэтому 53 % всей площади занимают глубины до 50 м. До горизонтали 76° с.ш. доминируют глубины, не превышающие 25 м. По направлению к северу наблюдается резкий переход от шельфовой зоны к материковому склону и далее к ложе океана с глубинами более 2000 м (22 % площади моря). Для данной акватории характерны олиготрофные условия с низкой первичной продуктивностью, где основным источником ОВ служит эродирующий береговой ледовый комплекс и речной сток р. Лены (510 км³/год) [25].

Лаптевоморский регион имеет уникальное тектоническое положение, находящееся на сочленении крупнейших структурных элементов: Сибирского кратона, Центрально-Таймырского аккреционного пояса, ветвей Верхояно-Чукотской покровноскладчатой системы и хребта Гаккеля. Геологическое строение Лаптевомоского шельфа представлено рифтогенной структурой террасированных грабенов и горстов, испытавших сдвиговые деформации [26].

Шельф моря Лаптевых имеет статус перспективной нефтегазоносной провинции [27]. По данным многоканальной сейсморазведки, в северной и

северо-восточной части шельфа моря Лаптевых были обнаружены потенциальные залежи/ловушки газа [28]. Более того, спорадическое распространение многолетнемерзлых пород в зоне внешнего шельфа [5] также может служить аргументом в пользу миграции глубинных углеводородов [22].

Таким образом, данный регион представляется одним из наиболее сложных и интересных в контексте изучения природы флюида, который разгружается в районах метановых сипов, с сейсмологической и геодинамической точек зрения [29].

Фактический материал

В данной работе было проанализировано 9 образцов донных осадков, отобранных на двух фоновых станциях (6958, 6984) и на одной «сиповой» станции (6948) с задокументированным активным потоком метана. Образцы отобраны в ходе рейса АМК-82 на борту НИС «Академик М. Келдыш» осенью 2020 г. Расположение станций представлено на рис. 1. Подробная информация о точках отбора представлена в табл. 1.

Образцы отбирались с использованием мультикорера и нарезались послойно на горизонты. Для анализа были взяты образцы (0–1 см; 6–8,5 см; 12–17,5 см), соответствующие верхнему окисленному, промежуточно смешанному и нижележащему восстановленному горизонтам. После отбора пробы были подвергнуты заморозке и хранились при температуре –18 °C до начала пробоподготовительных работ. Перед использованием вся химическая посуда, контактирующая с образцами и растворами, была обработана 10 % раствором азотной кислоты (10 % HNO₃) и промыта деионизованной водой Milli-O.

Разморозка и сушка образцов производились при комнатной температуре. Обломки горных пород, визуальные примеси, остатки раковин и растений тщательно удаляли из растаявших осадков перед измельчением. Гомогенизировались образцы вручную с использованием фарфоровой ступки и пестика. Смешения образцов не допускалось. Для исследования отбиралась фракция <0,01 см.

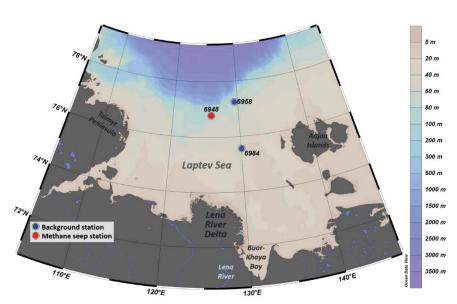


Рис. 1. Расположение станций отбора образиов донных осадков

Fig. 1. Map of sampling stations for sediments

Таблица 1. Информация по станциям отбора

 Table 1.
 Information on sampling stations

Станция Station	Широта Latitude	Долгота Longitude	Горизонт, см Horizon, sm	Alk (μM)	Eh	рН	Сип/фон Seep/background				
			0	-	48	7,42					
6948	76,77783	125,82117	8	-	-	_	Сип/Seep				
			12	-	-	-					
	77,25333	129,49066	0	-	-189	7,17					
6958			6	5200	-224	7,53	Фон/Background				
			12,5	6000	-212	7,34					
			1	6375	-70	7,31					
6984	75,5625	130,07651	8,5	7875	-165	7,46	Фон/Background				
			17,5	8250	-185	7,61					

Методы исследования

Работы по определению форм нахождения элементов в донных осадках выполнялись по широко используемой регламентированной методике Справочного бюро европейского сообщества (the European Community Bureau of Reference (BCR) [23] в модификации [24]. Фракционирование, или последовательные вытяжки, направлено на селективное разрушение конкретных ионных связей с целью разделения элементов на четыре геохимические фракции:

- обменная, водо- и кислоторастворимая фракция (связанная с растворимыми веществами, карбонатами и обменными катионами);
- восстанавливаемая (связанная с окислами/гидроокислами Fe и Mn);
- 3) окисляемая (связанная с ОВ и сульфидами);
- остаточная (оставшиеся, не связанные с силикатами).

В методике селективных вытяжек BCR отсутствует получение остаточной фракции, её рекомендуют получать последующим кислотным разложением в плавиковой, азотной, хлорной кислоте, *aqua regie* [1, 24].

В рамках данного исследования применялось кислотное разложение с использованием концентрированной азотной кислоты в микроволновой печи. В данной работе основное внимание уделяется миграции химических элементов в гипергенных процессах, что позволяет исключить из рассмотрения ту часть элементов, которая связана с минеральным скелетом, что обеспечивается применением экстракции азотной кислотой на финальной стадии [30].

В то же время кислотное разложение концентрированной азотной кислотой эквивалентно полному разложению (учитывая связанные с силикатами элементы) в *aqua regie* (3:1:1 HCl:HNO₃:H₂O) для Ва, Со, Fe, Са и Мп [31].

Для анализа использовалась навеска осадка массой, приближенной к 1 г (измеренная с погрешностью 0,0005 г). Работы проводились с использованием стерильных конических полипропиленовых флаконов объемом 50 мл. Для контроля качества проводимого эксперимента исходные растворы проверялись на чистоту методом ICP-MS. Для оценки воспроизводимости эксперимента в работу были параллельно включены дубликаты некоторых образцов, которые также подверглись полному циклу фракционирования. Для приготовления растворов использовалась деионизованная вода Milli-Q. Вся посуда перед использованием промывалась раствором 10 % азотной кислоты. Пошаговый цикл работ по селективному извлечению элементов из донных осадков представлен в табл. 2. Все этапы и приготовление растворов детально расписаны в методике G. Rauret [24].

Каждый этап пошаговой экстракции длился не менее 16 часов при комнатной температуре (22±5 °C) с использованием шейкера согласно методике [24]. Затем экстракт отделяли от твердого остатка центрифугированием в течение 20 мин при 3000 об/мин, полученную надосадочную жидкость декантировали в 50 мл полипропиленовый флакон.

Твердый остаток промывали добавлением 20 мл деионизированной воды, встряхивали в течение 15 мин на шейкере и центрифугировали 20 мин при 3000 об/мин. Затем надосадочную жидкость декантировали.

Таблица 2. Шаги селективного выщелачивания методом BCR **Table 2.** Brief steps for BCR sequential extraction

Шаг Step	Фракция Fraction	Целевая фаза Target phase	Экстрагирующий раствор Extraction solution [24]
1	Обменная, кислоторастворимая Extractable, acid-soluble	Растворимые вещества, карбонаты, обменные катионы Soluble substances, carbonates, exchange cations	Раствор А: 0,11 моль/л уксусной кислоты CH₃COOH (40 мл) Solution A: 0.11 mol/l acetic acid CH₃COOH (40 ml)
2	Восстанавливаемая Reducible	Оксиды и гидроксиды железа и марганца Oxides and hydroxides of iron and manganese	Раствор В: 0,5 моль/л хлорида гидроксиламмония (NH₃OH)Cl при рН 1,5 (40 мл) Solution B: 0.5 mol/L hydroxylammonium chloride (NH₃OH)Cl at pH 1.5 (40 ml)
3	Окисляемая Oxidizable		Раствор C+D: Перекись водорода H_2O_2 30 % (20 мл – нагревание и выпаривание) (раствор C) с последующим добавлением 1,0 моль/л ацетата аммония CH_3COONH_4 при pH 2 (50 мл) (раствор D) Solution C+D: Hydrogen peroxide H_2O_2 30% (20 ml – heating and evaporation) (solution C) followed by the addition of 1.0 mol/l ammonium acetate CH_3COONH_4 at pH 2 (50 ml) (solution D)
4	Остаточная Residual	Оставшиеся, не связанные с силикатами элементы Remaining, non-silicate bound metals [32]	Концентрированная азотная кислота $\mathrm{HNO_3}$ Concentrated nitric acid $\mathrm{HNO_3}$

Таблица 3.	Усредненные по станция	м содержания химических элемент	ов в донных осадках, мг/кг
------------	------------------------	---------------------------------	----------------------------

Table 3.	Resulting contents of chemical elements in	bottom sediments averaged over station, mg/kg
Tuble 5.	Resulting Contents of Chemical Elements in	bottom seaments averaged over station, mg/kg

Станция/Station	Ве	Mg	Al	P	Ca	V	Cr	Mn	Fe	Со	Ni
6948	0,21	2035	1663	457	2634	22,26	12,29	211	4922	4,39	7,70
6958	0,33	2026	1722	463	1326	24,58	11,55	200	5308	3,48	8,43
6984	0,27	2153	1975	404	1400	16,51	10,39	135	6888	3,32	6,75
Станция/Station	Cu	Zn	As	Sr	Mo	Sn	Sb	Ва	W	Th	U
6948	6,81	13,31	2,94	18,92	2,65	0,02	0,01	5,59	0,01	2,02	0,82
6958	5,02	15,91	2,22	9,94	0,43	0,02	0,02	5,53	0,01	2,89	1,58
6984	4,75	15,69	2,97	10,66	0,59	0,02	0,02	6,13	0,01	3,10	0,66

Согласно методике [24], двукратным нагреванием и выпариванием на водяной бане (85±2 °C) сопровождались работы с раствором С (табл. 2). Все этапы и приготовление растворов детально расписаны в методике G. Rauret [24].

Методика селективного выщелачивания BCR изначально была разработана для анализа тяжелых металлов (для Cd, Cr, Cu, Ni, Pb, Zn и др.). Поскольку фокус данной работы сведен на выявлении изменений форм нахождения химических элементов, то методика BCR была экспериментально применена к более широкому спектру элементов, проявивших максимальную изменчивость по результатам ступенчатой экстракции при сравнениях сиповой и фоновых станций (в т. ч. к некоторым щелочноземельным металлам, металлоидам).

При сравнении сиповой и фоновых станций по умолчанию было принято связать аутигенное карбонатообразование с положительным приращением обменной, кислоторастворимый фракции, а сдвиг геохимической среды в сторону аутигенного сульфидообразования через изменение окисляемой фракции.

Полученные фракции анализировались методом масс-спектрометрии с индуктивно связанной плазмой ICP-MS с измерением 73 элементов (ICP-MS, NexIon 300D, Perkin Elmer, Waltham, MA, USA).

Общий органический углерод (Total organic carbon – TOC, %) и другие пиролитические параметры (S_1 ($S_{1r}+S_{2a}$) – экстрагируемая часть, легкие углеводороды, S_2 (S_{2b}) – относительно термолабильные соединения, обогащенные водородом – биополимеры, S_3 – кислородосодержащее ОВ или геополимеры/протокероген, MinC, % – содержание неорганического углерода) – определялись методом пиролиза на приборе «Rock-Eval 6 Turbo» компании VINCI Technologies в режиме «Reservoir». Температурная программа: старт нагрева образца – 180 °C, выдержка 10 мин, далее нагрев до 650 °C со скоростью 25 °C/мин.

Результаты и обсуждения

Результаты селективного выщелачивания образцов донных осадков, соответствующие формам нахождения химических элементов: связанные с

карбонатами (I), оксидами/гидроксидами Fe и Mn (II), с OB и сульфидами (III) и прочно связанные с остаточными (не связанные с силикатами) минеральными фазами (IV)), представлены на рис. 2. При визуализации диаграмм накопления использовались усредненные значения по трем горизонтам для каждой станции, фоновые станции ввиду схожести поведения химических элементов также были усреднены.

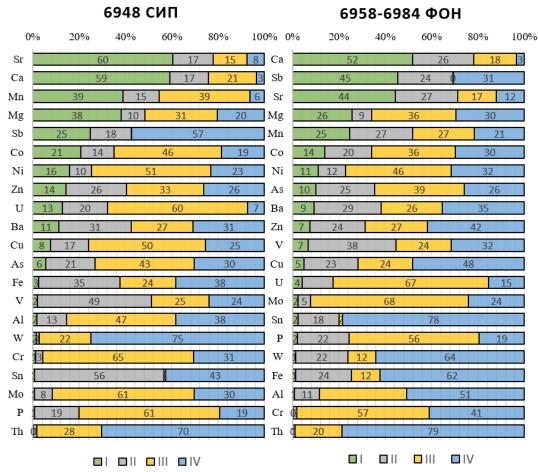
Изначальная выборка из 73 элементов была сокращена до 22, исходя из отклика на разгрузку метан-содержащих флюидов. В выборку также были включены редокс-чувствительные элементы.

В табл. 3 представлены средние значения концентраций элементов, рассчитанные как средневзвешенные величины с учетом долей, приходящихся на каждую фракцию. Полученные концентрации в разы меньше референсных значений по кларку верхней части континентальной коры [33], за исключением магния и молибдена. Данное различие обусловлено аналитическими потерями и неполным растворением остаточной фракции (силикатов) в концентрированной азотной кислоте.

Кислоторастворимая (карбонатная) форма (далее — І фракция) является преобладающей для Sr, Ca (>50 %), что связано с их способностью образовывать самостоятельные карбонатные формы. Помимо этого, значительная роль І фракции фиксируется для Mn, Mg и Sb (20–50 %). Согласно анализу карбонатных корок метановых сипов, доминирующими минеральными фазами в них являются Mg-кальцит и арагонит [34, 35], основой кристаллической решетки которых служат Mg, Ca и Sr.

Согласно литературным данным, в сиповых областях тандемное протекание двух противонаправленных потоков — аэробного окисления метана и сульфатредукции — усиливает щелочность среды (поровой воды), что, в свою очередь, ведет к интенсификации процессов аутигенного синтеза карбонатов из-за возникающего избытка растворенного неорганического углерода [36—39].

Для Ca, Sr, Mn, Mg в условиях активного поступления метана отмечается увеличение доли I фракции на 7–16 отн. %, что может свидетельствовать об активизации процессов аутигенного карбо-


натообразования. В пользу этого утверждения свидетельствует установленная корреляционная зависимость между указанными элементами и неорганическим углеродом (MinC, %): так, для Са и Sr коэффициенты корреляции составляют 0,91 и 0,73 соответственно (табл. 5). Более того, на сиповой станции фиксируется незначительный рост содержания MinC (неорганического углерода) на уровне 0,03 % (табл. 4).

Кроме этого, в процессе вторичного карбонатообразования отмечается обогащение вторичной фазы некоторыми микроэлементами [40]. На сиповой станции отмечается увеличение на 5–10 отн. % содержания I фракции для таких элементов, как Ni, U, Co, Zn.

В работе [41] исследовался состав карбонатных корок метановых сипов континентального склона Моря Лаптевых, где согласно ретроструктурному анализу было выявлено, что среди карбонатных минералов преобладают Мд-кальцит, доломит и кутногорит. Также было выявлено, что для исследованных карбонатов отмечается слабое обогащение Со, умеренное и значительное обогащение Аs, Мо, Sb и значительное обогащение U [41].

Однако необходимо понимать, что в I фракцию входит также ионно-обменная фракция (в т. ч. водорастворимая), в которую выщелачиваются элементы, адсорбированные на глинистых минералах, гидроксидах железа и гуминовых кислотах, в т. ч. слабоадсорбированные катионы, удерживающиеся за счет электростатических взаимодействий [1]. Элементы I фракции считаются наиболее подвижными и биологически доступными, что указывает на повышенную доступность токсичных элементов.

Восстанавливаемая форма (далее – ІІ фракция) атрибутирована с оксидами и гидроксидами железа и марганца. Для Fe, Mn доля указанной фракции не превышает 35 %. На сиповой станции ІІ фракция играет доминирующую роль для Sn и V (>50 %). На рис. 2 видно, что для большинства элементов наблюдается тренд к незначительному уменьшению доли ІІ фракции, за исключением олова, вольфрама и ванадия. Эмиссионные потоки сдвигают фракционные соотношения в сторону увеличения роли ІІ фракции для Sn (+38 отн. %), V, Fe (+10 отн. %) и уменьшения доли W (–21 отн. %), Mn, Ca, Sr (на уровне 10 отн. %).

Puc. 2. Усредненные значения долей форм нахождения элементов **Fig. 2.** Averaged values of element occurrence forms

Снижение доли II фракции для некоторых элементов может быть обусловлено дезагрегацией их как элементов-примесей в среду из-за разрушения оксидов Fe/Mn [42]. Оксиды и гидроксиды железа и марганца, присутствующие в виде конкреций, цементирующего материала и налетов на других минералах, могут играть важную роль в связывании элементов при своей нестабильности в восстановительных условиях [1]. Данный факт обуславливает истощение восстанавливаемой фракции при сдвиге среды в сторону аутигенного карбонатообразования и повышения щелочности среды, характерных для сиповых участков. Также не исключается перераспределение восстанавливаемой фракции в карбонатную.

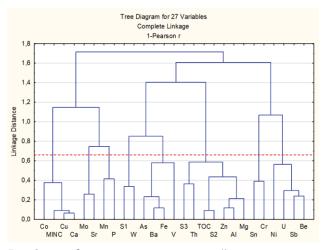
В дополнении, по данным селективного выщелачивая, зафиксирован потенциальный процесс разрушения оксидов Мп и образования оксидов Fe. Однако корреляции между W, Ca, Sr и Мп отсутствуют (табл. 5).

Окисляемая фракция (далее – III фракция) является преобладающей для значительного количества элементов. Так, доля III фракции >50 % зафиксирована для Мо, Сг, U, P, Си, Ni. Для широкого спектра элементов на долю окисляемой фракции приходится от 30 до 50 %: Mg, Zn, Mn, As, Co, Al. Эмиссия метана визуально сдвигает геохимические условия в сторону роста вклада окисляемой фракции (рис. 2). Самые амплитудные изменения отмечаются для Си (+27 отн. %), менее существенные на уровне +10 отн. % – для Mn, Fe, W, Co.

В точках сиповой активности метаболизм сульфатредуцирующих бактерий благотворно влияет на обильное образование сероводорода, что, соответственно, активизирует осаждение аутигенных сульфидов с одновременным связыванием dметаллов (Fe, Mn, Co и Cu) [43-47]. Так, наличие в карбонатном цементе фрамбоидального пирита указывает на высокую активность бактериальной сульфатредукции при анаэробном окислении метана, а высокие корреляции между содержанием пирита и As, Sb и Co указывают на роль сульфидов накоплении некоторых В редоксчувствительных микроэлементов [41].

Влияние сиповой активности на увеличение доли III фракции для меди, кобальта и железа может быть косвенным свидетельством образования не только аутигенного пирита, но и сульфидов меди (халькопирита с вторичными ковеллином и халькозином), а также сульфида кобальта – линнеита.

Окисляемая фракция ассоциирована не только с сульфидами, но и с OB, при окислении и разрушении которого может происходить десорбция связанных с OB элементов в окружающую среду [1]. Некоторые пиролитические параметры для исследуемых образцов приведены в табл. 4. Корреляци-


онные отношения между органическими и неорганическими параметрами отражены в табл. 5. Значимые коэффициенты корреляции зафиксированы для высокомолекулярного ОВ и Al, Fe, Zn, Ba.

Как видно из дендрограммы корреляционной матрицы геохимического спектра по средневзвешенным содержаниям и некоторым пиролитическим параметрам, геохимические спектры образуют восемь значимых микроассоциаций {Co-MinC-Cu-Ca; Mo-Sr; Mn-P; W-S₁; As, Ba, Fe, V; S₃-Th-TOC-S₂-Zn-Al-Mg; Sn-Cr; Ni-U-Sb-Be} (рис. 3).

Таблица 4. Пиролитические параметры, усредненные по станииям

Table 4. Pyrolytic parameters averaged over stations

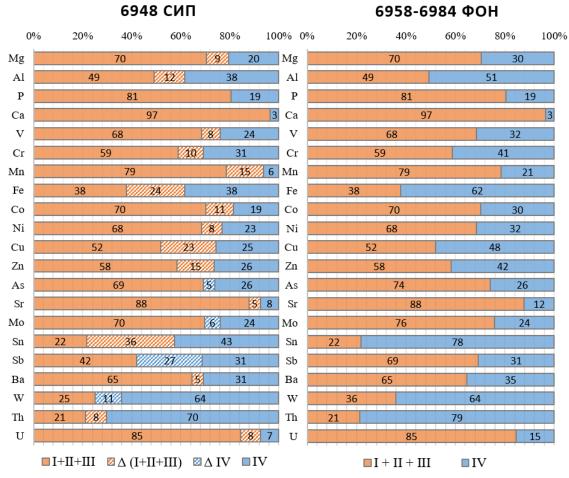
Станция	S_1	S ₂	S_3	TOC	MINC	
Station	:	мг/г/тд/g	%			
6948	0,50	0,57	1,70	0,74	0,18	
6958	0,43	0,54	1,73	0,82	0,15	
6984	0,48	0,79	2,16	1,15	0,15	

Рис. 3. Дендрограмма корреляционной матрицы геохимического спектра по содержанию химических элементов и пиролитическим параметрам

Fig. 3. Dendrogram of the correlation matrix based on the contents of chemical elements and pyrolytic parameters

Остаточная фракция (далее – IV фракция) является преобладающей для W, Th, Sb, Sn, Fe, Al (>50 %) в донных осадках фоновых станций и для W, Th и Sb для сиповых станций. В остаточную фракцию могут растворяться первичные и вторичные минералы, которые не были извлечены на предыдущих этапах и которые могут содержать микроэлементы в их кристаллической решетке [1].

В свою очередь, обломочная фракция для образцов сиповой станции континентального склона моря Лаптевых представлена кварцем, полевыми шпатами и глинистыми минералами [41]. По дан-


ным рентгеноструктурного анализа в исследовании [48] было выявлено, что по минералогическому составу сиповые станции близ прибрежной зоны и у континентального склона на внешнем шельфе очень близки по литологии, за исключением вариации по долям глинистых минералов. Преобладающими минеральными фазами является кварц (≈30-35 %) и плагиоклаз (≈20–25 %), в меньшей степени калиево-полевые шпаты (≈10-15 %), глинистые минералы (≈10-15 %) и амфиболы (менее 5 %). В свою очередь глинистые минералы представлены монтмориллонитом, иллит-монтмориллонитом, иллитом, хлоритом и каолинитом [48]. Концентрированная азотная кислота не способна растворить элементы, находящиеся в кристаллической решетке силикатных и алюмосиликатных минералов [30], инертные в гипергенном процессе.

Визуально видна тенденция к снижению доли IV фракции на сиповой станции, что говорит о переходе элементов из инертной в подвижную форму. Наиболее значимые снижения доли IV фракции зафиксированы для Cu (–23 отн. %), Fe (–24 отн. %)

и Sn (–36 отн. %), чуть меньшие – на уровне – 10–20 отн. % – характерны для Cr, Co, Al, Mn, Zn. Также присутствуют элементы, для которых наблюдается обратная тенденция к росту доли остаточной фракции – сурьма (+27 отн. %) и вольфрам (+11 отн. %). В целом на совокупность III и IV форм приходится от 40–90 % от общего количества элемента.

Поток метан-содержащего флюида способствует изменению геохимической среды и, как следствие, влияет на особенности поведения химических элементов в гипергенных процессах. Указанные особенности можно проследить на основе анализа соотношения подвижных и инертных форм химических элементов (рис. 4). Под подвижной формой понимается сумма I, II и III фракций. В свою очередь, остаточная фракция (IV) считается инертной [24].

Диффузные потоки метана приводят к увеличению подвижности большей части рассмотренных химических элементов от 5 до 36 отн. %. Однако также зафиксированы элементы, для которых наблюдается обратная тенденция (Sb, W, Mo, As).

Puc. 4. Динамика изменения инертной и подвижных форм нахождения химических элементов **Fig. 4.** Dynamics of inert and mobile occurrence forms of chemical elements

Таблица 5. Коэффициенты парной корреляции между рассмотренными элементами для изученных станций Pair correlation coefficient matrix for selected elements of the studied stations Table 5.

MINC																											1	
TOC																										1	-0,33	
S3																									1	0,71	0,26	
S2																								1	0,59	0,91	-0,38	
S1																							1	0,74	0,13	0,52	-0,46	
n																						1	-0,20	-0,35	-0,06	-0,18	0,32	
Th																					1	0,19	0,00	0,54	0,64	0,65	0,01	
8																				1	-0,40	-0,46	99'0	0,36	0,03	0,17	-0,55	
Ba																			1	0,43	0,55	-0,28	0,67	0,87	0,57	99'0	-0,29	
Sb																		1	-0,05	0,07	60'0	0,73	0,30	0,05	0,01	0,21	-0,20	
Sn																	1	0,56	-0,27	0,44	-0,50	0,28	0,06	-0,22	-0,01	-0,10	-0,08	
Mo																1	-0,20	-0,53	0,28	0,34	-0,40	-0,36	0,33	90'0	-0,13	-0,31	0,23	
Sr															1	0,74	-0,39	-0,64	0,12	-0,14	-0,08	-0,22	-0,13	-0,12	0,20	-0,32	0,73	рным.
As														1	0,42	0,37	-0,20	-0,42	0,77	0,49	0,28	-0,61	0,33	0,58	09'0	0,39	-0,05	олужи
Zn													1	0,32	-0,04	-0,23	-0,19	0,47	0,65	-0,08	0,78	0,36	0,42	0,62	79'0	99'0	0,07	ным п
Co Ni Cu Zn												1	-0,03	60'0	68'0	0,50	-0,26	-0,40	-0,19	-0,41	-0,13	60'0	-0,31	-0,35	60'0	-0,45	0,92	ы крас
ï											1	0,42	0,47	-0,02	0,17	-0,08	0,19	0,51	-0,01	-0,17	60'0	0,63	-0,01	-0,22	90'0	-0,24	0,44	делені 1 red.
Co										1	0,23	9,65	-0,44	-0,20	0,50	0,37	0,35	-0,12	-0,59	0,02	-0,72	90'0	-0,23	-0,61	-0,20	-0,62	0,62	=9) <i>вы</i> in bolo
Fe									1	-0,49	0,05	00'0	0,77	0,79	0,23	0,07	-0,33	-0,10	0,88	0,15	0,75	-0,22	0,40	0,81	0,85	92,0	0,01	95 u n -9) are
Mn								1	0,23	0,31	0,02	0,40	-0,12	0,62	0,57	0,25	-0,26	-0,60	0,07	0,16	-0,04	-0,49	-0,28	-0,17	0,23	-0,23	0,26	ou p=0, and n=
C L							1	-0,51	-0,33	0,29	0,39	-0,17	. 80,0	-0,34	-0,35	0,01	0,61	0,73	-0,11	0,41	-0,48	0,36	0,57	0,01	-0,30	-0,04	-0,18	7,66; nt 1=0.95
>						1	0,10	0,18	0,43	-0,25	0,43	- 50,0	0,52	0,42	0,24	0,40	-0,27	0,13	0,64	0,31	0,26	0,15	0,48	0,27	0,07	0,01	-0,13	iu (R>C 56; at p
Ca					1	-0,21	-0,37	0,43	-0,16	99'0	0,19	6,03	-0,26	-0,04	0,82	0,38	-0,26	-0,53	-0,41	-0,54	-0,16	0,04	-0,58	-0,51	0,02	-0,53	0,91	эеляци ; (R>0.
P				1	0,23	0,55	- 62'0-	0,58	0,47	-0,15	0,36	0,37	0,19	0,73	0,55	0,39	- 0,39	-0,44	0,50	0,10	0,23	-0,30	-0,01	0,13	0,18	-0,12		*Значимые коэффициенты корреляции (R>0,66; при p=0,95 и n=9) выделены красным полужирным. Significant correlation coefficients (R>0.66; at p=0.95 and n=9) are in bold red.
A			1	60'0) 88'0-	0,40	0,18) 82'0-	0,82	-0,45	0,22	-0,15	0,88	0,43	-0,06	-0,05	-0,01	0,40	0,79	0,18	0,63	0,16	0,64	0,83	0,74	0,82	-0,09 -0,08 -0,06 0,16	циент п соеђ
Mg Al P Ca V Cr Mn Fe		1	*08'0	0,21	-0,25	0,70	0,06	-0,18	0,71	-0,45	0,15	-0,01	0,79	0,35	0,16	0,27	-0,44	0,16	0,80	0,08	0,59	0,111	0,68	0,73	0,41	0,56	- 80'0	эффи relatic
0		0,45	0,40 0,	-0,33	-0,34	0,30 0	0,33 0)- 66'0-	0,10 0	-0,29	0,44 0	-0,24	0,67	-0,39 0	-0,45 0	-0,55 0	-0,07	0,76 0	0,04 0	-0,31 0	0,49 0	0,71 0	0,17 0	0,11 0	0,08 0	0,28 0)- 60'(мые кс int cor
В	Be	Mg 0	Al 0)- d	Ca -(V 0	Cr 0	Mn –(Fe 0)- O)	Ni 0	Cu -(Zn 0	As -(Sr -(Мо –(Sn -(Sb 0	Ba 0)- M	Th 0	U 0	S1 0	S2 0	S3 0	TOC 0	MINC -(Значи. ignific
' L		~	,				_	_		_	. –	_		,		~	0,		_	ŕ	. "		- 1	- 1	- 1	Τ	Σ	* \

Заключение

В результате данного исследования были определены формы нахождения элементов с использованием метода последовательной экстракции по широко используемой регламентированной процедуре BCR. Было выявлено, что эмиссия метана приводит к увеличению подвижности большинства рассматриваемых элементов (кроме Sb, W, P, Ca).

Разгрузка метан-содержащих флюидов является значимым фактором в формировании геохимической среды, влияющим как на миграцию, так и на перераспределение форм нахождения химических элементов. В местах задокументированной сиповой активности наблюдается тенденция к росту карбонатной и окисляемой фракций химических элементов. Это свидетельствует о, возможно, протекающих в СМТЗ процессах аутигенного карбонато- и сульфидообразования [13, 22]. Дополнительно в пользу сдвига среды в сторону аутигенного карбонатообразования на сиповой станции указывает увеличение пиролитического параметра MinC на 0,03 %, коррелирующего с Са и Sr.

Кроме этого, продемонстрированы процессы перераспределения химических элементов при протекании вторичного минералообразования. Уста-

новлено, что процесс разгрузки метан-содержащих флюидов играет значительную роль в обогащении аутигенных карбонатов U, Ni, Zn Co, оксидов железа — Sn и V, аутигенных сульфидов — Co, Mn и W. Также не исключается образование не только аутигенного пирита, но и халькопирита, а также самостоятельных вторичных сульфидов — ковеллина, халькозина и линнеита.

Сиповая активность не сказывается на величинах пиролитических параметров, характеризующих ОВ, однако установлена значимая корреляция между высокомолекулярным ОВ и Al, Fe, Zn, Ba.

Поведение химических элементов в донных осадках контролирует сложная комбинация физических, биологических и химических процессов [1, 47], формирующих и определяемых геохимической обстановкой и влияющих на перераспределение химических элементов между компонентами среды.

Полученные результаты могут стать основой для выявления наиболее эффективных химических индикаторов разгрузки глубинного флюида на шельфе моря Лаптевых, и в перспективе – в других морях МВА.

СПИСОК ЛИТЕРАТУРЫ

- 1. Химический анализ в геологии и геохимии / науч. ред. Г.Н. Аношин. Новосибирск: Академическое издательство «Гео», 2016. 622 с.
- Barnes R.O., Goldberg E.D. Methane production and consumption in anoxic marine sediments // Geology. 1976. Vol. 4. № 5. P. 1977–1984.
- 3. Current rates and mechanisms of subsea permafrost degradation in the East Siberian Arctic Shelf / N. Shakhova, I.P. Semiletov, O. Gustafsson, V.I. Sergienko, L.I. Lobkovsky, O.V. Dudarev, V. Tumskoy, M.N. Grigoriev, A. Mazurov, A. Salyuk, R.A. Ananiev, A. Koshurnikov, D. Kosmach, A.N. Charkin, N. Dmitrevsky, V.N. Karnaukh, A.Y. Gunar, A. Meluzov, D. Chernykh // Nature Communications. − 2017. − Vol. 8. − № 15872.
- 4. The East Siberian Arctic Shelf: towards further assessment of permafrost-related methane fluxes and role of sea ice / N. Shakhova, I. Semiletov, V. Sergienko, L. Lobkovsky, V. Yusupov, A. Salyuk, A. Salomatin, D. Chernykh, D. Kosmach, G. Panteleev, D. Nicolsky, V. Samarkin, S. Joye, A. Charkin, O. Dudarev // Philosophical Transactions of the Royal Society A. 2015. Vol. 373. № 2052 P. 1–13.
- 5. Methane seeps on the outer shelf of the Laptev Sea: characteristic features, structural control, and benthic fauna / B. Baranov, S. Galkin, A. Vedenin, K. Dozorova, A. Gebruk, M. Flint // Geo-Marine Letters. 2020. Vol. 40. P. 541–557.
- Ebullition and storm-induced methane release from the East Siberian Arctic Shelf / N.E. Shakhova, I.P. Semiletov, I. Leifer, V. Sergienko, A. Salyuk, D. Kosmach, D. Chernykh, C. Stubbs, D. Nicolsky, V. Tumskoy // Nature Geoscience. – 2014. – Vol. 7. – P. 64–70.
- 7. Extensive methane venting to the atmosphere from sediments of the east siberian arctic shelf / N.E. Shakhova, I.P. Semiletov, A. Salyuk, V. Yusupov, D. Kosmach, O. Gustafsson // Science. 2010. Vol. 327. P. 1246–1250.
- 8. Ruppel C.D., Kessler J.D. The interaction of climate change and methane hydrates // Reviews of Geophysics. 2017. Vol. 55. P. 126–168.
- 9. Ruppel C.D. Permafrost-associated gas hydrate: Is it really approximately 1 % of the global system? // J. Chem. Eng. Data. 2015. Vol. 60. P. 429–436.
- Extremes, abrupt changes and managing risk / M. Collins, M. Sutherland, L. Bouwer, S.M. Cheong, T. Frölicher, H. Jacot Des Combes, M. Koll Roxy, I. Losada, K. McInnes, B. Ratter, E. Rivera-Arriaga, R.D. Susanto, D. Swingedouw, L. Tibig // In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. – Cambridge: Cambridge University Press, 2019. – P. 589–655.
- 11. Majorowicz J.A., Safanda J., Osadetz K. Inferred gas hydrate and permafrost stability history models linked to climate change in the Beaufort-Mackenzie Basin, Arctic Canada // Climate of the Past. 2012. Vol. 8. P. 667–682.
- 12. Comiso J.J. Large decadal decline of the arctic multiyear ice cover // Journal of Climate. 2012. Vol. 25. P. 1176–1193.
- 13. Methane as an organic matter source and the trophic basis of a Laptev Sea cold seep microbial community / A.S. Savvichev, V.V. Kadnikov, M.D. Kravchishina, S.V. Galkin, A.N. Novigatskii, P.A. Sigalevich, A.Yu. Merkel, N.V. Ravin, N.V. Pimenov, M.V. Flint // Geomicrobiology Journal. 2018. Vol. 35. № 5. P. 411–423.

- 14. On the possibility of aerobic methane production by pelagic microbial communities of the Laptev Sea / O.S. Samylina, I.I. Rusanov, I.Yu. Tarnovetskii, E.V. Yakushev, A.A. Grinko, E.E. Zakharova, A.Yu. Merkel, T.A. Kanapatskiy, I.P. Semiletov, N.V. Pimenov // Microbiology. − 2021. − Vol. 90. − № 2. − P. 145−157.
- 15. Methane production in aerobic oligotrophic surface water in the central Arctic Ocean / E. Damm, E. Helmke, S. Thoms, U. Schauer, E. Nöthig, K. Bakker, R.P. Kiene // Biogeosciences. 2010. Vol. 7 P. 1099–1108.
- Methane excess production in oxygen-rich polar water and a model of cellular conditions for this paradox / E. Damm, S. Thoms,
 A. Beszczynska-Möller, E. Nöthig, G. Kattner // Polar Science. 2015. Vol. 9. P. 327–334.
- 17. The origin of methane in the East Siberian Arctic Shelf unraveled with triple isotope analysis / C.J. Sapart, N. Shakhova, I. Semiletov, J. Jansen, S. Szidat, D. Kosmach, O. Dudarev, C. Veen, M. Egger, V. Sergienko, A. Salyuk, V. Tumskoy, J.L. Tison, T. Rockmann // Biogeosciences. 2017. Vol. 14. P. 2283–2292.
- 18. Source apportionment of methane escaping the subsea permafrost system in the outer Eurasian Arctic Shelf / J. Steinbach, H. Holmstrand, K. Shcherbakova, D. Kosmach, V. Brüchert, N. Shakhova, A. Salyuk, C.J. Sapart, D. Chernykh, R. Noormets, I. Semiletov, Ö. Gustafsson // Proceedings of the National Academy of Science. −2021. − Vol. 118. − № 10.
- 19. Composition of sedimentary organic matter across the Laptev Sea shelf: evidences from rock-eval parameters and molecular indicators / E. Gershelis, A. Grinko, I. Oberemok, E. Klevantseva, N. Poltavskaya, A. Ruban, D. Chernykh, A. Leonov, N. Guseva, I. Semiletov // Water. − 2020. − Vol. 12. − № 3511 − P. 1−21.
- 20. Sediment organic matter in areas of intense methane release in the Laptev sea: characteristics of molecular composition / A.A. Grinko, I.V. Goncharov, N.E. Shakhova, Ö. Gustafsson, N.V. Oblasov, E.A. Romankevich, A.G. Zarubin, R.S. Kashapov, D.V. Chernykh, E.V. Gershelis, O.V. Dudarev, A.K. Mazurov, I.P. Semiletov // Russian Geology and Geophysics. 2020. Vol. 61. № 4. P. 456–477.
- 21. Late Mesozoic and Cenozoic geodynamics of the Arctic region: implications for abiogenic generation of hydrocarbons / N. Sorokhtin, L. Lobkovsky, I. Semiletov, E. Shipilov, S. Nikiforov, N. Kozlov, N. Shakhova, R. Ananiev, D. Alekseev // Geosciences. 2023. Vol. 13. № 3:68.
- 22. Происхождение аутигенных карбонатных корок на поверхности дна внешнего шельфа моря Лаптевых / М.Д. Кравчишина, А.Ю. Леин, Б.В. Баранов, Е.О. Дубинина, О.М. Дара, А.С. Саввичев, А.Ю. Мирошников, М.В. Флинт // Геология морей и океанов: Материалы XXIV Международной научной конференции (Школы) по морской геологии. М.: ИО РАН, 2021. Т. IV. С. 85—89.
- 23. Speciation of heavy metals in soils and sediments an account of improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communities / A.M. Ure, Ph. Quevauviller, H. Muntau, B. Griepink // International Journal of Environmental Analytical Chemistry. 1993. Vol. 51. 135.
- 24. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials / G. Rauret, J.F. Lopez-Sanchez, A. Sahuquillo, R. Rubio, C. Davidson, A. Ure, Ph. Quevauviller // J. Environ. Monitor. 1999. Vol. 1 P. 1275–1279.
- 25. Добровольский А.Д., Залогин Б.С. Моря СССР. М.: Изд-во МГУ, 1982. 192 с.
- 26. Качественная и количественная оценка перспектив нефтегазоносности шельфа моря Лаптевых / М.Б. Скворцов, А.Д. Дзюбло, О.В. Грушевская, М.Н. Кравченко, И.В. Уварова // Геология нефти и газа. 2020. № 1. С. 5–19.
- 27. Начальные геологические ресурсы углеводородов шельфа моря Лаптевых / А.Ф. Сафронов, А.И. Сивцев, О.Н. Чалая, И.Н. Зуева, А.Н. Соколов, Г.С. Фрадкин // Геология и геофизика. 2013. Т. 54. № 8. С. 1275–1279.
- 28. Дегазация Земли в Арктике: дистанционные и экспедиционные исследования катастрофического Сеяхинского выброса газа на полуострове Ямал / В.И. Богоявленский, О.С. Сизов, А.В. Мажаров, И.В. Богоявленский, Р.А. Никонов, А.В. Кишанков, Т.Н. Каргина // Арктика: экология и экономика. 2019. № 1 (33). С. 88–105.
- 29. Features of seismological observations in the Arctic Seas / A.A. Krylov, M.A. Novikov, S.A. Kovachev, K.A. Roginskiy, D.A. Ilinsky, O.Y. Ganzha, V.N. Ivanov, G.K. Timashkevich, O.S. Samylina, L.I. Lobkovsky, I.P. Semiletov // Journal of Marine Science and Engineering. − 2023. − Vol. 11. − № 2221.
- 30. Слесарь Н.И. Методические основы анализа объектов. СПб.: Изд-во ВВМ, 2015. 40 с.
- 31. Evaluation of nitric acid extraction of elements from soils and sediments in two watersheds in east tennessee / Y. Huangfu, M.E. Essington, S.A. Hawkins, F.R. Walker, J.S. Schwartz, A.C. Layton, R.A. Hull // Communications in Soil Science and Plant Analysis. − 2019. − V. 50. − № 11. − P. 1358–1369.
- 32. Speciation of heavy metals by modified BCR sequential extraction procedure in different depths of sediments from Sungai Buloh, Selangor, Malaysia / K. Nemati, N.K. Abu Bakar, M.R. Abas, E. Sobhanzadeh // Journal of Hazardous Materials. − 2011. − Vol. 192 − № 1. − P. 402–410.
- 33. Григорьев Н.А. Среднее содержание химических элементов в горных породах, слагающих нижнюю часть континентальной коры // Геохимия. 2003. № 7. С. 785–792.
- 34. Matsumoto R.V. Carbonate Crust Formed by Hydrocarbon Seepage on the Continental Shelf of Baffin Island Northeast Canada // Geochemistry Journal. 1990. Vol. 24. P. 143–158.
- 35. Characteristic property of the formation of authigenic minerals in bottom sediments of the South Caspian Basin under hydrogen sulfide contamination conditions / N.V. Kozina, L.Ye. Reykhard, O.M. Dara, V.V. Gordeev // Oceanology. − 2021. − Vol. 61 − № 6. − P. 1006–1015.
- 36. Geochemistry of cold seepageimpacted sediments: Per-ascensum or per-descensum trace metal enrichment / N. Tribovillard, E.A. du Chatelet, A. Gay, F. Barbecot, P. Sansjofre, J.L. Potdevin // Chemical Geology. 2013. Vol. 340. P. 1–12.
- 37. A marine microbial consortium apparently mediating anaerobic oxidation methane / A. Boetius, K. Ravenschlag, C.J. Schubert, D. Rickert, F. Widdel, A. Gleseke, R. Amann, B.B. Jørgensen, U. Witte, O. Pfannkuche // Nature. 2000. Vol. 407. P. 623–626.
- 38. Reeburgh W.S. Oceanic methane biogeochemistry // Chemical Review. 2007. Vol. 107. P. 486–513.
- 39. Геохимические особенности донных осадков в областях разгрузки метан-содержащих флюидов на внешнем шельфе моря Лаптевых / А.С. Рубан, М.А. Рудмин, А.К. Мазуров, Я.В. Милевский, И.П. Семилетов, Е.В. Гершелис, О.В. Дударев // Известия Томского политехнического университета. Инжиниринг георесурсов. − 2021. − Т. 332. − № 12. − С. 76–89.

- 40. Veizer J. Chemical diagenesis of carbonates: theory and application of trace element technique // Stable Isotope in Sedimentary Geology. 1983. Vol. 10. P. 3–100.
- 41. Ruban A.S., Rudmin M.A., Mazurov A.K. Cold-seep carbonates of the Laptev Sea continental slope: Constraints from fluid sources and environment of formation // Chemical Geology. 2022. Vol. 610. P. 13.
- 42. Enrichment of trace metals (V, Cu, Co, Ni, and Mo) in Arctic sediments from Siberian Arctic shelves to the basin / L. Li, X. Wang, Y. Ren, H. Su, L. Hu, G. Yang, Z. Li, A.A. Bosin, A.S. Astakhov, J. Chen, Y. Liu, X. Shi // Journal of Geophysical Research: Oceans. 2021. Vol. 126. e2020JC016960.
- 43. Martens C.S., Berner R.A. Methane production in the interstitial waters of sulfate-depleted marine sediments // Science. 1974. Vol. 185. P. 1167–1169.
- 44. Pierre C. Origin of the authigenic gypsum and pyrite from active methane seeps of the southwest African Margin // Chem. Geol. 2017. Vol. 449 P. 158–164.
- 45. Леин А.Ю., Иванов М.В. Биогеохимический цикл метана в океане. М.: Наука, 2009. 464 с.
- 46. Trace element distribution in methane-seep carbonates: the role of mineralogy and dissolved sulfide / D.J. Smrzka, Y.Lu. Zwicker, Y. Sun, D. Feng, P. Monien, G. Bohrmann, J. Peckmann // Chemical Geology. 2021. Vol. 580 120357.
- 47. Даувальтер В.А. Геоэкология донных отложений. Мурманск: Изд-во МГТУ, 2012. 242 с.
- 48. The influence of cold seepage on the grain size and geochemistry of sediments from the Laptev Sea shelf / A. Ruban, T. Tesi, E. Yaroshchuk, D. Kosmach, M. Rudmin, E. Gershelis, O. Dudarev, A. Mazurov, I. Semiletov // Marine and Petroleum Geology. −2024. − Vol. 160. − № 106638.

Информация об авторах

Ирина Андреевна Оберемок, аспирант отделения геологии Инженерной школы природных ресурсов Национального исследовательского Томского политехнического университета, Россия, 634050, г. Томск, пр. Ленина, 30; младший научный сотрудник международного научного центра в области экологии и вопросов изменения климата автономной некоммерческой образовательной организации высшего образования «Научно-технологический университет "Сириус"», Россия, 354340, пгт Сириус, Олимпийский пр., 1. genuine.i@yandex.ru; http://orcid.org/0000-0002-8219-2039

Наталья Владимировна Гусева, доктор геолого-минералогических наук, заместитель директора по научно-образовательной деятельности Инженерной школы природных ресурсов Национального исследовательского Томского политехнического университета, Россия, 634050, г. Томск, пр. Ленина, 30. gusevanv@tpu.ru

Юлия Александровна Моисеева, младший научный сотрудник отделения геологии Инженерной школы природных ресурсов Национального исследовательского Томского политехнического университета, Россия, 634050, г. Томск, пр. Ленина, 30. jamoiseeva@mail.ru; http://orcid.org/0000-0002-8166-1040

Дарья Валерьевна Пургина, младший научный сотрудник отделения геологии Инженерной школы природных ресурсов Национального исследовательского Томского политехнического университета, Россия, 634050, г. Томск, пр. Ленина, 30. purginadv@tpu.ru; http://orcid.org/0000-0001-7169-8264

Наталина Александровна Полтавская, младший научный сотрудник, ассистент отделения геологии Инженерной школы природных ресурсов Национального исследовательского Томского политехнического университета, Россия, 634050, г. Томск, пр. Ленина, 30. geoikigai@tpu.ru

Елена Владимировна Гершелис, кандидат геолого-минералогических наук, доцент отделения геологии Инженерной школы природных ресурсов Национального исследовательского Томского политехнического университета, Россия, 634050, г. Томск, пр. Ленина, 30; исполнительный директор международного научного центра в области экологии и вопросов изменения климата автономной некоммерческой образовательной организации высшего образования «Научно-технологический университет "Сириус"», Россия, 354340, птт Сириус, Олимпийский пр., 1. gershelis.ev@talantiuspeh.ru; http://orcid.org/0000-0002-0854-9212

Игорь Петрович Семилетов, член-корреспондент РАН, доктор географических наук, заведующий лабораторией арктических исследований Тихоокеанского океанологического института им. В.И. Ильичева ДВО РАН, Россия, 690041, г. Владивосток, ул. Балтийская, 43; профессор отделения геологии Инженерной школы природных ресурсов Национального исследовательского Томского политехнического университета, Россия, 634050, г. Томск, пр. Ленина, 30. ipsemiletov@alaska.edu; http://orcid.org/0000-0003-1741-6734

Поступила в редакцию: 20.12.2023

Поступила после рецензирования: 09.01.2024

Принята к публикации: 21.02.2024

REFERENCES

- 1. Chemical analysis in geology and geochemistry. Ed. by G.N. Anoshin. Ros. Novosibirsk, Academic Publ. House "Geo", 2016. 622 p. (In Russ.)
- 2. Barnes R.O., Goldberg E.D. Methane production and consumption in anoxic marine sediments. *Geology*, 1976, vol. 4, no. 5, pp. 1977–1984.
- 3. Shakhova N., Semiletov I.P., Gustafsson O., Sergienko V.I., Lobkovsky L.I., Dudarev O.V., Tumskoy V., Grigoriev M.N., Mazurov A., Salyuk A., Ananiev R.A., Koshurnikov A., Kosmach D., Charkin A.N., Dmitrevsky N., Karnaukh V.N., Gunar A.Y., Meluzov A., Chernykh D. Current rates and mechanisms of subsea permafrost degradation in the East Siberian Arctic Shelf. *Nature Communications*, 2017, vol. 8, no. 15872.
- 4. Shakhova N., Semiletov I., Sergienko V., Lobkovsky L., Yusupov V., Salyuk A., Salomatin A., Chernykh D., Kosmach D., Panteleev G., Nicolsky D., Samarkin V., Joye S., Charkin A., Dudarev O. The East Siberian Arctic Shelf: towards further assessment of permafrost-related methane fluxes and role of sea ice. *Philosophical Transactions of the Royal Society A*, 2015, vol. 373, article 20140451.
- 5. Baranov B., Galkin S., Vedenin A., Dozorova K., Gebruk A., Flint M. Methane seeps on the outer shelf of the Laptev Sea: characteristic features, structural control, and benthic fauna. *Geo-Marine Letters*, 2020, vol. 40, no. 4, pp. 541–557.
- Shakhova N.E., Semiletov I.P., Leifer I., Sergienko V., Salyuk A., Kosmach D., Chernykh D., Stubbs C., Nicolsky D., Tumskoy V. Ebullition and storm-induced methane release from the East Siberian Arctic Shelf. *Natural Geoscience*, 2014, vol. 7, pp. 64–70.
- Shakhova N.E., Semiletov I.P., Salyuk A., Yusupov V., Kosmach D., Gustafsson O. Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic shelf. Science, 2010, vol. 327, pp. 1246–1250.
- 8. Ruppel C.D., Kessler J.D. The interaction of climate change and methane hydrates. *Reviews of Geophysics*, 2017, vol. 55, pp. 126–168.
- Ruppel C.D. Permafrost-associated gas hydrate: Is it really approximately 1% of the global system? J. Chem. Eng. Data, 2015, vol. 60, pp. 429–436.
- Collins M., Sutherland M., Bouwer L., Cheong S.M., Frölicher T., Jacot Des Combes H., Koll Roxy M., Losada I., McInnes K., Ratter B., Rivera-Arriaga E., Susanto R.D., Swingedouw D., Tibig L. Extremes, abrupt changes and managing risk. *IPCC Special Report on the Ocean and Cryosphere in a Changing Climate*. Cambridge, Cambridge University Press, 2019. pp. 589–655.
- 11. Majorowicz J.A., Safanda J., Osadetz K. Inferred gas hydrate and permafrost stability history models linked to climate change in the Beaufort-Mackenzie Basin, Arctic Canada. *Climate of the Past*, 2012, vol. 8, pp. 667–682.
- 12. Comiso J.J. Large decadal decline of the arctic multiyear ice cover. Journal of Climate, 2012, vol. 25, pp. 1176–1193.
- 13. Savvichev A.S., Kadnikov V.V., Kravchishina M.D., Galkin S.V., Novigatskii A.N., Sigalevich P.A., Merkel A.Yu., Ravin N.V., Pimenov N.V., Flint M.V. Methane as an organic matter source and the trophic basis of a Laptev Sea cold seep microbial community. *Geomicrobiology Journal*, 2018, vol. 35, no. 5, pp. 411–423.
- 14. Samylina O.S., Rusanov I. I., Tarnovetskii I.Yu., Yakushev E.V., Grinko A.A., Zakharova E.E., Merkel A.Yu., Kanapatskiy T.A., Semiletov I.P., Pimenov N.V. On the possibility of aerobic methane production by pelagic microbial communities of the Laptev Sea. *Microbiology*, 2021, vol. 90, no. 2, pp. 145–157.
- 15. Damm E., Helmke E., Thoms S., Schauer U., Nöthig E., Bakker K., Kiene R.P., Methane production in aerobic oligotrophic surface water in the central Arctic Ocean. *Biogeosciences*, 2010, vol. 7, pp. 1099–1108.
- 16. Damm E., Thoms S., Beszczynska-Möller A., Nöthig E., Kattner G. Methane excess production in oxygen-rich polar water and a model of cellular conditions for this paradox. *Polar Science*, 2015, vol. 9, pp. 327–334.
- 17. Sapart C.J., Shakhova N., Semiletov I., Jansen J., Szidat S., Kosmach D., Dudarev O., Van der Veen C., Egger M., Sergienko V., Salyuk A., Tumskoy V., Tison J.L., Rockmann T. The origin of methane in the East Siberian Arctic Shelf unraveled with triple isotope analysis. *Biogeosciences*, 2017, vol. 14, pp. 2283–2292.
- 18. Steinbach J., Holmstrand H., Shcherbakova K., Kosmach D., Brüchert V., Shakhova N., Salyuk A., Sapart C.J., Chernykh D., Noormets R., Semiletov I., Gustafsson Ö. Source apportionment of methane escaping the subseapermafrost system in the outer Eurasian Arctic Shelf. *Proceedings of the National Academy of Science*, 2021, vol. 118, no. 10, 2019672118.
- 19. Gershelis E., Grinko A., Oberemok I., Klevantseva E., Poltavskaya N., Ruban A., Chernykh D., Leonov A., Guseva N., Semiletov I. Large decadal decline of the arctic multiyear ice cover. *Water*, 2020, vol. 12, no. 3511, pp. 1–21.
- 20. Grinko A.A., Goncharov I.V., Shakhova N.E., Gustafsson Ö., Oblasov N.V., Romankevich E.A., Zarubin A.G., Kashapov R.S., Chernykh D.V., Gershelis E.V., Dudarev O.V., Mazurov A.K., Semiletov I.P. Sediment organic matter in areas of intense methane release in the Laptev sea: characteristics of molecular composition. *Russian Geology and Geophysics*, 2020, vol. 61, no. 4, pp. 456–477.
- Sorokhtin N., Lobkovsky L., Semiletov I., Shipilov E., Nikiforov S., Kozlov N., Shakhova N., Ananiev R., Alekseev D. Late Mesozoic and Cenozoic geodynamics of the Arctic region: implications for abiogenic generation of hydrocarbons. *Geosciences*, 2023, vol. 13, no. 3:68.
- 22. Kravchishina M.D., Lein A.Yu., Baranov B.V., Dubinina E.O., Dara O.M., Savvichev A.S., Miroshnikov A.Yu., Flint M.V. Origin of authigenic carbonate crusts on the bottom surface of the outer shelf of the Laptev Sea. *Geology of seas and oceans. Proceedings of the XXIV International Scientific Conference (School) on Marine Geology.* Moscow, Institute of Oceanology RAS Publ., 2021. Vol. IV, pp. 85–89. (In Russ.)
- 23. Ure A. M., Quevauviller Ph., Muntau H., Griepink B. Speciation of heavy metals in soils and sediments an account of improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communities. *International Journal of Environmental Analytical Chemistry*, 1993, vol. 51, pp. 135.
- 24. Rauret G., Lopez-Sanchez J.F., Sahuquillo A., Rubio R., Davidson C., Ure A. Quevauviller Ph. Improvement of the BCR three-step sequential extraction procedure prior to the certification of new sediment and soil reference materials. *Journal of Environmental Monitoring*, 1999, vol. 1, pp. 57–61.

- 25. Dobrovolsky A.D., Zalogin B.S. Seas of the USSR. Moscow, Moscow State University Publ. House, 1982. Vol. 3, 192 p. (In Russ.)
- 26. Skvortsov M.B., Dzyublo A.D., Grushevskaya O.V., Kravchenko M.N., Uvarova I.V. Qualitative and quantitative assessment of the oil and gas potential of the Laptev Sea shelf. *Geology of Oil and Gas*, 2020, no. 1, pp. 5–19. (In Russ.)
- 27. Safronov A.F., Sivtsev A.I., Chalaya O.N., Zueva I.N., Sokolov A.N., Fradkin G.S. Initial geological resources of hydrocarbons on the Laptev Sea shelf. *Geology and Geophysics*, 2013, vol. 54, no. 8, pp. 1275–1279. (In Russ.)
- 28. Bogoyavlensky V.I., Sizov O.S., Mazharov A.V., Bogoyavlensky I.V., Nikonov R.A., Kishankov A.V., Kargina T.N. Degassing of the Earth in the Arctic: remote and expeditionary studies of the catastrophic Seyakha gas release on the Yamal Peninsula. *Arctic: ecology and economics*, 2019, vol. 1, no. 33, pp. 88–105. (In Russ.)
- 29. Krylov A.A., Novikov M.A., Kovachev S.A., Roginskiy K.A., Ilinsky D.A., Ganzha O.Y., Ivanov V.N., Timashkevich G.K., Samylina O.S., Lobkovsky L.I., Semiletov I.P. Features of seismological observations in the Arctic seas. *Journal of Marine Science and Engineering*, 2023, vol. 11, no. 2221.
- 30. Slesar N.I. Methodological foundations of object analysis. St Petersburg, VVM Publ., 2015. 40 p. (In Russ.)
- 31. Huangfu Y., Essington M.E., Hawkins S.A., Walker F.R., Schwartz J.S., Layton A.C., Hull R.A. Evaluation of nitric acid extraction of elements from soils and sediments in two watersheds in East Tennessee. *Communications in Soil Science and Plant Analysis*, 2019, vol. 50, no. 11, pp. 1358–1369.
- 32. Nemati K., Abu Bakar N.K., Abas M.R., Sobhanzadeh E. Speciation of heavy metals by modified BCR sequential extraction procedure in different depths of sediments from Sungai Buloh, Selangor, Malaysia. *Journal of Hazardous Materials*, 2011, vol. 192, no. 1, pp. 402–410.
- 33. Grigoriev N.A. Average content of chemical elements in rocks composing the lower part of the continental crust. *Geochemistry*, 2003, no. 7, pp. 785–792. (In Russ.)
- 34. Matsumoto R. Vuggy carbonate crust formed by hydrocarbon seepage on the continental shelf of Baffin Island Northeast Canada. *Geochemistry Journal*, 1990, vol. 24, pp. 143–158.
- 35. Kozina N.V., Reykhard L.Ye., Dara O.M., Gordeev V.V. Characteristic property of the formation of authigenic minerals in bottom sediments of the South Caspian Basin under hydrogen sulfide contamination conditions. *Oceanology*, 2021, vol. 61, no. 6, pp. 1006–1015.
- 36. Tribovillard N., Du Chatelet E.A., Gay A., Barbecot F., Sansjofre P., Potdevin J.L. Geochemistry of cold seepageimpacted sediments: Per-ascensum or per-descensum trace metal enrichment. *Chemical Geology*, 2013, vol. 340, pp. 1–12.
- 37. Boetius A., Ravenschlag K., Schubert C.J., Rickert D., Widdel F., Gleseke A., Amann R., Jørgensen B.B., Witte U., Pfannkuche O. A marine microbial consortium apparently mediating anaerobic oxidation methane. *Nature*, 2000, vol. 407, pp. 623–626.
- 38. Reeburgh W.S. Oceanic methane biogeochemistry. Chemical Review, 2007, vol. 107, pp. 486-513.
- 39. Ruban A.S., Rudmin M.A., Mazurov A.K., Milevsky Ya.V., Semiletov I.P., Gershelis E.V., Dudarev O.V. Geochemical features of bottom sediments in areas of discharge of methane-containing fluids on the outer shelf of the Laptev Sea. *Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering*, 2021, vol. 332, no. 12, pp. 76–89. (In Russ.)
- 40. Veizer J. Chemical diagenesis of carbonates: theory and application of trace element technique. *Stable Isotope in Sedimentary Geology*, 1983, vol. 10, pp. 3–100.
- 41. Ruban A.S., Rudmin M.A., Mazurov A.K. Cold-seep carbonates of the Laptev Sea continental slope: Constraints from fluid sources and environment of formation. *Chemical Geology*, 2022, vol. 610, 121103, pp. 13.
- 42. Li L., Wang X., Ren Y., Su H., Hu L., Yang G., Li Z., Bosin A.A., Astakhov A.S., Chen J., Liu Y., Shi X. Enrichment of trace metals (V, Cu, Co, Ni, and Mo) in Arctic sediments –from Siberian Arctic shelves to the basin. *Journal of Geophysical Research*. *Oceans*, 2021, vol. 126, e2020JC016960.
- 43. Martens C.S., Berner R.A. Methane production in the interstitial waters of sulfate-depleted marine sediments. *Science*, 1974, vol. 185, pp. 1167–1169.
- 44. Pierre C. Origin of the authigenic gypsum and pyrite from active methane seeps of the southwest African Margin. *Chem. Geol.*, 2017, vol. 449, pp. 158–164.
- 45. Lein A.Y., Ivanov M.V. Biogeochemical methane cycle in the ocean. Moscow, Nauka Publ., 2009. 464 p. (In Russ.)
- 46. Smrzka D.J., Zwicker Y.Lu, Sun Y., Feng D., Monien P., Bohrmann G., Peckmann J. Trace element distribution in methane-seep carbonates: the role of mineralogy and dissolved sulfide. *Chemical Geology*, 2021, vol. 580, 120357.
- 47. Dauwalter V.A. Geoecology of bottom sediments, Murmansk, MSTU Publ. House, 2012. 242 p. (In Russ.)
- 48. Ruban A., Tesi T., Yaroshchuk E., Kosmach D., Rudmin M., Gershelis E., Dudarev O., Mazurov A., Semiletov I. The influence of cold seepage on the grain size and geochemistry of sediments from the Laptev Sea shelf. *Marine and Petroleum Geology*, 2024, vol. 160, no. 106638.

Information about the authors

Irina A. Oberemok, Postgraduate Student, National Research Tomsk Polytechnic University, 30, Lenin avenue, Tomsk, 634050, Russian Federation; Junior Researcher, Sirius University of Science and Technology, 1, Olimpiysky avenue, Sirius, 354340, Russian Federation. genuine.i@yandex.ru; http://orcid.org/0000-0002-8219-2039

Natalya V. Guseva, Dr. Sc., Professor, National Research Tomsk Polytechnic University, 30, Lenin avenue, Tomsk, 634050, Russian Federation. gusevanv@tpu.ru

Yulia A. Moiseeva, Cand. Sc., Junior Researcher, National Research Tomsk Polytechnic University, 30, Lenin avenue, Tomsk, 634050, Russian Federation. jamoiseeva@mail.ru; http://orcid.org/0000-0002-8166-1040

Darya V. Purgina, Cand. Sc., Junior Researcher, National Research Tomsk Polytechnic University, 30, Lenin avenue, Tomsk, 634050, Russian Federation. purginadv@tpu.ru; http://orcid.org/0000-0001-7169-8264

Natalina A. Poltavskaya, Junior Researcher, Assistant, National Research Tomsk Polytechnic University, 30, Lenin avenue, Tomsk, 634050, Russian Federation. geoikigai@tpu.ru

Elena V. Gershelis, Cand. Sc., Associate Professor, National Research Tomsk Polytechnic University, 30, Lenin avenue, Tomsk, 634050, Russian Federation; Executive Director of the International Scientific Center for Ecology and Climate Change Issues, Sirius University of Science and Technology, 1, Olimpiysky avenue, Sirius, 354340, Russian Federation. gershelis.ev@talantiuspeh.ru; http://orcid.org/0000-0002-0854-9212

Igor P. Semiletov, Corresponding Member of the RAS, Dr. Sc., Head of the Laboratory, Pacific Oceanological Institute, Russian Academy of Sciences, 43, Baltiyskaya street, Vladivostok, 690041, Russian Federation; Professor, National Research Tomsk Polytechnic University, 30, Lenin avenue, Tomsk, 634050, Russian Federation. ipsemiletov@alaska.edu; http://orcid.org/0000-0003-1741-6734

Received: 20.12.2023 Revised: 09.01.2024 Accepted: 21.02.2024 УДК 546.62; 669-1

DOI: 10.18799/24131830/2024/3/4512 Шифр специальности ВАК: 2.4.4

Формирование композитов с алюминиевой матрицей, армированных наночастицами карбида вольфрама

Д.С. Никитин¹, А. Насырбаев¹, А.И. Циммерман^{1⊠}, И.И. Шаненков^{2,1}, А.С. Сайгаш¹, А.А. Сивков¹

¹ Национальный исследовательский Томский политехнический университет, Россия, г. Томск ² Тюменский государственный университет, Россия, г. Тюмень

[™]alextsimmer@yandex.ru

Аннотация. Актуальность исследования связана тем, что композиты с металлической матрицей и конструкционные изделия на их основе крайне востребованы в различных отраслях промышленности, включая автомобилестроение, авиакосмическую промышленность, судостроение. Композиты с алюминиевой матрицей являются наиболее востребованными в силу того, что они совмещают в себе превосходную пластичность, низкую плотность, хорошую коррозионную стойкость алюминия и высокую прочность, твердость и износостойкость керамического армирующего компонента. *Цель:* получить объемные металломатричные композиты Al-WC с разным содержанием армирующей фазы и с повышенными физико-механическими характеристиками методом искрового плазменного спекания. Объекты: спеченные объемные изделия из чистого алюминия, полученные при 400, 450, 500, 550, 600 °С, и объемные металломатричные композиты Al-1%WC, Al-5%WC, Al-10%WC, Al-15%WC, полученные при 600 °C. Методы: искровое плазменное спекание; рентгеновская дифрактометрия (рентгенофазовый анализ); сканирующая электронная микроскопия; индентирование (измерение микротвердости). Результаты. Получены объемные композитные металломатричные изделия с алюминиевой матрицей и карбидом вольфрама в качестве армирующего компонента. Компактирование смесей наноразмерных исходных порошков алюминия и карбида вольфрама методом искрового плазменного спекания позволило получить изделия с содержанием WC от 1 до 15 мас. %. С учетом результатов предварительно проведенной серии экспериментов, когда спекались образцы из чистого алюминия для определения оптимальной температуры спекания, получены объемные композитные материалы. Отличительной особенностью полученных образцов является их высокая степень уплотнения, что обусловлено одновременным приложением греющего тока и внешнего давления, сопряженная с относительным сохранением мелкозеренной структуры материала за счет короткого времени протекания процесса. Анализ различных режимов спекания выявил необходимость осуществления процесса спекания композитов при температуре 600 °С. Исследования показали, что, хотя при добавлении армирующей фазы в металлическую матрицу значительно уменьшается степень уплотнения материала от 97,45 % при отсутствии добавки до 62,32 % при добавлении 15 мас. % карбида вольфрама, наблюдается увеличение микротвердости изделий при повышении концентрации армирующего компонента от 3,95 до 5,75 HV. Это доказывает возможность армирования металлического материала за счет керамических частиц WC. Полученные результаты могут быть использованы в различных конструкционных приложениях, включая автомобилестроение и авиакосмическую промышленность.

Ключевые слова: алюминий, карбид вольфрама, металломатричные композиты, искровое плазменное спекание, армирование, микротвердость

Благодарности: Работа выполнена при поддержке Российского научного фонда (проект № 23-73-01203), https://rscf.ru/project/23-73-01203/.

Для цитирования: Формирование композитов с алюминиевой матрицей, армированных наночастицами карбида вольфрама / Д.С. Никитин, А. Насырбаев, А.И. Циммерман, И.И. Шаненков, А.С. Сайгаш, А.А. Сивков // Известия Томского политехнического университета. Инжиниринг георесурсов. − 2024. − Т. 335. − № 3. − С. 124–136. DOI: 10.18799/24131830/2024/3/4512

UDC 546.62; 669-1

DOI: 10.18799/24131830/2024/3/4512

Formation of composites with an aluminum matrix reinforced with tungsten carbide nanoparticles

D.S. Nikitin¹, A. Nassyrbayev¹, A.I. Tsimmerman¹⊠, I.I. Shanenkov²,¹, A.S. Saigash¹, A.A. Sivkov¹

¹ National Research Tomsk Polytechnic University, Tomsk, Russian Federation ² Tyumen State University, Tyumen, Russian Federation

[™]alextsimmer@yandex.ru

Abstract. Relevance. The fact that composites with a metal matrix and structural products based on them are in great demand in various industries, including the automotive industry, aerospace industry, and shipbuilding. Aluminum matrix composites are the most popular since they combine the excellent ductility, low density, good corrosion resistance of aluminum and the high strength, hardness and wear resistance of a ceramic reinforcing component. Aim. To obtain bulk Al-WC metal matrix composites with different contents of the reinforcing phase and with increased physical and mechanical characteristics using spark plasma sintering. Objects. Sintered bulk products made of pure aluminum and obtained at 400, 450, 500, 550, 600°C and bulk metal matrix composites Al-1%WC, Al-5%WC, Al-10%WC, Al-15%WC obtained at 600°C. Methods. Spark plasma sintering; X-ray diffractometry (XRD phase analysis); scanning electron microscopy; indentation (microhardness measurement). Results. The authors have obtained bulk composite metal matrix products with an aluminum matrix and tungsten carbide as a reinforcing component. Compacting mixtures of nanosized initial powders of aluminum and tungsten carbide using spark plasma sintering made it possible to obtain products with a WC content of 1 to 15 wt %. Taking into account the results of a preliminary series of experiments, when pure aluminum samples were sintered to determine the optimal sintering temperature, bulk composite materials were obtained. A distinctive feature of the obtained samples is their high degree of compaction, which is due to the simultaneous application of a heating current and external pressure, coupled with the relative preservation of the fine-grained structure of the material due to the short process time. The analysis of various sintering modes revealed the need to carry out sintering of composites at 600°C. The research has shown that, although adding a reinforcing phase to a metal matrix significantly reduces the degree of compaction of the material from 97.45% in the absence of an additive to 62.32% with the addition of 15%WC, an increase in the microhardness of products is observed when the concentration of the reinforcing component increases from 3.95 to 5.75 HV. This proves the possibility of reinforcing a metal material using ceramic WC particles. The results can be used in a variety of structural applications, including automotive and aerospace.

Keywords: aluminum, tungsten carbide, metal matrix composites, spark plasma sintering, reinforcement, microhardness

Acknowledgements: This work was supported by the Russian Science Foundation, grant number 23-73-01203, https://rscf.ru/project/23-73-01203/

For citation: Nikitin D.S., Nassyrbayev A., Tsimmerman A.I., Shanenkov I.I., Saigash A.S., Sivkov A.A. Formation of composites with an aluminum matrix reinforced with tungsten carbide nanoparticles. *Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering*, 2024, vol. 335, no. 3, pp. 124–136. DOI: 10.18799/24131830/2024/3/4512

Введение

Композиты с металлической матрицей, а также высокоэффективные и недорогие конструкционные и функциональные изделия на их основе крайне востребованы в различных отраслях промышленности, таких как автомобилестроение, авиакосмическая промышленность, судостроение и т. д. [1]. С 1960 г. производство композитных материалов в США выросло в 25 раз и усиленно развивается ввиду высокого спроса. Сегодня рынок композитов в США превышает 30 млрд долларов, рынок композитов с алюминиевой металлической матрицей в США уже достиг примерно 460 млн долларов, и

ожидается, что при среднегодовом темпе роста на 5–10 % он возрастет до 630 млн долларов к 2030 г. [2]. В авиационной отрасли алюминиевые композиты уже сегодня применяются для конструкционных приложений (крылья и несущие конструкции в фюзеляжах пассажирских, военных и грузовых самолетов) [3, 4]. Прогнозируется, что спрос на легкие композитные материалы будет только повышаться, а компании-производители и поставщики таких материалов будут демонстрировать экономически эффективные показатели, открывая новые области применения и занимая все больший сегмент рынков [5].

Общая цель при разработке и использовании металломатричных композитов – выйти за пределы границ свойств, приписываемых обычным классам материалов - традиционным металлам и сплавам. Так, традиционный алюминий и его сплавы являются одним из самых популярных и распространенных металлических материалов ввиду простоты в обращении, превосходной пластичности, низкой плотности, хорошей коррозионной стойкости, а также экономичным методам их производства и обработки [6]. В силу указанных преимуществ алюминия выделяются и композиты с алюминиематрицей (AMCs – aluminum которых улучшение composites), В механических свойств происходит за счет высокой прочности, твердости и износостойкости керамического армирующего компонента [7]. При тщательном контроле состава алюмоматричные композиты могут также демонстрировать высокую теплопроводность, высокую электрическую проводимость и отличную износостойкость [8-10]. Сообщается и о возможности создания на основе AMCs биосовместимых материалов [11, 12]. Среди материалов, используемых в качестве армирующего компонента, наиболее выделяются сверхтвердые керамические материалы, а также углеродные нанотрубки, нановолокна и нанопластинки [13-15]. Различные сверхтвердые соединения в виде оксидов, карбидов, боридов и нитридов популярны ввиду обеспечения наиболее высоких физико-механических свойств [16-18]. В результате, согласно отчетам, на AMCs на основе различных материалов ежегодно приходится около 69 % массы всех композитных изделий для различных промышленных применений [19].

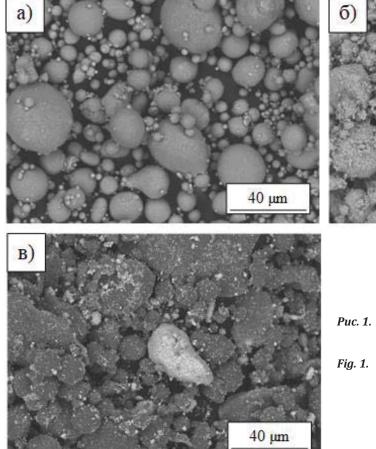
Использование наноразмерных армирующих компонентов позволяет существенно улучшить характеристики конечных композитов с алюминиевой матрицей. Известно, что композиты, армированные микронными частицами, могут достигать сверхвысокой прочности и повышенного модуля упругости при высоком содержании керамической составляющей, в то время как пластичность и ударная вязкость в этом случае резко падают из-за традиционного компромисса между прочностью и пластичностью [20]. В недавнем исследовании было продемонстрировано, что использование армирующих наночастиц позволяет улучшить прочность и модуль упругости сплавов с металлической матрицей без ухудшения пластичности и ударной вязкости [21]. Кроме того, наноармирование обладает гораздо более высокой эффективностью упрочнения, чем их микронные аналоги [22, 23].

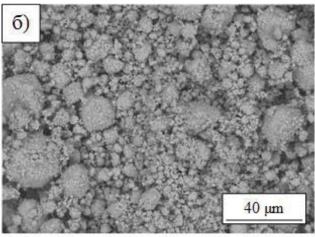
Несмотря на высокий интерес к AMCs, до сих пор существует множество проблем при их получении. Так, существует ряд трудностей с введением

керамических частиц в металлическую матрицу. Например, методы обработки в жидком состоянии (в том числе различные виды литья) страдают от плохой смачиваемости армирующей составляющей расплавленным металлом [24]. Также удельный вес керамической составляющей и расплавленных металлов часто значительно различаются, в результате чего неравномерное распределение, агломерация и слабая межфазная связь частиц в металлической матрице практически неизбежны [25, 26]. Кроме того, взаимодействие армирующих карбидных и оксидных частиц с расплавленным алюминием приводит к образованию ряда нежелательных и хрупких побочных фаз [27, 28]. Введение наночастиц в металлическую матрицу также является сложной задачей, поскольку, скорее всего, будет наблюдаться неравномерное распределение компонента из-за действия сил Ван-дер-Ваальса и внутренней несовместимости между керамической и металлической составляющими [29]. В результате описанных эффектов вероятны неблагоприятные последствия для физико-механических и иных свойств конечного композита вследствие протекания межфазных реакций, окисления и роста зерен, агломерации частиц, слабой межфазной связи керамических частиц в металлической матрице и, как результат, невозможность достижения потенциально высоких механических и иных характеристик композита по сравнению с чистым металлом или сплавом [25, 26].

Таким образом, в отличие от традиционных алюминиевых сплавов, AMCs и их физикомеханические свойства до сих пор еще недостаточно исследованы с удовлетворительным систематическим подходом. AMCs представляют собой развивающуюся категорию материалов, и текущие исследования направлены на улучшение их свойств и разработку новых технологий изготовления [30]. Поэтому работы, связанные с попытками получения конкретных составов, поиском оптимального содержания керамического компонента, рассмотрением механизмов образования фаз и механических свойств АМСs, обладают научной новизной и актуальностью и могут систематически определять направление исследований в этой области. В конечном итоге использование композитов с алюминиевой металлической матрицей обеспечит повышение энергоэффективности в ходе переработки и применения такого георесурса, как алюминий и алюминиевые руды, за счет усовершенствования процесса изготовления соответствующих композитных материалов и изделий, значительного улучшения эксплуатационных характеристик готовых компонентов конструкций на основе алюмоматричных композитов и повышения их качества и надежности в процессе функционирования.

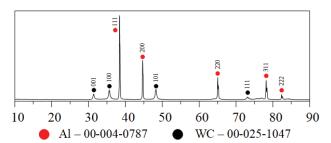
Настоящее исследование посвящено разработке композитных материалов с алюминиевой матрицей, армированных керамическими частицами, с улучшенными механическими свойствами. В качестве армирующего компонента используется карбид вольфрама, который представляется одним из наиболее перспективных армирующих материалов [31]. Карбид вольфрама выделяется за счет высоких механических свойств, износостойкости, термической стабильности, низкого коэффициента теплового расширения, что позволяет применять его, прежде всего, в абразивных материалах и буровых инструментах [32, 33], а совместимость с алюминиевой матрицей позволяет его использовать в соответствующих композитных материалах [34]. Добавление частиц WC в алюминиевую матрицу существенно улучшает износостойкость и трибологические характеристики композита, а также его механические и коррозионные свойства при высокой температуре [35, 36]. Это дает основание утверждать возможность применения разрабатываемых материалов, прежде всего, в автомобильной, транспортной и оборонной промышленности при изготовлении тормозных дисков, роторов, пар трения, баллистических компонентов и др. [3]. При этом состав Al-WC все еще не является широко распространенным при разработке алюмоматричных композитов и требует дальнейшего развития и дополнительных исследований для решения ряда проблем, включая неравномерность распределения частиц WC, наличие хрупких промежуточных фаз, снижение характеристик в процессе обработки и т. д. [37].


В текущем исследовании как материал матрицы, так и армирующий компонент используются в наноразмерном виде для определения эффектов, связанных с влиянием дисперсности прекурсоров на структуру и свойства конечных изделий. Обычно для получения AMCs применяются два метода: твердотельную обработку (порошковая металлургия, механическое легирование) и обработку в жидком состоянии (литье с перемешиванием). Традиционные методы, которые базируются на подходе ex-situ, сопровождаются проблемами со смачиваемостью и агломерацией частиц, однородностью их распределения [7]. Метод искрового плазменного спекания (spark plasma sintering – SPS) является альтернативой традиционным методам, где за счет одновременности процессов спекания и формования появляется возможность преодолеть указанные недостатки и получить из высокодисперсных порошков изделия с пониженной пористостью, максимальной плотностью и улучшенными физикомеханическими свойствами [38, 39]. Результаты проведенных исследований показали перспективность применения метода SPS для изготовления высокоплотных композитных изделий с алюминиевой матрицей, армированных WC, из наноразмерных исходных материалов. Полученные композитные изделия характеризуются высокими физикомеханическими свойствами и могут быть использованы в качестве широкого спектра аэрокосмических и автомобильных компонентов с повышенной износостойкостью, прочностью и коррозионной стойкостью.


Экспериментальная часть

В качестве исходных материалов использовались порошки алюминия Al (ООО «Передовые порошковые технологии», Россия, средний размер 100 нм) и карбида вольфрама WC (ПЛАЗМОТЕРМ, Россия, диапазон размеров частиц 50–1500 нм). Принципиальной особенностью исходных порошков является их использование в нанодисперсном виде для определения эффектов, связанных с влиянием размера зерна на конечные физические свойства объемных изделий. Для получения объемных изделий использовался ряд порошковых смесей с массовой концентрацией карбида вольфрама 0, 1, 5, 10, 15 мас. %. Указанные концентрации керамической компоненты являются характерными для большинства работ по получению и исследованию металломатричных композитов.

На рис. 1 изображены микроснимки использованных порошков алюминия и карбида вольфрама, а также их смеси (на примере 15 мас. % WC), которые представлены в виде агломератов наноразмерных объектов, а также плотных спеков микронного размера. Исходные порошки подвергались пробоподготовке в виде смешивания в шаровой мельнице SPEX SamplePrep 8000М с использованием жидкой среды в виде изопропилового спирта. Оптимальная длительность смешивания определялась эмпирическим путем, в итоге для всех смесей она достигала 30 мин при частоте вращения 18 Гц (1080 циклов в минуту). Использовалась форма из карбида вольфрама диаметром 2 ½ дюйма и шары из карбида вольфрама диаметром 12 мм в количестве 2 штук. Массовое соотношение шаров и порошка составляло 2:1. После смешивания в мельнице производилась сушка смеси на воздухе.


Процедура пробоподготовки исходных материалов позволила добиться однородности распределения армирующего компонента в материале металлической матрицы, что продемонстрировано на характерном микроснимке полученной смеси (рис. 1, в). Вопрос взаимного распределения компонентов композитного материала является критическим для проявления совокупности физических свойств конечного объемного изделия и возникает при использовании большинства известных методик.

Puc. 1. SEM-снимки исходных порошковых материалов алюминия Al (a) и карбида вольфрама WC (б), а также их смеси (в)

Fig. 1. SEM images of the initial powder materials of aluminum Al (a) and tungsten carbide WC (6), as well as their mixture (8)

Puc. 2. Рентгеновские дифрактограммы смеси порошковых материалов алюминия Al и карбида вольфрама WC

Fig. 2. XRD-patterns of a mixture of powder materials of aluminum Al and tungsten carbide WC

Кроме того, стоит отметить, что пробоподготовка не привела к фазовым превращениям в составе материала. На рис. 2 представлена рентгеновская дифрактограмма подготовленной смеси порошков Al и WC (на примере 15 мас. % WC), показывающая отсутствие в составе различных промежуточных фаз, которые могли бы возникнуть в процессе приложения энергии шаров к частицам порошков. Данный факт обусловлен низким вводом удельной энергии в систему, которая в первую очередь опре-

деляется параметрами процесса помола (частота вращения, время, соотношение шаров к порошку, объем формы) [40].

В дальнейшем полученные смеси использовались для создания на их основе лабораторных образцов металломатричных композитов. Для компактирования порошковых смесей применялся метод искрового плазменного спекания, осуществленный на установке SPS 10-4 (Thermal Technology, США). Такой метод предполагает совместное использование греющего импульсного тока и внешнего давления для уплотнения образцов. Процесс компактирования характеризовался следующими параметрами: давление Р=50 МПа, время выдержки Δt =10 мин, скорость нагрева $\Delta T/\Delta t$ =100 °C/мин, естественное охлаждение. В процессе исследований изменялась температура спекания материалов T: 400, 450, 500, 550, 600 °C. Изначальное определение рабочего диапазона температур для спекания базировалось на смежных исследованиях алюмоматричных композитов.

Полученные методом SPS металломатричные композитные изделия подвергались стандартной металлографической обработке с использованием шлифовально-полировальной машины Forcipol 1V

(Metkon, Турция). Шлифовка образов выполнялась посредством шлифовальных карбидокремниевых бумаг 320, 600, 800, 1200, затем производилась их полировка с использованием тканей 6, 3, 1, 0,25 мкм, алмазной воды и соответствующих алмазных суспензий. Исследование микроструктуры исходных материалов и готовых изделий проводилась методом сканирующей электронной микроскопии TM3000 (Hitachi, Япония). Фазовый состав материалов исследовался методом рентгеновской дифракции XRD-7000 (Shimadzu, Япония) при $CuK\alpha_1$ -излучении, λ_1 =1,5406 Å, 2 θ =10–90°, качественный анализ осуществлялся с помощью программы Crystallographica Search-Match и базы структурных данных PDF4+. В качестве демонстрации физических свойств материала представлены результаты механических испытаний объемных изделий в виде микроствердости (ЛОМО, Россия), полученной по методу Виккерса по общепринятой методике (ASTM C1327-15, 2019) при нагрузке на индентор 50 г и выдержке 10 с. Исследование теплопроводности полученных композитных образцов осуществлялось методом лазерной вспышки на анализаторе DLF 1200 (TA Instruments, США).

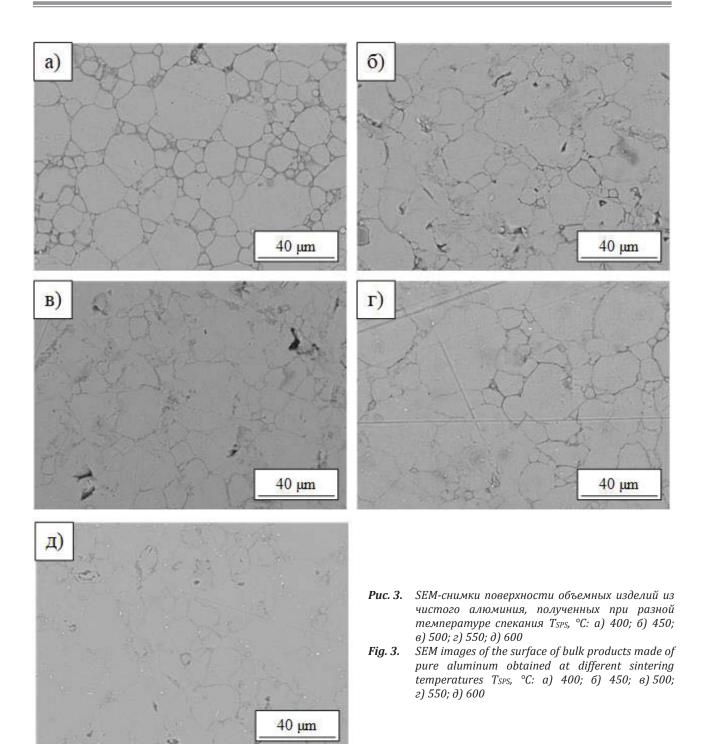
Результаты и обсуждение

В качестве предварительной серии экспериментов было проведено искровое плазменное спекание образцов из чистого алюминия. В серии экспериментов менялась температура спекания при постоянстве других параметров процесса. В табл. 1 представлены характеристики полученных образцов, включая температуру спекания T_{SPS} , массу m, высоту h и диаметр d спеченных и обработанных образцов. Наиболее важным критерием успешности процесса спекания является степень уплотнения материала, выраженная, прежде всего, в абсолютной ρ и относительной $\rho_{\text{отн}}$ плотностях изделия. Как видно по значениям плотностей, степень уплотнения значительно увеличивается (рост плотности от 92,66 до 97,45 %) при повышении температуры спекания от 400 до 600 °C.

Таблица 1. Характеристики металлических образцов Al, полученных при разных температурах спекания

Table 1. Characteristics of Al metal samples obtained at different sintering temperatures

$T_{ m SPS}$	m	h	d	ρ	$ ho_{ ext{oth}}/ ho_{ ext{rel}}$
°C	г/g	ММ	/mm	г/см³ g/cm³	%
400	0,783	2,526	12,560	2,502	92,66
450	0,842	2,680	12,566	2,533	93,83
500	1,060	3,322	12,554	2,578	95,47
550	0,978	3,020	12,584	2,604	96,44
600	1,204	3,684	12,576	2,631	97,45


На рис. 3 представлены микроснимки поверхности объемных изделий из чистого алюминия, полученных при разной температуре спекания. Состояние микроструктуры полученных объемных изделий также демонстрирует тенденцию к повышению уплотнения материала при росте температуры спекания. Так, для образца, полученного при T_{SPS} =400 °C (рис. 3, a), при общей достаточно высокой степени уплотнения характерно наличие пор и относительно широких межзеренных границ, в то время как материал, спеченный при T_{SPS} =600 °C, имеет практически беспоровую структуру с едва различимыми (при проведении съемки без травления) границами зерен. Предварительная серия экспериментов продемонстрировала оптимальную температуру спекания T_{SPS} =600 °C (рис. 3, ∂) для образца из чистого алюминия. Дальнейшее повышение температуры неминуемо приведет к расплавлению основной части материала и его вытеканию из прессформы. Этой же температуры можно придерживаться при проведении искрового плазменного спекания композитных образцов.

При определенной на предшествующем этапе исследований температуре спекания T_{SPS} =600 °C проведена серия экспериментов по получению композитных изделий с алюминиевой матрицей при разном содержании армирующей фракции в виде карбида вольфрама, которая изменялась от 0 до 15 %. В табл. 2 представлены результаты проведенной серии экспериментов. При анализе полученных данных в первую очередь обращает на себя внимание тот факт, что при добавлении армирующей фазы в металлическую матрицу значительно изменяется степень уплотнения материала. Плотность материала постепенно падает от 97,45 % при отсутствии добавки до 62,32 % при добавлении 15 % WC. Даже 1 % добавки WC изменяет плотность материала на 5 %. Факт уменьшения плотности материала напрямую связан с тем фактом, что армирующий компонент WC является тугоплавким материалом с температурой плавления 2870 °C. Спекание при температуре 600 °C, как было ранее показано, позволяет успешно уплотнить металлическую матрицу, однако слабо влияет на уплотнение карбидных зерен. В итоге существенно снижается общее уплотнение всего композитного материала.

Таблица 2. Характеристики композитных образцов Al-WC, полученных при разном содержании карбида вольфрама $\omega(WC)$

Table 2. Characteristics of Al-WC composite samples obtained at different tungsten carbide contents ω(WC)

ω(WC)	m	h	d	ρ	$ ho_{ ext{oth}}/ ho_{ ext{rel}}$	Н
%	г/g	MM/	mm	г/см ³ /g/cm ³	%	HV
0	1,204	3,684	12,576	2,631	97,45	3,95
1	0,911	2,860	12,438	2,622	92,65	4,07
5	1,076	3,240	12,502	2,705	80,80	5,15
10	1,027	2,930	12,502	2,855	71,45	5,40
15	1,104	3,110	12,496	2,895	62,32	5,75

Фазовый состав композитных материалов с алюминиевой матрицей и разным содержанием карбида вольфрама анализировался с помощью рентгеновских дифрактограмм, проиллюстрированных на рис. 4. На всех представленных дифрактограммах четко идентифицируется алюминий как преимущественная кристаллическая фаза, что дает основание называть спеченные изделия металломатричными композитами. Сравнение с дифракто-

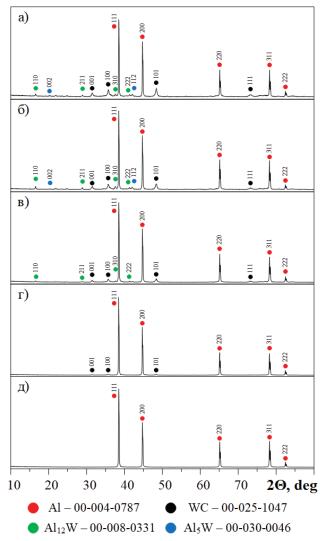
граммой образца из чистого алюминия позволяет выявить дополнительные кристаллические фазы, содержащиеся в конечных продуктах. Как и ожидалось, в композитных материалах присутствует карбид вольфрама в той же самой гексагональной модификации, как и в исходной смеси.

В то же время при росте содержания карбида вольфрама в исходной смеси на рентгеновских дифрактограммах спеченных материалов наблюдает-

ся присутствие промежуточных фаз, связанных как с матрицей, так и с керамической составляющей. Это фазы алюминидов вольфрама с разной стехиометрией, а именно $Al_{12}W$ и Al_5W . Предполагается такой механизм образования алюминидов вольфрама, когда при температуре от 600 °C происходит частичное расплавление алюминиевой матрицы, причем похожий принцип наблюдается при использовании разных методик спекания (традиционное, микроволновое) [41]. При этом известно, что температура плавления алюминия составляет 658-660 °C, однако с учетом того, что для наноразмерных материалов свойственно понижение температуры плавления [42], а в процессе SPS в условиях повышенного давления может наблюдаться локальное плавление частиц вследствие искровых разрядов и при более низких температурах относительно температуры плавления [43], в рассматриваемом процессе SPS Al-WC частичное плавление алюминия определенно происходит и при 600 °C. В этом случае алюминий в жидком состоянии плотно соприкасается с частицами WC, которые в наноразмерном виде обладают большей химической активностью. Вероятные межфазные реакции могут развиваться по следующему механизму [44]. Сначала происходит реакция термического разложения на краях и поверхностях частиц WC (1):

$$WC \rightarrow W + C.$$
 (1)

Атомы W, образующиеся в реакции (1), покидают поверхности частиц WC и поступают в жидкофазную матрицу Al. Когда концентрация атомов W в жидкой фазе превышает его максимальную растворимость, по реакции (2) образуется высший алюминид вольфрама:


$$W+12Al \rightarrow Al_{12}W. \tag{2}$$

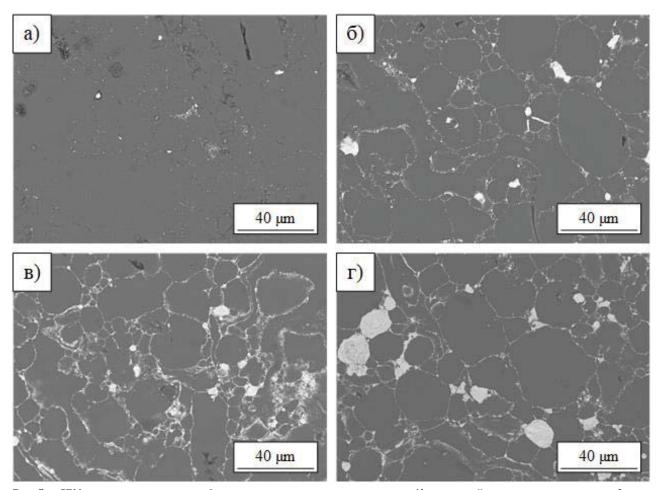
При повышении температуры происходит фазовый переход из высшего алюминида вольфрама в низшую форму и восстановление алюминия (3):

$$Al_{12}W \rightarrow Al_5W + 7Al.$$
 (3)

Таким образом, формирование алюминидов вольфрама связано с частичным разложением исходного карбида вольфрама в среде расплава алюминия. При этом примечательно, что наблюдается смещение стехиометрии промежуточных соединений в сторону повышенного содержания алюминия. Это является совершенно закономерным, особенно с учетом возможных соединений в системе Al-W, согласно фазовой диаграмме состояний [45], среди которых выделяют Al₂W, Al₇W₃, Al₇₇W₂₃, Al₄W, Al₅W, Al₁₂W [46], поскольку вольфрам присутствует в системе как явно лимитирующий реагент. Стоит отметить, что образование побочных фаз алюминидов вольфрама не является недостат-

ком разрабатываемого подхода, поскольку сплавы Al-W демонстрируют хорошую коррозионную стойкость, высокую прочность и более высокую термическую стабильность по сравнению с другими сплавами на основе алюминия и, наравне с армирующим карбидом вольфрама, оказывают благоприятное воздействие на свойства конечного композита [47, 48].

Рис. 4. Рентгеновские дифрактограммы композитных материалов с Al-матрицей при разном массовом содержании карбида вольфрама $\omega(WC)$, %: a) 15; б) 10; в) 5; г) 1; д) 0


Fig. 4. XRD-patterns of composite materials with an Al matrix at different mass contents of tungsten carbide $\omega(WC)$, %: a) 15; 6) 10; 8) 5; 2) 1; ∂) 0

Микроструктура материалов с разным содержанием WC, исследованная методами сканирующей электронной микроскопии, представлена на рис. 5. Общее отличие микроснимков композитных материалов от ранее представленных изображений чи-

сто металлических образцов заключается в явной гетерофазной структуре, включающей области с существенно отличающимся контрастом. Известно, что области, содержащие элементы с высоким атомным номером, будут иметь более светлый контраст по сравнению с более легкими элементами [49]. Из представленных данных по микроскопии видно, что характерной особенностью микроструктуры является формирование менее контрастных относительно крупных зерен (до нескольких десятков нм), которые ассоциируются с алюминием, и более контрастных микро- и наноразмерных внедрений, содержание которых постепенно увеличивается с ростом количества WC в исходной смеси и которые, таким образом, соответствуют, повидимому, карбиду вольфрама. Стоит отметить, что зерна алюминия увеличились в размерах относительно исходного нанодисперсного состояния в связи с термической рекристаллизацией при температурах, близких к температуре плавления материала. В то же время признаков рекристаллизации

частиц карбида вольфрама в составе продукта не наблюдается в связи с тем, что достигнутые температуры для тугоплавкого соединения WC не представляют серьезный фактор воздействия. При этом за счет малого размера частицы WC занимают все межзеренное пространство, гипотетические поры и трещины и, обладая высокой твердостью, выступают в качестве армирующего компонента, что должно повысить общие физико-механические свойства композита.

В качестве демонстрации эффектов, связанных с содержанием армирующих частиц WC в составе металломатричного композита, были проведены измерения микротвердости полученных материалов. В табл. 2 представлены значения микротвердости по Виккерсу (HV), показывающие закономерный рост физико-механических свойств композитов с увеличением доли карбида вольфрама в исходной смеси порошков от 3,95 (для чисто металлического образца) до 5,75 HV (при 15 мас. % WC).

Рис. 5. SEM-снимки поверхности объемных композитных материалов с Al-матрицей при разном массовом содержании карбида вольфрама ω(WC), %: a) 1; б) 5; в) 10; г) 15

Fig. 5. SEM images of the surface of bulk composite materials with an Al matrix at different mass contents of tungsten carbide $\omega(WC)$, %: a) 1; 6) 5; 8) 10; 2) 15

Такое существенное улучшение характеристик материалов (практически в 1,5 раза) связано с проявлением армирующих свойств карбида вольфрама, равномерно распределенного в композите в виде высокодисперсных частиц в межзеренном пространстве.

При этом наблюдаемый эффект проявляется даже с учетом значительного понижения степени уплотнения материалов при высоком содержании карбида вольфрама, т. е. эффект армирования проявляет себя даже при относительно низкой плотности всего композита.

В этой связи логичным представляется получение объемных изделий с более высокой плотностью, где высокие физико-механические свойства будут проявляться не только за счет присутствия сверхтвердых армирующих частиц, но и большего уплотнения материалов. Это возможно при повышении температуры искрового плазменного спекания более 600 °С и требует проведения отдельных поисковых исследований по определению оптимальных режимных параметров процесса компактирования для каждой отдельной точки по содержанию карбида вольфрама. Результаты таких исследований лягут в основу дальнейших работ авторов по представленному направлению.

Заключение

В результате комплекса проведенных исследований получены объемные композитные металломатричные изделия с алюминиевой матрицей и карбидом вольфрама в качестве армирующего ком-

понента. Компактирование смесей наноразмерных исходных порошков алюминия и карбида вольфрама методом искрового плазменного спекания позволило получить изделия с содержанием 0, 1, 5, 10, 15 мас. %. Предварительно спекались образцы из чистого алюминия для определения оптимальной температуры спекания. В итоге получены объемные композитные материалы и изделия из чистого алюминия. Отличительной особенностью полученных образцов является их высокая степень уплотнения, что обусловлено одновременным приложением греющего тока и внешнего давления, сопряженная с относительным сохранением мелкозеренной структуры материала за счет короткого времени протекания процесса. Анализ различных режимов спекания показал необходимость осуществления процесса спекания при температуре 600 °C. Исследования показали, что, хотя при добавлении армирующей фазы в металлическую матрицу значительно уменьшается степень уплотнения материала от 97,45 % при отсутствии добавки до 62,32 % при добавлении 15 % WC, при этом наблюдается увеличение микротвердости изделий при повышении концентрации армирующего компонента от 3,95 до 5,75 HV. Это доказывает возможность армирования металлического материала за счет керамических частиц WC. Полученные результаты могут быть использованы в различных конструкционных приложениях, включая автомобилестроение и авиакосмическую промышленность.

СПИСОК ЛИТЕРАТУРЫ/REFERENCES

- 1. Saini D.K., Jha P.K. Fabrication of aluminum metal matrix composite through continuous casting route: a review and future directions. *Journal of Manufacturing Processes*, 2023, vol. 96, pp. 138–160. DOI: 10.1016/j.jmapro.2023.04.041
- 2. Benevento M. State of the industry report. Composites Manufacturing Magazine, 2022, vol. 1, article no. 1.
- 3. Khalid M.Y., Umer R., Khan K.A. Review of recent trends and developments in aluminium 7075 alloys and metal matrix composites (MMCs) for aircraft applications. *Results in Engineering*, 2023, article no. 101372. DOI: 10.1016/j.rineng.2023.101372
- 4. Karaoğlu S.Y., Karaoğlu S., İmgesu Ü. Aerospace industry and aluminum metal matrix composites. *International Journal of Aviation Science and Technology*, 2021, vol. 2, no. 02, pp. 73–81. DOI: 10.23890/IJAST.vm02is02.0204
- 5. Mazumdar S. State of the industry report. Composites Manufacturing Magazine, 2021, vol. 1, article no. 1.
- Sharma A.K., Bhandari R., Aherwar A., Rimašauskienė R., Pinca-Bretotean C. A study of advancement in application opportunities of aluminum metal matrix composites. *Materials Today: Proceedings*, 2020, vol. 26, pp. 2419–2424. DOI: 10.1016/j.matpr.2020.02.516
- Samal P., Vundavilli P.R., Meher A., Mahapatra M.M. Recent progress in aluminum metal matrix composites: a review on processing, mechanical and wear properties. *Journal of Manufacturing Processes*, 2020, vol. 59, pp. 131–152. DOI: 10.1016/j.jmapro.2020.09.010
- 8. Tjong S.C. Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets. *Materials Science and Engineering: R: Reports*, 2013, vol. 74, no. 10, pp. 281–350. DOI: 10.1016/j.mser.2013.08.001
- 9. Pawar P.B., Wabale R.M., Utpat A.A. A comprehensive study of aluminum based metal matrix composites: challenges and opportunities. *Materials Today: Proceedings*, 2018, vol. 5, no. 11, pp. 23937–23944. DOI: 10.1016/j.matpr.2018.10.186
- 10. Hirsch J. Recent development in aluminium for automotive applications. *Transactions of Nonferrous Metals Society of China*, 2014, vol. 24, no. 7, pp. 1995–2002. DOI: 10.1016/S1003-6326(14)63305-7
- 11. Saravanakumar A., Jeyakumar R., Boovendravarman S., Arivalagan P., Pandian M.S. Study of tribological characteristics of hybrid aluminium matrix composite using design of experiment. *Materials Today: Proceedings*, 2023. DOI: 10.1016/j.matpr.2023.06.264

- 12. Bhuvaneswari V., Balaji D., Jeyakumar R., Srinivasan N., Rajeshkumar L. Effect of limestone powder as bioceramic reinforcement on mechanical and tribological properties of aluminium matrix composites. *Materials Today: Proceedings*, 2023. DOI: 10.1016/j.matpr.2022.12.154
- 13. Sadhu K.K., Mandal N., Sahoo R.R. SiC/graphene reinforced aluminum metal matrix composites prepared by powder metallurgy: a review. *Journal of Manufacturing Processes*, 2023, vol. 91, pp. 10–43. DOI: 10.1016/j.jmapro.2023.02.026
- 14. Qiu C., Su Y., Yang J., Chen B., Ouyang Q., Zhang D. Structural modelling and mechanical behaviors of graphene/carbon nanotubes reinforced metal matrix composites via atomic-scale simulations: a review. *Composites Part C: Open Access*, 2021, vol. 4, article no. 100120. DOI: 10.1016/j.jcomc.2021.100120
- 15. Zhao Z., Bai P., Du W., Liu B., Pan D., Das R., Liu C., Guo Z. An overview of graphene and its derivatives reinforced metal matrix composites: preparation, properties and applications. *Carbon*, 2020, vol. 170, pp. 302–326. DOI: 10.1016/j.carbon.2020.08.040
- Kvashnin A.G., Nikitin D.S., Shanenkov I.I., Chepkasov I.V., Kvashnina Yu.A., Nassyrbayev A., Sivkov A.A., Bolatova Z., Pak A.Ya. Large-scale synthesis and applications of hafnium-tantalum carbides. *Advanced Functional Materials*, 2022, vol. 32, no. 38, article no. 2206289. DOI: 10.1002/adfm.202206289
- 17. Pak A.Y., Bolatova Z., Nikitin D.S., Korchagina A.P., Kalinina N.A., Ivashutenko A.S. Glass waste derived silicon carbide synthesis via direct current atmospheric arc plasma. *Waste Management*, 2022, vol. 144, pp. 263–271. DOI: 10.1016/j.wasman.2022.04.002
- 18. Sivkov A.A., Gerasimov D.Y., Nikitin D.S. Direct dynamic synthesis of nanodispersed phases of titanium oxides upon sputtering of electrodischarge titanium plasma into an air atmosphere. *Technical Physics Letters*, 2017, vol. 43, pp. 16–19. DOI: 10.1134/S1063785016120105
- 19. Idusuyi N., Olayinka J.I. Dry sliding wear characteristics of aluminium metal matrix composites: a brief overview. *Journal of Materials Research and Technology*, 2019, vol. 8, no. 3, pp. 3338–3346. DOI: 10.1016/j.jmrt.2019.04.017
- 20. Mortensen A., Llorca J. Metal matrix composites. *Annual review of materials research*, 2010, vol. 40, pp. 243–270. DOI: 10.1146/annurev-matsci-070909-104511
- Malaki M., Xu W., Kasar A.K., Menezes P.L., Dieringa H., Varma R.S., Gupta M. Advanced metal matrix nanocomposites. *Metals*, 2019, vol. 9, article no. 330. DOI: 10.3390/met9030330
- Chen L.Y., Xu J.Q., Choi H., Pozuelo M., Ma X., Bhowmick S., Yang J.M., Mathaudhu S., Li X.C. Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles. *Nature*, 2015, vol. 528, no. 7583, pp. 539–543. DOI: 10.1038/nature16445
- 23. Gupta M., Wong W.L.E. Magnesium-based nanocomposites: Lightweight materials of the future. *Materials Characterization*, 2015, vol. 105, pp. 30–46. DOI: 10.1016/j.matchar.2015.04.015
- 24. Assar A.E.M. Fabrication of metal matrix composite by infiltration process part 2: experimental study. *Journal of Materials Processing Technology*, 1999, vol. 86, no. 1–3, pp. 152–158. DOI: 10.1016/S0924-0136(98)00304-5
- 25. Prabu S.B., Karunamoorthy L., Kathiresan S., Mohan B. Influence of stirring speed and stirring time on distribution of particles in cast metal matrix composite. *Journal of materials processing technology*, 2006, vol. 171, no. 2, pp. 268–273. DOI: 10.1016/j.jmatprotec.2005.06.071
- 26. Suryanarayana C., Al-Aqeeli N. Mechanically alloyed nanocomposites. *Progress in Materials Science*, 2013, vol. 58, no. 4, pp. 383–502. DOI: 10.1016/j.pmatsci.2012.10.001
- Bahrami A., Pech-Canul M.I., Soltani N., Gutiérrez C.A., Kamm P.H., Gurlo A. Tailoring microstructure and properties of bilayer-graded Al/B4C/MgAl2O4 composites by single-stage pressureless infiltration. *Journal of Alloys and Compounds*, 2017, vol. 694, pp. 408–418. DOI: 10.1016/j.jallcom.2016.09.284
- Bahrami A., Pech-Canul M.I., Gutierrez C.A., Soltani N. Effect of rice-husk ash on properties of laminated and functionally graded Al/SiC composites by one-step pressureless infiltration. *Journal of Alloys and Compounds*, 2015, vol. 644, pp. 256–266. DOI: 10.1016/j.jallcom.2015.04.194
- 29. Zhou M.Y., Ren L.B., Fan L.L., Zhang Y.W.X., Lu T.H., Quan G.F., Gupta M. Progress in research on hybrid metal matrix composites. *Journal of Alloys and Compounds*, 2020, vol. 838, article no. 155274. DOI: 10.1016/j.jallcom.2020.155274
- 30. Bhanuprakash L., Manikandan N., Varghese L., Joseph J. Study on aluminium metal matrix composites reinforced with SiC and granite powder. *Materials Today: Proceedings*, 2023. DOI: 10.1016/j.matpr.2023.06.246
- 31. Mathew G., Kottur V.K.N. Effect of ceramic reinforcements on the mechanical and tribological properties of aluminium metal matrix composites a review. *Materials Today: Proceedings*, 2023. DOI: 10.1016/j.matpr.2023.09.099
- 32. Jahan M.P., Rahman M., Wong Y.S. A review on the conventional and micro-electrodischarge machining of tungsten carbide. *International journal of machine tools and manufacture*, 2011, vol. 51, no. 12, pp. 837–858. DOI: 10.1016/j.ijmachtools.2011.08.016
- 33. Katiyar P.K. A comprehensive review on synergy effect between corrosion and wear of cemented tungsten carbide tool bits: a mechanistic approach. *International Journal of Refractory Metals and Hard Materials*, 2020, vol. 92, article no. 105315. DOI: 10.1016/j.ijrmhm.2020.105315
- 34. Sharath B.N., Madhu P., Verma A. Enhancing tribological performance: a review of ceramic reinforced aluminium hybrid composites for high-temperature engineering applications. *Hybrid Advances*, 2023, vol. 4, article no. 100094. DOI: 10.1016/j.hybadv.2023.100094
- Megahed A.A., Mohamed M.A., Abdel Hamid M., Zoalfakar S.H. Microstructure, hardness, and wear properties of AA6061/WC nanocomposite fabricated by friction stir processing. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2022, vol. 236, no. 16, pp. 9148–9156. DOI: 10.1177/09544062221091904
- 36. Krishna A.R., Arun A., Unnikrishnan D., Shankar K.V. An investigation on the mechanical and tribological properties of alloy A356 on the addition of WC. *Materials Today: Proceedings*, 2018, vol. 5, no. 5, pp. 12349–12355. DOI: 10.1016/j.matpr.2018.02.213

- 37. Huang G., Hou W., Shen Y. Evaluation of the microstructure and mechanical properties of WC particle reinforced aluminum matrix composites fabricated by friction stir processing. *Materials characterization*, 2018, vol. 138, pp. 26–37. DOI: 10.1016/j.matchar.2018.01.053
- 38. Tsukamoto H. Chemical and mechanical treatments for enhancement of carbon nanotube reinforced aluminum matrix composites. *Materials Science and Engineering: A*, 2023, vol. 867, article no. 144749. DOI: 10.1016/j.msea.2023.144749
- 39. Irshad H.M., Farooq A., Hakeem A.S., Azeem M.Z., Ehsan M.A. Electrochemical study of aluminum-cubic boron nitride composites synthesized via spark plasma sintering for engineering applications. *Journal of Alloys and Compounds*, 2023, vol. 965, article no. 171210. DOI: 10.1016/j.jallcom.2023.171210
- 40. Pohshna C., Mailapalli D.R. Modeling the particle size of nanomaterials synthesized in a planetary ball mill. *OpenNano*, 2023, vol. 14, article no. 100191. DOI: 10.1016/j.onano.2023.100191
- 41. Ghasali E., Pakseresht A.H., Agheli M., Marzbanpour A.H., Ebadzadeh T. WC-Co particles reinforced aluminum matrix by conventional and microwave sintering. *Materials Research*, 2015, vol. 18, pp. 1197–1202. DOI: 10.1590/1516-1439.027115
- 42. Al Rsheed A., Aldawood S., Aldossary O.M. The size and shape effects on the melting point of nanoparticles based on the lennard-jones potential function. *Nanomaterials*, 2021, vol. 11, no. 11, article no. 2916. DOI: 10.3390/nano11112916
- 43. Kumar D.B., Jerrin K.A., Joseph N., Jiss A. Review of spark plasma sintering process. *IOP Conference Series: Materials Science and Engineering*, 2020, vol. 993, no. 1, article no. 012004. DOI: 10.1088/1757-899X/993/1/012004
- 44. Liang Q.S., Mao C.H., Jian Y., Jun D. Analyse of the interfacial reaction inWCp/2024 Al composites. *Powder Metallurgy Technology*, 2009, vol. 27, no. 5, pp. 327–330.
- 45. Kek Merl D., Panjan P., Milošev I. Effect of tungsten content on properties of PVD sputtered Al–WX alloys. *Surface engineering*, 2013, vol. 29, no. 4, pp. 281–286. DOI: 10.1179/1743294412Y.0000000086
- 46. Wang C., Liang S., Cui J., Wang X., Wei Y. First-principles study of the mechanical and thermodynamic properties of Al4W, Al5W and Al12W under pressure. *Vacuum*, 2019, vol. 169, article no. 108844. DOI: 10.1016/j.vacuum.2019.108844
- 47. Migas D., Myalska-Głowacka H., Chmiela B., Maciąg T., Mikuszewski T., Moskal G., Matus K., Godzierz M. Microstructural characterization of cerium rich phases in new polycrystalline Co–Al–W-xCe superalloys. *Journal of Materials Research and Technology*, 2022, vol. 20, pp. 1665–1676. DOI: 10.1016/j.jmrt.2022.07.144
- 48. Pan Y., Zhang X. Theoretical predict the structure, elastic anisotropy and thermodynamic properties of Al5W in Al-rich region. *Journal of Materials Research and Technology*, 2023, vol. 24, pp. 1792–1801, DOI: 10.1016/j.jmrt.2023.03.120
- 49. De Assumpção Pereira-da-Silva M., Ferri F.A. Scanning electron microscopy. *Nanocharacterization Techniques*. New York, William Andrew Publ., 2017. pp. 1–35.

Информация об авторах

Дмитрий Сергеевич Никитин, кандидат технических наук, доцент отделения электроэнергетики и электротехники Инженерной школы энергетики Национального исследовательского Томского политехнического университета, Россия, 634050, г. Томск, пр. Ленина, 30. nikitindmsr@yandex.ru; http://orcid.org/0000-0002-5015-6092

Артур Насырбаев, ассистент отделения электроэнергетики и электротехники Инженерной школы энергетики Национального исследовательского Томского политехнического университета, Россия, 634050, г. Томск, пр. Ленина, 30. arn1@tpu.ru; http://orcid.org/0000-0003-4761-8863

Александр Игоревич Циммерман, ассистент отделения электроэнергетики и электротехники Инженерной школы энергетики Национального исследовательского Томского политехнического университета, Россия, 634050, г. Томск, пр. Ленина, 30. alextsimmer@yandex.ru; http://orcid.org/0009-0008-9474-7899 Иван Игоревич Шаненков, кандидат технических наук, заведующий лабораторией ресурсоэффективных технологий термической переработки биомассы Института экологической и сельскохозяйственной биологии (X-BIO) Тюменского государственного университета, Россия, 625003, г. Тюмень ул. Володарского, 6; младший научный сотрудник Лаборатории перспективных материалов энергетической отрасли Инженерной школы энергетики Национального исследовательского Томского политехнического университета, Россия, 634050, г. Томск, пр. Ленина, 30. i.i.shanenkov@utmn.ru; http://orcid.org/0000-0001-7499-5846

Анастасия Сергеевна Сайгаш, кандидат технических наук, и.о. руководителя отделения электроэнергетики и электротехники Инженерной школы энергетики Национального исследовательского Томского политехнического университета, Россия, 634050, г. Томск, пр. Ленина, 30. nasts@tpu.ru; http://orcid.org/0000-0001-7340-0871

Александр Анатольевич Сивков, доктор технических наук, профессор отделения электроэнергетики и электротехники Инженерной школы энергетики Национального исследовательского Томского политехнического университета, Россия, 634050, г. Томск, пр. Ленина, 30. sivkov@tpu.ru; http://orcid.org/0000-0002-7685-5502

Поступила в редакцию: 19.12.2023

Поступила после рецензирования: 15.01.2024

Принята к публикации: 21.02.2024

Information about the authors

Dmitry S. Nikitin, Cand. Sc., Associate Professor, National Research Tomsk Polytechnic University, 30, Lenin avenue, Tomsk, 634050, Russian Federation. nikitindmsr@yandex.ru; http://orcid.org/0000-0002-5015-6092 **Artur Nassyrbayev**, Assistant, National Research Tomsk Polytechnic University, 30, Lenin avenue, Tomsk, 634050, Russian Federation. arn1@tpu.ru; http://orcid.org/0000-0003-4761-8863

Alexander I. Tsimmerman, Assistant, National Research Tomsk Polytechnic University, 30, Lenin avenue, Tomsk, 634050, Russian Federation. alextsimmer@yandex.ru; http://orcid.org/0009-0008-9474-7899

Ivan I. Shanenkov, Cand. Sc., Head of the Laboratory, Tyumen State University, 6, Volodarsky street, Tyumen, 625003, Russian Federation; National Research Tomsk Polytechnic University, 30, Lenin avenue, Tomsk, 634050, Russian Federation. i.i.shanenkov@utmn.ru; http://orcid.org/0000-0001-7499-5846

Anastasia S. Saigash, Cand. Sc., Acting Head of the Power and Electical Engineering Department, National Research Tomsk Polytechnic University, 30, Lenin avenue, Tomsk, 634050, Russian Federation. nasts@tpu.ru; http://orcid.org/0000-0001-7340-0871

Alexander A. Sivkov, Dr. Sc., Professor, National Research Tomsk Polytechnic University, 30, Lenin avenue, Tomsk, 634050, Russian Federation. sivkov@tpu.ru; http://orcid.org/0000-0002-7685-5502

Received: 19.12.2023 Revised: 15.01.2024 Accepted: 21.02.2024 УДК 504.054; 504.064.2.001.18

DOI: 10.18799/24131830/2024/3/4259 Шифр специальности ВАК: 1.6.12

Источники, уровни накопления и экологическая опасность тяжелых металлов и металлоидов в почвах и фракции РМ₁₀ г. Северобайкальска

Д.Г. Сычева [⊠], Н.Е. Кошелева

МГУ имени М.В. Ломоносова, Россия, г. Москва

[⊠]l.msu@vandex.ru

Аннотация. Актуальность исследования обусловлена необходимостью изучения экологического состояния почвенного покрова промышленных городов, являющегося главной депонирующей средой техногенных выбросов тяжелых металлов и металлоидов, для выявления геохимических особенностей региона и оценки воздействия на здоровье населения. *Цель:* изучить источники и аккумуляцию тяжелых металлов и металлоидов в почвах и их фракции РМ₁₀ г. Северобайкальска и оценить связанные с ними риски для здоровья населения. Методы. Валовое содержание Zn, As, Cd, Pb, Cr, Co, Ni, Cu, Sb, Mo, V, W, Sr, Ві в пробах почв, угля и золы определяли масс-спектральным и атомно-эмиссионными методами с индуктивносвязанной плазмой, использовались геохимические (КК, Кс, Zc) и санитарно-гигиенические (Ко) показатели, рассчитывались риски для здоровья взрослого населения и детей, применялся анализ главных компонент (PCA). *Результаты.* В Северобайкальске приоритетными поллютантами почв являются Sb, Cu, Pb, Mo, Cr, наиболее загрязнены почвы и фракция РМ10 транспортной зоны, где аккумулируются Sb, Cu, Pb, Co, V, W, Ni. Наибольшее влияние на химический состав городских почв и частиц РМ₁₀ оказывают выбросы железнодорожной инфраструктуры и сжигание угля на Центральной ТЭЦ (22 % для почв в целом и 48 % для фракции РМ10). Средний суммарный уровень загрязнения городских почв и фракции РМ10 соответствует низкому, неопасному уровню (Zc=6). Суммарный неканцерогенный риск попадания в организм детей частиц почвы, загрязненных тяжелыми металлами и металлоидами, превысил безопасный уровень 1 (от 1,60 в селитебной одноэтажной до 1,81 в транспортной зоне), для взрослого населения значения НІ были ниже допустимого порогового значения. Для взрослого населения отсутствует канцерогенный риск, связанный с проглатыванием или попаданием в организм через кожный контакт As, Cr и Pb. Для детей выявлен опасный риск (ILCR_{ingest} 5,56*10-4) попадания в организм канцерогенных тяжелых металлов и металлоидов через проглатывание.

Ключевые слова: тяжелые металлы, металлоиды, уголь, городские почвы, оценка риска

Благодарности: Авторы выражают благодарность кандидату географических наук, доценту Высшей школы экономики Наталье Витальевне Шартовой за помощь в освоении метода US ЕРА для расчета экологических рисков. Полевые работы выполнены при финансовой поддержке Министерства науки и высшего образования РФ (проект № 075-15-2021-574), анализ и интерпретация данных – при поддержке РНФ (проект № 19-77-3004-П).

Для цитирования: Сычева Д.Г., Кошелева Н.Е. Источники, уровни накопления и экологическая опасность тяжелых металлов и металлоидов в почвах и фракции РМ₁0 г. Северобайкальска // Известия Томского политехнического университета. Инжиниринг георесурсов. – 2024. – Т. 335. – № 3. – С. 137–153. DOI: 10.18799/24131830/2024/3/4259

UDC 504.054; 504.064.2.001.18

DOI: 10.18799/24131830/2024/3/4259

Sources, accumulation levels and environmental hazard of heavy metals and metalloids in soils and PM_{10} fractions of Severobaykalsk

D.G. Sycheva[⊠], N.E. Kosheleva

Lomonosov Moscow State University, Moscow, Russian Federation

□l.msu@yandex.ru

Abstract. Relevance. The need to study the ecological state of the soil cover of industrial cities, which is the main depositing environment for technogenic emissions of heavy metals and metalloids, to identify the geochemical characteristics of the region and assess the impact on public health. Aim. To assess the sources and accumulation of heavy metals and metalloids in soils and their fraction PM₁₀ in Severobaikalsk and to assess the risks associated with them for public health. *Methods.* Total content of Zn, As, Cd, Pb, Cr, Co, Ni, Cu, Sb, Mo, V, W, Sr, Bi in soil, coal and ash samples was determined by mass spectral and atomic emission methods with inductive-coupled plasma. Geochemical (KK, Kc, Zc), sanitary and hygienic (Ko) indicators were used. Health risks for adults and children were assessed. Principal component analysis was used. Results. In Severobaikalsk, the priority soil pollutants are Sb, Cu, Pb, Mo, Cr. The soils and their PM_{10} fraction in the transport zone, where Sb, Cu, Pb, Co, V, W, Ni are accumulated, are the most polluted. The greatest influence on the chemical composition of urban soils and PM₁₀ particles is exerted by emissions from railway infrastructure and coal combustion at the Central Thermal Power Plant (22% for soils in general and 48% for the PM₁₀ fraction). The average total level of contamination of urban soils and PM₁₀ fraction corresponds to a low, non-hazardous level (Zc=6). The total non-carcinogenic risk of soil particles contaminated with heavy metals and metalloids. entering the body of children, exceeded the safe level 1 (from 1.60 in a residential one-story zone to 1.81 in a transport zone). For the adult population, HI values were below the acceptable threshold value. For adult health, there is no carcinogenic risk associated with ingestion or skin contact of As, Cr and Pb. For children, a dangerous risk (ILCRingest 5.56·10-4) of ingestion of carcinogenic heavy metals and metalloids was identified.

Keywords: heavy metals, metalloids, coal, urban soils, risk assessment

Acknowledgements: The authors are grateful to Natalya V. Shartova, Cand. Sc., Associate Professor of the Higher School of Economics, for her assistance in mastering the US EPA method for calculating environmental risks. Field work was supported by the Ministry of Science and Higher Education of the Russian Federation (project no. 075-15-2021-574), analysis and interpretation of data – with the support of the Russian Science Foundation (project no. 19-77-3004-P).

For citation: Sycheva D.G., Kosheleva N.E. Sources, accumulation levels and environmental hazard of heavy metals and metalloids in soils and PM₁₀ fractions of Severobaykalsk. *Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering*, 2024, vol. 335, no. 3, pp. 137–153. DOI: 10.18799/24131830/2024/3/4259

Введение

В настоящее время наблюдается рост техногенного воздействия на природную среду и население, которое наиболее сильно проявляется в промышленных городах. Многие исследователи признают необходимость приоритетного изучения наиболее опасных токсичных загрязнителей городских ландшафтов – тяжёлых металлов и металлоидов (ТММ) [1–3]. Часть поллютантов, поступающих с выбросами промышленных предприятий, рассеивается вблизи источников, образуя локальные техногенные геохимические аномалии в компонентах ландшафта, другая часть включается в региональные миграционные потоки, приводя к росту концентраций химических элементов в природных средах [4].

Почвенный покров является главной депонирующей средой для техногенных выбросов, что делает его наиболее информативным компонентом урболандшафта при определении масштабов загрязнения городских территорий [5, 6]. Основная часть ТММ поступает в почвы с атмосферными выпадениями, уровни их содержания и характер распределения в верхних горизонтах почв могут служить индикатором экологического состояния городских ландшафтов в течение многолетнего периода [7, 8]. Особое внимание в настоящее время уделяется изучению наиболее опасных твердых частиц диаметром <10 мкм — фракции физической глины (РМ₁₀), которая задерживается в органах дыхания человека и тем самым способствует развитию респираторных, сер-

дечно-сосудистых заболеваний и злокачественных новообразований [9–11]. Тонкие частицы обладают большей удельной поверхностью, что обусловливает более интенсивное накопление TMM [12].

В Бурятии большинство населенных пунктов имеют горно-котловинное положение со слабой рассеивающей способностью воздушного бассейна, что приводит к накоплению воздушных загрязнителей в нижних слоях атмосферы. В этой связи остро стоит проблема эколого-геохимического изучения городских территорий Бурятии. Ранее были проведены исследования в столице республики г. Улан-Удэ [13, 14], где сконцентрировано большое количество промышленных предприятий и районов частной застройки с печным отоплением, а также в Гусиноозерске [15, 16], где расположена крупнейшая в Байкальском регионе Гусиноозерская ГРЭС. Данная работа является продолжением почвенно-геохимического исследования робайкальска [17], в ней главный акцент сделан на изучении роли тонких частиц РМ10 как основных носителей ТММ в почвах, расчете вклада основных источников поллютантов в загрязнение почв и фракции РМ10, а также на оценке связанных с этим рисков для здоровья жителей г. Северобайкальска.

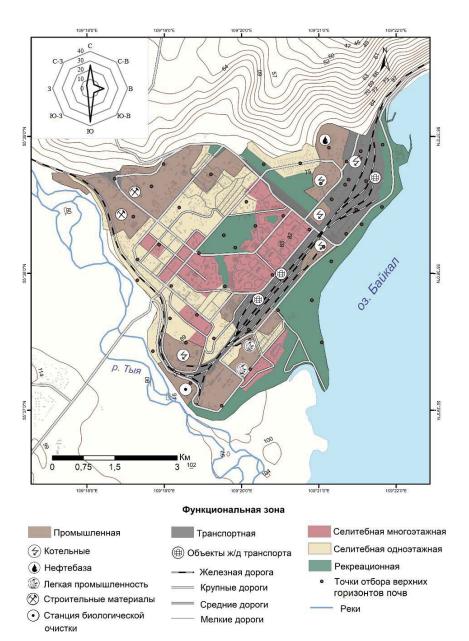
В Северобайкальске потребность в электроэнергии обеспечивается Центральной ТЭЦ и четырьмя муниципальными котельными, использующими в качестве топлива Канско-Ачинские бурые угли. Центральная ТЭЦ расположена в 600 м от озера Байкал — уникального объекта, внесенного в список

Всемирного Наследия ЮНЕСКО, что вызывает необходимость тщательного изучения и мониторинга состояния окружающей среды в городе. Кроме того, Северобайкальск является крупным транспортным узлом Байкальского региона, железнодорожный транспорт представлен участком Байкало-Амурской магистрали (БАМ). Трасса проходит с северо-запада города на северо-восток по берегу Байкала и имеет протяженность около 86 км.

Цель работы — изучить источники и аккумуляцию ТММ в почвах и их фракции PM_{10} г. Северобайкальска и оценить связанные с ними риски для здоровья населения. Решались следующие задачи: 1) исследовать химический состав Канско-Ачинских углей и золы Центральной ТЭЦ; 2) установить валовое содержание ТММ в верхнем (0–10 см) слое почв и их фракции PM_{10} в разных функциональных зонах города; 3) определить вклад основных источников ТММ в загрязнение почв и их фракции PM_{10} в Северобайкальске; 4) оценить уровни неканцерогенной и канцерогенной опасности накопления ТММ в городских почвах для здоровья детей и взрослых при их пероральном поступлении и попадании на кожу.

Объекты и методы исследования

Изучаемая территория. Северобайкальск расположен на Северо-Байкальском нагорье, на северо-западном берегу оз. Байкал, в устьевой области р. Тыи. Длина береговой линии озера в Северобайкальске составляет около 5 км. Климат города резко континентальный, смягченный влиянием возлушных масс оз. Байкал. Господствуют ветры южного направления, характерна частая повторяемость туманов, особенно в летний период. Почвообразующие породы представлены в [18]. В долине р. Тыи распространены пылеватые пески и супеси, которые перекрывают гравийно-галечниковые и образования. Территория Байкальского нагорья относится к Прибайкальской предгорной высоко-, средне- и низкогорной провинции Байкальского округа торфяно-подбуров, подбуров и буроземов и грубогумусовых почв. Основной фон почвенного покрова региона составляют подбуры, подзолы, дерново-подзолы, дерновоподбуры и буроземы грубогумусовые. В долине р. Тыи сформировались аллювиальные перегнойноглеевые, темногумусовые, темногумусовые квазиглеевые, серогумусовые и торфяно-глеевые почвы [19]. Под воздействием антропогенной деятельности и техногенного загрязнения в Северобайкальске формируются антропогенно-преобразованные почвы, представленные преимущественно урбоподбурами и урбо-подзолами [20].


Согласно геоботаническому районированию, территория Северобайкальска относится к Предбай-

кальской темнохвойно-горно-таежной провинции с преобладанием лесной растительности — горных лиственничных, сосново-лиственничных лесов с примесью березы и осины (Salix lanata L., S. rosmarinifolia L., S. pyrolifolia Ledeb., Carex diandra Schrank, C. meyeriana Kunth, C. capitata L., C. irriqua (Wahlenb.)) [21]. Со строительством трассы БАМ антропогенная нагрузка на ландшафты значительно выросла, наибольшее влияние на растительность оказывают вырубки и низовые пожары [22].

В Северобайкальске выделены следующие функциональные зоны: промышленная, селитебная с многоэтажной и одноэтажной застройкой, рекреационная и транспортная (рис. 1). Промышленная зона включает четыре муниципальные котельные: Центральную ТЭЦ, предприятия дерево- и металлообработки, производства строительных материалов, пищевой и текстильной промышленности. Центральная ТЭЦ вырабатывает 148 Гкал/ч, она производит 75 % тепла, потребляемого городом. ТЭЦ располагается менее чем в 300 м от Байкала, вблизи озера находятся и площадки для разгрузки угля, вагонное хозяйство и локомотивное депо. К транспортной зоне относится участок БАМ с железнодорожной станцией Северобайкальск и автодублер БАМ. Селитебная подзона с многоэтажной застройкой разной плотности сосредоточена в центральной части города, она включает общественные и административные здания. Селитебная подзона с одноэтажной застройкой представлена частными домами с приусадебными участками. Рекреационная зона состоит из городских парков, скверов, сюда также входит прибрежная часть озера Байкал с пляжем.

Материалы и методы исследования. Летом 2018 г. из верхнего (0–10 см) горизонта отобрано 50 проб городских почв. Пробы отбирались по сетке с шагом 500–600 м [23] в трех повторностях на расстоянии 3–5 м друг от друга, из которых составлялась одна смешанная проба. Кроме того, на Центральной ТЭЦ получены 2 пробы золы и угля. В качестве фона для Северобайкальска использовались верхние горизонты дерново-подбуров (7 проб), опробованные в 2–2,5 км к северу от города. Пробы отбирались на пологом склоне Северо-Байкальского нагорья, на территории, где нет влияния антропогенной деятельности и где распространены почвообразующие породы, представленные в городе.

Валовое содержание ТММ в пробах почв, угля и золы определяли масс-спектральным и атомно-эмиссионными методами с индуктивно-связанной плазмой в сертифицированной лаборатории ВНИИ минерального сырья им. Н.М. Федоровского. Для подробного анализа выбрано 14 элементов: Zn, As, Cd, Pb (I класс опасности), Cr, Ni, Cu, Sb (II класс), V (III класс), а также Вi, Мо, Со, W и Sr. Фракция РМ₁₀ почв выделялась методом центрифугирования.

Puc. 1. Функциональное зонирование и точки отбора проб из верхних (0–10 см) горизонтов почв в Северобайкальске **Fig. 1.** Land-use zoning and sampling points from the upper (0–10 cm) soil horizons in Severobaikalsk

Обогащение ТММ Канско-Ачинских углей и золы Центральной ТЭЦ Северобайкальска выявлялось путём сравнения с мировыми кларками углей Ку и золы Кз [24] и расчетом кларков концентрации ККу=Су/Ку и ККз=Сз/Кз, где Су, Сз – содержание ТММ в углях и золе соответственно. Коэффициент выноса ТММ в атмосферу при сжигании угля вычислялся как Катм=Ст/Ср, где Ст – теоретическое содержание элемента в золе, мг/кг, которое рассчитывалось по формуле Ст=Су·З/100, З – зольность, %; Ср – реальное содержание элемента в золе, мг/кг.

Микроэлементный состав фоновых почв Сф сравнивали с кларками К1 верхней части континен-

тальной коры [25], а также с региональным средним значением K2 для Центральной Бурятии [26] путём расчёта кларков концентрации KK=C φ /K1(2) при C φ >K1(2) или рассеяния KP=K1(2)/С φ при С φ -K1(2). Интенсивность накопления ТММ в городских почвах и фракции РМ₁₀ разных функциональных зон относительно фоновых почв оценивалась с помощью коэ φ -фициентов концентрации Kc=Ci/С φ при Ci-С φ или рассеяния Kp=C φ /Сi при Ci-С φ , где Ci — содержание ТММ в городских образцах или φ -ракции РМ₁₀, мг/кг. Были рассчитаны доли изучаемых ТММ, которые дает φ -ракция РМ₁₀ в их валовом содержании с помощью показателя Di=((C·P)/(100·C_{Пыль/почва}))·100 %, где D — доля эле-

мента во фракции PM_{10} почв, %; C – концентрация элемента во фракции PM_{10} почв, мг/кг; P – доля фракции PM_{10} почв, %; $C_{\text{вал}}$ – концентрация элемента в почвах в целом, мг/кг. Суммарное загрязнение почв ТММ оценивалось с помощью показателя $Zc=\Sigma Kc-(n-1)$, где n- число химических элементов с Kc>1,0. Показатель Zc имеет 5 градаций: <16 – низкое, неопасное, 16–32 – среднее, умеренно опасное, 32-64 - высокое, опасное, 64-128 - очень высокое, очень опасное, >128 - максимальное, чрезвычайно опасное загрязнение [7]. Опасность ТММ в почвах оценивалась путем расчета коэффициента экологической опасности Ко=Ci/ПДКi, где ПДКі – предельно допустимая (или ориентировочно допустимая, ОДК) концентрация і-го загрязняющего вещества, мг/кг [27]. Использовались значения ПДК для V, Sb и ОДК As, Cd, Ni, Pb, Cu, Zn в суглинистых нейтральных почвах с рН>5,5.

Оценка риска для здоровья взрослых и детей при воздействии ТММ, поступающих с почвенными частицами, производилась с помощью модели, разработанной на базе совместных исследований федерального центра гигиены им. Ф.Ф. Эрисмана, Федерального центра экологической политики России и Американского агентства по охране окружающей среды US EPA [28-30]. Данная модель учитывает три пути поступления в организм загрязненных частиц: при проглатывании, контакте с кожей и попадании в дыхательные пути. Поскольку наибольшее влияние на здоровье человека оказывают первые два фактора [31, 32], для всех исследуемых ТММ была рассчитана среднесуточная доза вредных веществ (Average Daily Dose) и их воздействие при приеме внутрь (ADD_{ingest}) и контакте с кожей (ADD_{dermal}):

$$\begin{split} ADD_{ingest} &= \frac{C_u \times IngR \times EF \times ED}{BW \times AT} \times CF; \\ ADD_{dermal} &= \frac{C_u \times SA \times AF \times ABS \times EF \times ED}{BW \times AT} \times CF, \end{split}$$

где C_u — содержание ТММ в городских почвах (мг/кг); IngR — количество проглатываемой почвы (мг/сутки); EF — частота нагрузки (сут./год); ED — продолжительность воздействия (лет); BW — средний вес человека (кг); AT=10950 — среднее время влияния неканцерогенных элементов (сутки); CF — коэффициент пересчета (1·10⁻⁶ кг/мг); SA — площадь поверхности кожи, которая контактирует с почвой (см²); AF — коэффициент прилипания почвы к коже (мг/см); ABS — коэффициент поглощения элемента. Значения переменных различаются для взрослых и детей (табл. 1).

Потенциальный неканцерогенный риск, связанный с конкретными элементами, оценивался для каждого пути поступления ТММ в организм человека с использованием коэффициента опасности Hazard Quotient (HQ):

$$HQ_{ingest} = \frac{ADD_{ingest}}{RfD_0},$$
 $HQ_{dermal} = \frac{ADD_{dermal}}{RfD_{ABS}},$

где RfD_o — контрольная доза (Reference Dose), при повседневном потреблении которой в течение длительного периода у человека не возникают патологические изменения или заболевания. На сегодняшний день установлены контрольные дозы для каждого химического элемента только при пероральном поступлении RfD_o [28, 30, 31]. При поступлении через кожный покров эталонные значения RfD_{ABS} рассчитывались согласно рекомендациям [29] по формуле:

$$RfD_{ABS} = RfD_o \times ABS_{GL}$$

где ABS_{GI} — коэффициент поглощения желудочнокишечным трактом, индивидуален для каждого элемента [33].

Таблица 1. Значения коэффициентов, используемых в формулах для оценки риска [28–30]

Table 1. Values of factors used in risk assessment formulas [28–30]

Факторы	Значени	e/Value			
Factors	Взрослые/Adults	Дети/Children			
IngR (мг/сут./mg/day)	100	200			
EF (сут./год/day/year)	350	350			
ED (лет/years)	30	6			
BW (кг/kg)	70	15			
AT (сут./days)	10 950	2190			
SA (cm ² /cm ²)	5700	2800			
AF (мг/см/mg/cm)	0,07	0,2			
ABS	0,03 для As и 0,001 для остальных TMM 0.03 for As and 0.001 for other HMMs				

Для оценки общего неканцерогенного воздействия элементов применялся индекс опасности (Hazard Index) $HI=\sum(HQ_{ingest}+HQ_{dermal})$, который учитывает поступление загрязнённых частиц почвы двумя путями: пероральным и через кожный покров. Показатели HQ_i и HI имеют четыре уровня опасности для здоровья человека: отсутствует (<0,1), низкий (0,1–1), средний (1–10), высокий (>10) [29, 30].

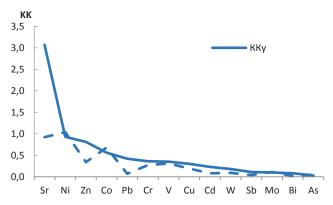
Загрязнение канцерогенными элементами As, Cr, Pb, попадание которых в организм человека может привести к развитию злокачественных опухолей [33–35], оценивалось путем расчета возрастающей вероятности развития рака (Incremental Lifetime Cancer Risk) *ILCR* при влиянии TMM в течение всей жизни человека (AT=70 лет=25550 суток) [28, 30, 33]:

$$ILCR_{ingest} = ADD_{ingest} \times SF_o$$
,
 $ILCR_{dermal} = ADD_{dermal} \times SF_{ABS}$.

Фактор риска при поступлении через кожный покров SF_{ABS} для As, Cr, Pb [28, 30] рассчитывался аналогично RfD_{ABS} :

$$SF_{ABS} = SF_o/ABS_G$$

где SF_o — фактор риска (Slope Factor) (мг/кг·день) при пероральном поступлении, равный 0,5 мг/кг·сут. для Сг, 0,0085 для Рв. Для As SF_o =1,5 и SF_{ABS} =3,66. Эти значения SF_o рекомендованы в [33].


Показатели $ILCR_i$ имеют пять уровней [24, 26]: очень низкий ($<10^{-6}$), низкий ($10^{-6}-10^{-5}$), средний ($10^{-5}-10^{-4}$), высокий ($10^{-4}-10^{-3}$), очень высокий ($>10^{-3}$).

Основные источники поллютантов и их вклад в загрязнение верхних горизонтов почв и фракции PM_{10} определены путем анализа главных компонент (principal component analysis, PCA) в пакете STATISTICA 12.0. Данный метод позволяет выделить обобщенные факторы, что облегчает анализ причинно-следственных связей путем свертки массивов многомерных данных в несколько линейных комбинаций главных компонент. Почвенногеохимические карты составлены в пакете ArcGis 10.1 методом интерполяции сплайн.

Результаты и обсуждение

Источники техногенного загрязнения почв. Основными источниками иммиссии ТММ в почвенный покров Северобайкальска являются предприятия топливно-энергетического комплекса, железнодорожный и автомобильный транспорт, складирование и сжигание коммунально-бытовых отходов. Выбросы загрязняющих веществ в атмосферу Северобайкальска от стационарных источников в 2019 г. составили 0,314 тыс. т [36].

В качестве топлива для Центральной ТЭЦ и котельных Северобайкальска используют бурые угли Канско-Ачинского бассейна, их зольность составляет 6-12 %, теплотворная способность 2800-3800 ккал/кг. Результаты химического анализа Канско-Ачинских углей показали, что они обогащены лишь Sr_{3.1} (нижний индекс – значение ККу), обладающим высокой углефильностью; содержание остальных ТММ ниже кларковых значений (рис. 2). По сравнению со среднемировыми значениями зола Центральной ТЭЦ обеднена ТММ, лишь для Ni КК3=1,0. Наибольшие коэффициенты выноса в атмосферу установлены для Рb (Катм=16) и Вi (15). В углях с содержанием Рь, близким к кларковым значениям, преобладает органическая форма поллютанта, которая при сгорании полностью испаряется и выбрасывается с дымовыми газами [24]. Минимальный коэффициент Катм=1,9 отмечен у As, что может быть обусловлено нахождением As в Канско-Ачинских углях преимущественно в силикатной форме, в результате чего поллютант задерживается в шлаке [24].

Рис. 2. Кларки концентрации углей и золы Центральной ТЭЦ г. Северобайкальска относительно среднемировых данных [23]

Fig. 2. Concentration clarkes of coal and ash from the Central TPP of Severobaikalsk relative to the world average data [23]

Железнодорожная инфраструктура включает участок БАМ, железнодорожную станцию Северобайкальск, локомотивное депо, дистанцию электроснабжения, которая обеспечивает техническое обслуживание контактной сети и тяговых подстанций, а также площадки разгрузки и хранения угля. Загрязняющие вещества, среди которых пыль, сажа, углеводороды, СІ и ТММ (Ni, Cr, Cu, Cd, Pb, Sb, Zn), попадают в почву с выхлопными газами двигателей тепловозов, со сточными водами при обслуживании железнодорожных составов, при торможении подвижных составов в результате изнашивания бандажа колес при трении о рельс и истирании тормозных колодок [37, 38].

Воздействие автотранспорта обусловлено эмиссией выхлопных газов и моторного масла, содержащих Pb, Cu, Sr, Fe, Mg, Zn, истиранием шин (Cd, Mn, Zn, Pb, Cr, Cu, Sb), износом тормозных колодок (Cu, Sb, Zn, Pb) и абразией дорожного покрытия (Ag, Zn, As, W, Cr, V, Co) [39]. Источниками загрязнения почв Zn, Cu, Sn, Ag, Pb Cr также являются свалки и сжигание бытовых и промышленных отходов с полиэлементным составом загрязнителей [40, 41].

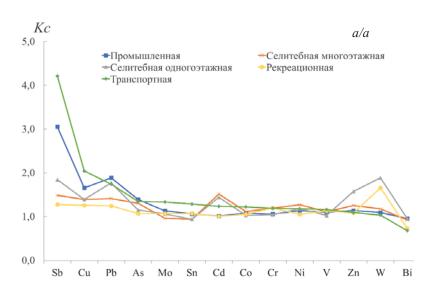
На северо-востоке города расположена нефтебаза, где выполняются слив, хранение и отгрузка нефтепродуктов в грузовики-цистерны. В процессе эксплуатации металлических изделий и резиновых шлангов с аварийными разливами нефтепродуктов и отработанных моторных масел в окружающую среду поступают Рb, Cu, Zn, Mn, Cr, Ni, ПАУ [42]. В Северобайкальске функционируют предприятия металло- и деревообработки, строительных материалов (производство бетона), пищевой и текстильной промышленности, хотя расположение города в Центральной экологической зоне Байкальской природной территории должно являться очевидным препятствием для размещения ряда производств.

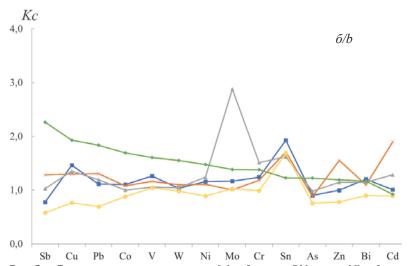
Уровни содержания ТММ в фоновых и городских почвах и их фракции PM_{10} . В районе г. Северобайкальска верхние горизонты фоновых почв обогащены верхней части относительно земной $As_{3,2}Cd_{2,2}Zn_{1,4}Bi_{1,3}Pb_{1,2}$ (нижний индекс – величина KK) и обеднены $\mathrm{Sb^{2,7}W^{1,8}Ni^{1,6}Mo^{1,6}Cu^{1,5}Cr^{1,4}V^{1,3}}$ (верхний индекс – величина КР). В частицах РМ₁₀ накапливаются $Cd_{2,7}Pb_{1,8}Zn_{1,6}$, рассеиваются $V^{2,4}W^{2,3}Bi^{2,1}Cr^{1,9}As^{1,8}Mo^{1,7}Ni^{1,7}Sb^{1,5}Co^{1,5}$. По сравнению с региональными кларками фоновые почвы отличаются повышенным содержанием $Cd_{2,0}Cr_{1,6}Ni_{1,6}Zn_{1,5}Co_{1,5}V_{1,3}Cu_{1,2}$, фракция PM_{10} обогащена $Cd_{2,4}Cu_{1,8}Zn_{1,7}Pb_{1,6}$ $As_{1,6}Ni_{1,5}Cr_{1,2}$, концентрации остальных ТММ ниже регионального фона.

В верхних горизонтах почв Северобайкальска концентрации большинства изучаемых ТММ близки к фоновым, для V, Co, Cr, Ni, Mo, Sn, Zn, As, Cd средние значения Кс составляют 1,1-1,2. Максимально относительно местного фона накапливаются $Sb_{2,4}Cu_{1,6}Pb_{1,6}W_{1,4}$ (нижний индекс – величина Кс), Ві рассеивается. Более интенсивная аккумуляция во фракции РМ₁₀ по сравнению с почвами в целом характерна для Mo, Sn, Cr, Ni, Cu, Co и Ві. Наибольшее превышение над фоном установлено для $Sn_{1.7}Mo_{1.5}Cu_{1.4}Cr_{1.3}$, концентрации остальных ТММ близки к фоновым (Kc=1,0-1,2), As во фракции PM_{10} рассеивается. Накопление Sb в почвах Северобайкальска может быть обусловлено выбросами железнодорожного и автомобильного транспорта [7, 43], а также осаждением золы-уноса [5, 44]. Молибден и Си поступают в почву при сжигании угля в котельных [45, 46], а также при обработке черных и цветных металлов [47-49].

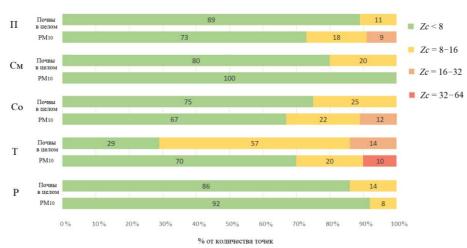
Таблица 2. Среднее содержание ТММ (Сі) в почвах в целом и их фракции РМ₁0 в Северобайкальске по сравнению с фоновыми почвами (Сф) (в скобках указаны пределы колебаний)

Table 2. Average content of HMMs (Ci) in the soils and their PM₁₀ fraction in Severobaikalsk compared to the background soils (Cφ) (limits of fluctuations are indicated in parentheses)


Элемент	Фракция PM PM ₁₀ frac		IВ	Почвы в целом/Soils			
Element	Ci	Сф		Ci	Сф	17	
	мг/кг/mg/l	κg	Kc	мг/кг/mg/	kg	Kc	
Sn	3,9 (1,5-12)	2,4	1,7	3,5 (0,1-8,9)	3,2	1,1	
Mo	0,9 (0,4-8,2)	0,6	1,5	0,7 (0,4-1,3)	0,7	1,1	
Cu	38 (8,8-90)	27	1,4	28 (12-64)	18	1,6	
Cr	63 (28-208)	49	1,3	71 (24–169)	62	1,1	
V	54 (10-99)	44	1,2	88 (50-141)	80	1,1	
Pb	38 (13-168)	31	1,2	34 (0,1-101)	21	1,6	
Ni	34 (10-62)	29	1,2	37 (21-59)	32	1,1	
Cd	0,3(0,1-0,9)	0,2	1,2	0,3 (0,2-1,0)	0,2	1,2	
Со	12 (2,6-34)	10	1,1	16 (9,5-35)	15	1,1	
Sb	0,6(0,1-3,2)	0,6	1,1	0,9 (0,1-7,6)	0,3	2,4	
W	1,2 (0,2-2,4)	0,9	1,1	1,1 (0,1-10)	1,1	1,4	
Bi	0,2 (0,1-0,5)	0,1	1,1	0,2 (0,1-0,6)	0,3	0,8	
Zn	129 (39-250)	117	1,1	125 (69-593)	103	1,2	
As	2,9 (1,0-6,8)	3,1	0,9	2,1 (0,1-5,1)	1,7	1,2	


В гранулометрическом составе почв Северобай-кальска на фракцию PM_{10} приходится от 10 до 32 %, со средним 21 %. Результаты свидетельствуют о том, что в валовом содержании поллютантов доля связанных с частицами PM_{10} не превышает 50 %. На фракцию PM_{10} почв в среднем приходится 48 % Pb, 37–39 % As и Sn, 22–26 % Cu, Sb, Mo, Zn и Cd. Доли Ni, Cr и W составляют 19, 17 и 18 % соответственно, Ві и Co – 15 %. Наименьший вклад фракции PM_{10} установлена для V – 13 % (рис. 3). При том что фракция физической глины составляет в среднем 21 %, она аккумулирует значительную часть пула загрязняющих веществ в почвах.

Наиболее загрязнены ТММ почвы промышленной и транспортной зон (рис. 3, а). Приоритетными поллютантами являются Sb_{4.2}Cu_{2.0}Pb_{1.9}. Сурьма содержится в тормозной смазке автомобилей в виде сульфида Sb₂S₃ и поступает при истирании металлических частей автотранспорта [39, 43], при торможении и истирании рельс и ходовой части подвижного состава [38]. Накопление Рb в промышленной зоне связано с деятельностью станций технического обслуживания автомобилей и перера-[47–50]. боткой металлолома Аккумуляция Cd_{1.5}Sb_{1.5} в почвах селитебной многоэтажной подзоны вызвана истиранием шин и асфальтового покрытия, а также утечками моторного масла [43]. Наименьшее загрязнение свойственно почвам рекреационной зоны, где накапливается лишь W_{1.7}.


Фракция PM_{10} почв Северобайкальска наиболее загрязнена в транспортной зоне, где интенсивно аккумулируются $Sb_{2,3}Cu_{1,9}Pb_{1,8}Co_{1,7}V_{1,6}W_{1,6}Ni_{1,5}$, содержащиеся в выбросах предприятий железнодорожного транспорта, включая обслуживание железнодорожных составов и разгрузку угля для котельных (рис. 3, δ). Эти поллютанты поступают также при истирании асфальтового покрытия, шин и тормозных колодок автотранспорта [39]. В рекреационной зоне фракция PM_{10} почв незначительно обогащена $W_{1,7}$.

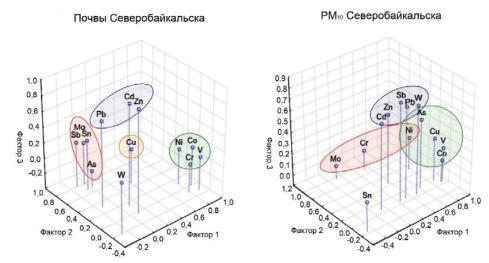
Оценка суммарного загрязнения почв. Средний суммарный показатель загрязнения почв в целом и фракции PM_{10} составил Zc=6, что соответствует низкому уровню загрязнения. Большая часть городских почв и фракции РМ₁₀ (78 и 72 % соответственно) характеризуется минимальным уровнем загрязнения (Zc < 8), это почти вся рекреационная и селитебная многоэтажная зоны и часть селитебной одноэтажной и промышленной зон. Низкий уровень загрязнения (Zc < 8-16) установлен на 15 % территории для почв в целом и на 22 % для фракции РМ10, это преобладающая часть транспортной зоны. Среднее загрязнение почв (Zc=16-32) выявлено на 4 %, а фракции РМ₁₀ – на 6 % территории. Лишь 3 % территории города характеризуются высоким уровнем загрязнения (Zc>32) почв, для частиц PM_{10} высокий уровень загрязнения не выявлен (рис. 4).

Puc. 3. Геохимические спектры почв (а) и фракции РМ₁0 почв (б) в функциональных зонах Северобайкальска **Fig. 3.** Geochemical spectra of soils (a) and PM₁0 fraction of soils (b) in the land-use zones of Severobaikalsk

Рис. 4. Уровни суммарного загрязнения ТММ почв в целом и фракции РМ₁₀ в функциональных зонах Северобайкальска: П – промышленной; См – селитебной многоэтажной; Со – селитебной одноэтажной; Т – транспортной; Р – рекреационной

Fig. 4. Levels of total contamination with HMMs of soils and their PM_{10} fraction in the land-use zones of Severobaikalsk: Π – industrial; CM – residential multi-store; Co – residential one-store; T – transport; P – recreational

Средние значения показателя Zc загрязнения ТММ почв в целом уменьшаются в ряду функциональных зон: транспортная (Zc=8,5)>селитебная одноэтажная (6,6)> промышленная (6,3)>селитебная многоэтажная (4,4)>рекреационная (3,8). Для фракции PM_{10} почв контрастность значений показателя Zc увеличивается в ряду: транспортная зона (9,3)>селитебная одноэтажная (7,2)>селитебная многоэтажная (5,6)>промышленная (4,9)>рекреационная (3,2). Сравнение этих рядов говорит о том, что основная часть ТММ в промышленных выбросах содержится в более крупных частицах, чем PM_{10} .


В верхних горизонтах почв сформировались две техногенные геохимические аномалии, одна со средним и одна с высоким уровнем загрязнения. Наибольшая по площади полиэлементная аномалия с Zc=18-22 расположена на юго-западе Северобайкальска, в промышленной и селитебной одноэтажных зонах. Накопление Sb₁₅Zn_{5.8}Pb_{4.9}Cd_{4.3}As_{3.1}Bi_{2.1} связано с выбросами железнодорожного и автомобильного транспорта, летучей золы и с воздействием коммунального-бытового мусора. Наиболее высокое значение суммарного показателя загрязнения почв Zc=35 установлено в транспортной зоне вблилокомотивного депо, аккумуляция $Sb_{27}Cu_{3,5}Sn_{2,7}Pb_{2,6}Co_{2,4}$ обусловлена сгоранием топлива в подвижных составах, истиранием тормозных колодок, рельсов, а также пылением перевозимых грузов. Поллютанты также попадают в почву со сточными водами при мойке и обслуживании железнодорожных составов в депо.

Геохимические аномалии, сформировавшиеся во фракции PM_{10} почв Северобайкальска, имеют меньшую контрастность и иную локализацию. Полиэлементная техногенная аномалия с Zc=18 установлена на востоке города в транспортной зоне, где аккумуляция $Pb_{5,3}Sb_{3,7}W_{2,7}Cu_{2,6}Ni_{2,1}V_{2,0}$ связана

преимущественно с выбросами золы-уноса Центральной ТЭЦ, транспортировкой и разгрузкой угля, ТММ также поступают с выхлопами двигателей тепловозов и при обслуживании и ремонте путей. Максимальный уровень загрязнения фракции PM_{10} почв с Zc=20 обнаружен в частном секторе на ул. Рабочая, где накопление $Mo_{13}Cr_{4,3}Ni_{2,1}$ обусловлено влиянием стихийной свалки коммунально-бытовых отходов и воздействием автомобильного транспорта.

Вклад природных и антропогенных источников в загрязнение городских почв. С помощью метода главных компонент (PCA) были определены основные источники ТММ в верхних горизонтах почв и фракции PM_{10} Северобайкальска. При интерпретации факторов использовались геохимические профили наиболее характерных источников тех или иных поллютантов, описанные в [10, 51–54].

Для почвенного покрова Северобайкальска выявлено четыре основных фактора, объясняющих в сумме 68 % общей дисперсии ТММ (рис. 5). На первый фактор (РСІ) приходится около 24 % общей дисперсии, он включает As, Sb и Mo c факторными нагрузками 0,72-0,80. Корреляционные связи между элементами этой группы невысокие -0,36-0,52. Вероятно, эти ТММ поступают из нескольких источников. Влияние данного фактора проявляется вблизи Центральной ТЭЦ, кроме того, источником Sb и Mo (r=0,52) являются контейнерная станция и локомотивное депо, где проводится ремонт и обслуживание подвижных составов. Второй фактор (РС2) объясняет 22 % общей дисперсии и связан с накоплением Co, Ni, V и Cr, факторные нагрузки равны 0,80-0,88. РС2 отражает вклад природных (литогенных) и техногенных источников сжигания угля при печном отоплении частных домов и выбросов железнодорожного транспорта.

Puc. 5. Графики факторных нагрузок для концентраций ТММ в почвах и фракции РМ₁₀ Северобайкальска **Fig. 5.** Plots of factor loadings for HMMs concentrations in soils and PM₁₀ fraction in Severobaikalsk

Третий фактор (РС3) объясняет 13 % общей дисперсии, он связан с выбросами автотранспорта. Для Pb, Cd и Zn факторные нагрузки составляют 0,72-0,92, коэффициент корреляции между концентрациями Cd-Zn r=0,87, для Pb-Cd и Pb-Zn он ниже - r=0,50-0,54. Кадмий и Zn поступают, в первую очередь, с невыхлопными выбросами транспортных средств, к которым относится истирание тормозных колодок и шин. Для ускорения процесса вулканизации шин используют оксиды Pb, Mg, Zn, кроме того, Zn содержится в шинах в виде неорганических (ZnS и ZnO) и органических соединений (стеарат цинка) и составляет 0,4-4,3 % протекторов шин [51]. Источником Рb, помимо изнашиваемых деталей автотранспорта, могут являться выхлопы двигателей, работающих на этилированном бензине до введения запрета на его использование. Четвертый фактор (РС4) связан с накоплением Си, на этот фактор приходится 9 % общей дисперсии. Вероятным источником Си является эксплуатация железной дороги.

Во фракции PM_{10} почв Северобайкальска можно выделить три фактора, на которые приходится в сумме 75 % общей дисперсии (рис. 5). *Первый фактор (PC1)* объясняет 48 % дисперсии и накопление As, Co, Ni, Cu, V с факторными нагрузками 0,62–0,92. Помимо литогенного фактора, поступление Ni и V (r=0,81) может быть вызвано влиянием расположенной на востоке Северобайкальска нефтебазы: по данным [55], для предприятий нефтехимической промышленности характерны выбросы Ni, V, Hg, Cd, Cu. Источниками As, Co и Cu (r=0,54–0,88) могут быть дымовые выбросы Центральной ТЭЦ, а также предприятия автосервиса и металлообработки.

На второй фактор (РС2) приходится 15 % общей дисперсии, он связан с накоплением Мо, Ni и Cr (r=0,46–0,88), которые поступают из природных и природно-техногенных источников – с продуктами разрушения строительных материалов. Третий фактор (РС3) составляет 12 % общей дисперсии и характеризует влияние выбросов автомобильного транспорта. Источниками Pb, W, Sb, Cd, Zn служат изношенные металлические детали автомобилей, шины, дорожное полотно и дорожная разметка, а также выхлопы двигателей.

Оценка риска для здоровья. В Северобайкальске в почвах в целом не обнаружено превышения содержания ТММ над гигиеническими нормативами. Во фракции PM_{10} городских почв экологическую опасность представляют лишь Pb и Zn, нормативы которых превышены на 5 и 8 % территории промышленной и транспортной зон. Более детальную оценку экологической опасности TMM в почвах дает модель, которая учитывает все основные пути поступления в организм человека загрязненных частиц.

Оценка неканцерогенного риска. Для оценки вклада природной и антропогенной составляющих неканцерогенного воздействия исследуемых элементов была рассчитана среднесуточная потенциальная доза ТММ (ADD) — это количество химического вещества, которое проглатывается или находится в соприкосновении с кожей, усредненное с учетом массы тела и времени воздействия. Неканцерогенный эффект характеризует возрастание вероятности развития заболеваний различной природы, за исключением злокачественных новообразований [28–30].

Для фоновых почв г. Северобайкальска значения показателя ADD_{ingest} уменьшаются в ряду:

Zn>V>Cr>Ni>Pb>Cu>Co>Sn>As>W>Mo>Sb>Cd>Bi.

Значения этих параметров сильно различаются для разных элементов — от $3.1\cdot10^{-7}$ для Ві до $1.4\cdot10^{-4}$ мг/кг сутки для Zn. Средние значения ADD_{dermal} ниже и уменьшаются в ряду

Zn>V>Cr>As>Ni>Pb>Cu>Co>Sn>W>Mo>Sb>Bi>Cd,

для Cd значение ADD_{dermal} составляет $1,3\cdot 10^{-9}$ мг/кг сутки, для $Zn-5,6\cdot 10^{-7}$ мг/кг сутки. Таким образом, бо́льшее количество поллютантов попадают в организм жителя г. Северобайкальска через проглатывание, чем через контакт с кожей.

Антропогенная деятельность и связанная с ней аккумуляция поллютантов в почвенном покрове г. Северобайкальска привела к увеличению в 1,1–2,5 раза потенциального среднесуточного потребления ТММ с загрязненными почвами за счет проглатывания и контакта с кожным покровом. Расчеты показали, что дети поглощают в 8,5–9,6 раз больше ТММ с частицами почвы, чем взрослые, при кожном контакте их количество возрастает в 6,3–92 раза, максимальное значение установлено для Ві.

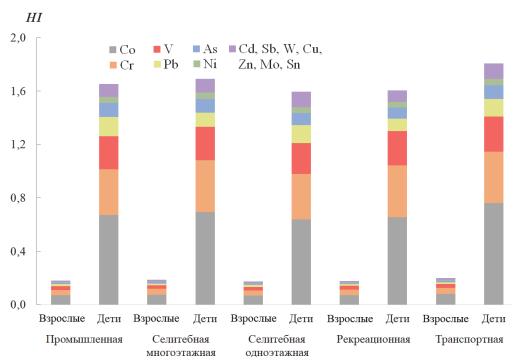
Наиболее высокие значения ADD_{ingest} и ADD_{dermal} для V, Co, Cu, Mo, Sn и Sb для взрослого населения и детей выявлены в транспортной функциональной зоне, в связи с этим наибольшее среднесуточное потребление этих TMM будет наблюдаться у работников железнодорожного транспорта, постоянно присутствующих на данной территории. Максимальные значения потенциальной суточной дозы при проглатывании и кожном контакте для As, Pb и Bi установлены в промышленной зоне, Ni, Cd — в селитебной многоэтажной, Zn, W — в селитебной одноэтажной, Cr — в рекреационной (табл. 3).

Значения коэффициентов опасности HQ_{ingest} и HQ_{dermal} , которые количественно характеризуют неканцерогенный риск всех исследуемых ТММ, для взрослого населения не превышали допустимого уровня 0,1, что свидетельствует об отсутствии риска развития неканцерогенных эффектов. Потенциальный неканцерогенный риск для здоровья детей оказался выше.

Таблица 3. Среднесуточная доза при проглатывании и кожном контакте с почвой для взрослых и детей, исходя из суммарных концентраций ТММ в различных функциональных зонах г. Северобайкальска

Table 3. Average daily dose by ingestion and skin contact with soil for adults and children, based on the total concentrations of HMMs in various land-use areas of Severobaikalsk

Функциональная зона/Land-use area											
Элемент								IODMIIO.			
Element			Селитеоная многоэтажная Residential multi-store		Residential one-store		Рекреационная Recreational		Транспортная Transport		
Element	ADD _{ingest} ADD _{dermal}		ADD _{ingest} ADD _{dermal}		ADD _{ingest} ADD _{dermal}		ADD _{ingest} ADD _{dermal}		ADD _{ingest} ADD _{dermal}		
	ADDingest	ADDdermal	ADDingest			ADDdermal	ADDingest	ADD dermal	ADD ingest	ADDdermal	
Взрослые/Adults V 1200 4.8 1212 4.8 1121 4.5 1234 4.9 1266 5.1											
Cr	910	3,6	1025	4,1	897	3,6	1028	4,01	1021	4,1	
Со	220	0,86	222	0,9	205	0,82	210	0,8	244	0,97	
Ni	500	2,0	559	2,2	519	2,1	463	1,8	519	2,1	
Cu	410	1,6	342	1,4	342	1,4	309	1,2	501	2,1	
Zn	1600	6,4	1770	7,1	2221	8,9	1531	6,1	1540	6,1	
As	32	3,8	29	3,5	26	3,1	24	2,9	31	3,7	
Mo	11	0,041	8,5	0,034	9,5	0,038	9,5	0,038	12	3,7	
Cd	3,2	0,013	4,8	0,019	4,6	0,018	3,2	0,13	3,9	0,016	
Sn	47	0,19	41	0,17	42	0,160	47	0,13	57	0,23	
Sb	12	0.047	5,7	0,022	7,1	0,028	4,9	0,019	16	0,064	
W	17	0,067	18	0,072	28	0,12	25	0,1	16	0,063	
Pb	540	2,1	402	1,6	504	2	354	1,4	496	2	
Bi	3,5	0,014	3,3	0,013	3,5	0,014	2,6	0,011	2,5	0,0098	
HI		182		186		175		177		199	
Дети/Children											
V	11165	31	11315	32	10463	29	11518	32	11815	33	
Cr	8470	24	9563	27	8369	23	9590	26	9530	27	
Со	2006	5,6	2076	5,8	1914	5,4	1961	5,5	2277	6,4	
Ni	4666	13	5219	15	4844	14	4326	12	4847	14	
Cu	3797	11	3189	8,9	3192	8,9	2883	8,1	4681	13	
Zn	14986	42	16516	46	20729	58	14289	40	14376	40	
As	295	25	277	23	244	21	227	19	285	24	
Мо	94	0,26	79	0,223	88	0,25	89	0,25	119	0,31	
Cd	30	0,084	45	0,13	43	0,119	29	0,0838	37	0,103	
Sn	439	1,2	388	1,1	389	1,1	443	1,2	533	1,5	
Sb	109	0,3	53	0,15	66	0,184	45	0,13	150	0,421	
W	156	0,43	168	0,47	269	0,753	237	0,66	148	0,413	
Pb	5019	14	3754	11	4708	13	3308	9,3	4628	13	
Bi	32	0,09	31	0,087	32	0,0902	25	0,069	230	0,064	
HI	/			1,69		1,60		1,61		1,81	


Примечание. Представленные в таблице значения ADD_{ingest} и ADD_{dermal} умножены на 1,0*10⁷.

*Note. ADD*_{ingest} and *ADD*_{dermal} values are multiplied by 1,0*107.

Значения HQ_{ingest} для детей составили от 0,007 для Sn до 0,68 для Co, что соответствует низкому риску развития неканцерогенных эффектов. В целом потенциальный неканцерогенный риск для здоровья детей, связанный с проглатыванием наиболее опасных TMM, содержащихся в почвах, убывает в ряду: Co>Cr>V>Pb. Показатели HQ_{dermal} всех TMM для детей были ниже 0,1. Таким образом, вероятность развития у жителей г. Северобайкальска вредных эффектов при ежедневном поступлении исследуемых TMM в течение жизни несущественна, и такое воздействие характеризуется как допустимое.

Сумма индивидуальных HQ, определяющая индекс опасности HI, не превысила безопасное пороговое значение 1 во всех функциональных зонах г. Северобайкальска для взрослого населения, что подтверждает низкий потенциальный неканцеро-

генный риск попадания в организм ТММ, содержащихся в частицах почвы (табл. 3). Для детей значения индексов НІ в среднем составили 1,6, наиболее высокое значение (НІ 1,8) выявлено в транспортной функциональной зоне, что соответствует опасному риску и требует дополнительного контроля (рис. 6). Дети, по сравнению со взрослыми, значительно более подвержены воздействию ТММ в силу своих поведенческих и физиологических особенностей [56-58]. Однако стоит отметить, что постоянное присутствие детей вблизи железной дороги и сопутствующей инфраструктуры маловероятно. Наибольший вклад в НІ для взрослых и детей во всех функциональных зонах г. Северобайкальска вносят Со, Сr, V, Pb, As и Ni. Доля, приходящаяся на сумму остальных ТММ (Cd, Sb, W, Cu, Zn, Мо и Sn), составляет менее 7 %.

Рис. 6. Индекс опасности HI при проглатывании и кожном контакте с TMM, содержащихся в частицах почвы, для взрослого населения и детей г. Северобайкальска в различных функциональных зонах

Fig. 6. HI upon ingestion and skin contact with HMMs contained in soil particles for the adult population and children of Severobaikalsk in various land use areas

Оценка канцерогенного риска. Под канцерогенным эффектом понимают возникновение злокачественных новообразований при воздействии факторов окружающей среды. Известно, что канцерогенные эффекты приближаются к прямой зависимости: чем выше доза, тем сильнее эффект. Как правило, канцерогены вызывают также побочные неканцерогенные эффекты [28–30].

Канцерогенный риск $ILCR_{ingest}$ и $ILCR_{dermal}$, рассчитанный для As, Cr, Pb при поступлении поллютантов в организм взрослого человека через проглатывание и кожный контакт с частицами почвы, не превысил безопасный уровень 1·10⁻⁴ во всех функциональных зонах г. Северобайкальска. Средние значения $ILCR_{ingest}$ 6,1·10⁻⁵ и $ILCR_{dermal}$ 1,5·10⁻⁵ относятся к предельно допустимому риску, т. е. верхней границе приемлемого риска, однако данные уровни подлежат постоянному контролю. Такие значения соответствуют одному дополнительному случаю серьезного заболевания или смерти на 100 тыс. экспонированных лиц [30]. Максимальные значения $ILCR_{ingest}$ и $ILCR_{dermal}$ 1,0·10⁻⁴ и 2,9·10⁻⁵ установлены в транспортной функциональной зоне, вблизи железной дороги и в 300 м от Центральной ТЭЦ, что превышает средний уровень в 1,64 и 1,93 раза соответственно. Оценка чувствительности метода к изменению содержания ТММ в городских почвах показала, что при увеличении концентрации Ст на 50 %, а Рь и Аѕ в 3 раза канцерогенный риск,

связанный с проглатыванием загрязненных ТММ почвенных частиц, усилится до высокого уровня опасности. В этом случае среднее содержание Сг в почвах достигнет значения 92 мг/кг, Рb 101 мг/кг, Аs 8,3 мг/кг, а величина $ILCR_{ingest}-1,1\cdot10^{-4}$. Канцерогенный риск, вызванный поступлением ТММ через кожный покров $ILCR_{dermal}$, при увеличении концентраций Сг и Рb в 8 раз (до 568 и 269 мг/кг соответственно), Аs в 4 раза (до 8,2 мг/кг) составит $1,2\cdot10^{-4}$.

Средние значения показателя ILCR ingest для детей составили $5,6\cdot10^{-4}$, что относится к опасному риску, неприемлемому для населения в целом, и требует разработки и проведения плановых оздоровительных мероприятий. Максимальное значение ILCR_{ingest} для детей установлено в транспортной зоне $(6,2\cdot10^{-4})$, минимальное в селитебной одноэтажной (5,8·10⁻⁴). Оценка чувствительности метода в зависимости от концентраций ТММ в почве показала, что канцерогенный риск уменьшится до предельно допустимых значений 9,8·10⁻⁵ при уменьшении средних концентраций Cr и Pb в 6 раз, Аѕ в 5 раз, т. е. до 11,8; 5,6 и 0,4 мг/кг соответственно. Значения $ILCR_{dermal}$ для детей, так же как и для взрослого населения, находятся в диапазоне более 1.10^{-6} , но менее 1.10^{-4} и относятся к допустимому риску. Максимальное значение ILCR_{dermal} 1,9·10-4 установлено вблизи железной дороги, к северо-востоку от Центральной ТЭЦ. Наибольший

вклад в формирование канцерогенного риска для детей и взрослых, как при проглатывании, так и при кожном контакте с загрязненными частицами почвы, вносит Cr (78%), наименьший – Pb (15%).

Заключение

Основными источниками загрязнения почвенного покрова Северобайкальска являются объекты железнодорожной инфраструктуры БАМ, транспортировка, хранение и использование бурого угля в котельных и на Центральной ТЭЦ. Сжигаемые Канско-Ачинские угли обогащены по сравнению с мировыми кларками только Sr, содержание остальных ТММ, а также всех ТММ в золе Центральной ТЭЦ ниже кларковых значений. Ведущими загрязнителями почв в целом и фракции РМ₁₀ в Северобайкальске являются Sb, Cu, Pb, Mo, Cr. Наибольшее загрязнение ТММ городских почв и фракции РМ₁₀ приурочено к транспортной и промышленной зонам, в почвах в целом аккумулиру- $Sb_{4,2}Cu_{2,0}Pb_{1,9}$, во фракции $Sb_{23}Cu_{19}Pb_{18}Co_{17}V_{16}W_{16}Ni_{15}$.

В почвах Северобайкальска не обнаружено превышения содержания ТММ над гигиеническими нормативами. Во фракции PM_{10} почв наибольшую экологическую опасность представляют Pb и Zn, нормативы которых превышены на 5 и 8 % территории. Средний суммарный уровень загрязнения городских почв и фракции PM_{10} соответствует низкому, неопасному уровню (Zc=6), максимальные значения Zc=8,5 для почв в целом и Zc=9,3 для фракции PM_{10} зафиксированы в транспортной зоне.

Наибольшее влияние на микроэлементный состав городских почв и частиц PM_{10} оказывают выбросы железнодорожной инфраструктуры и сжигание угля на Центральной ТЭЦ (доля объясняемой дисперсии 24 % для почв в целом и 48 % для фрак-

ции PM_{10}), что вызывает активную аккумуляцию в почвах As, Sb, Mo, Co, Ni, Cu, V. При сжигании Канско-Ачинских углей на Центральной ТЭЦ происходит концентрирование ТММ в золе-уносе: содержание V, Mo, Co, Ni и As возрастает в 5,6–8,7 раза, а Sb и Cu — в 2,7–3,7 раза по сравнению с исходным топливом. Осаждение содержащихся в золе-уносе поллютантов приводит к дальнейшей концентрации элементов в верхних горизонтах почв, где концентрация Sb увеличивается 4,3 раза, а V, Cu — в 1,7–2,0 раза по сравнению с золой-уносом. Фракция PM_{10} почв обнаруживает еще более интенсивное относительно золы-уноса обогащение Sb (в 4,6 раза), V, As и Cu (в 1,4–3 раза).

Оценка риска для здоровья жителей Северобайкальска, связанная с загрязнением ТММ верхних горизонтов почв, показала, что поступление почвенных частиц путем проглатывания оказывает наиболее вредное воздействие как на детей, так и на взрослых. Неканцерогенный риск для детей оказался выше в 8,5-9,6 раза при проглатывании почвенных частиц и в 6,3-92 раза при кожном контакте. Суммарный неканцерогенный риск попадания в организм детей частиц почвы, загрязненных V, Cr, Co, Ni, Cu, Zn, As, Mo, Cd, Sn, Sb, W, Pb и Bi, незначительно превысил безопасный уровень 1 (от 1,60 в селитебной одноэтажной до 1,81 в транспортной зоне), для взрослого населения значения НІ были ниже допустимого порогового значения. Канцерогенный риск, связанный с попаданием в организм As, Cr и Pb через кожный покров как для детей, так и для взрослых, не превысил допустимый уровень. Поступление этих элементов перорально представляет потенциальную угрозу для здоровья детей, проживающих в г. Северобайкальске, - среднее значение $ILCR_{ingest}$ 5,6· 10^{-4} указывает на опасный риск.

СПИСОК ЛИТЕРАТУРЫ

- 1. Mechanism and health effects of heavy metal toxicity in humans / G.A. Engwa, P.U. Ferdinand, F.N. Nwalo, M.N. Unachukwu // Intechopen. 2019. Vol. 10. P. 70–90.
- 2. Water contamination by heavy metals and their toxic effect on aquaculture and human health through food Chain / S.S. Sonone, S. Jadhav, M.S. Sankhla, R. Kumar // Lett. Appl. NanoBioScience. − 2020. − Vol. 10. − № 2. − P. 2148–2166.
- 3. Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications / A. Alengebawy, S.T. Abdelkhalek, S.R. Qureshi, M.Q. Wang // Toxics. − 2021. − Vol. 9. − № 3. − P. 42–56.
- 4. Касимов Н.С. Экогеохимия ландшафтов. М.: ИП Филимонов М.В., 2013. 208 с.
- 5. Development of a soil heavy metal estimation method based on a spectral index: Combining fractional-order derivative pretreatment and the absorption mechanism / L. Chen, J. Lai, K. Tan, X. Wang, Y. Chen, J. Ding // Science of The Total Environment. 2022. Vol. 813. Article ID: 151882.
- 6. Review of soil heavy metal pollution in China: spatial distribution, primary sources, and remediation alternatives / Y. Wu, X. Li, L. Yu, T. Wang, J. Wang, T. Liu // Resources, Conservation and Recycling. 2022. Vol. 181. Article ID: 106261.
- 7. Геохимия ландшафтов Восточной Москвы / Н.С. Касимов, Д.В. Власов, Н.Е. Кошелева, Е.М. Никифорова. М.: АПР, 2016. 276 с.
- 8. Study on the risk of soil heavy metal pollution in typical developed cities in eastern China / Y. Li, Z. Dong, D. Feng, X. Zhang, Z. Jia, Q. Fan, K. Liu // Scientific reports. 2022. Vol. 12. № 1. Article ID: 3855.
- 9. Pollution characteristics, human health risk through multiple exposure pathways, and source apportionment of heavy metals in PM10 at Indo-Gangetic site / D. Sah, P.K. Verma, M.K. Kandikonda, A. Lakhani // Urban Climate. 2019. Vol. 27. P. 149–162.

- Rovira J., Domingo J.L., Schuhmacher M. Air quality, health impacts and burden of disease due to air pollution (PM10, PM2. 5, NO₂ and O₃): Application of AirQ+ model to the Camp de Tarragona County (Catalonia, Spain) // Science of The Total Environment. – 2020. – Vol. 703. – Article ID: 135538.
- Levels and factors of the accumulation of metals and metalloids in roadside soils, road dust, and their PM₁₀ fraction in the Western okrug of Moscow / D.V. Vlasov, O.V. Kukushkina, N.E. Kosheleva, N.S. Kasimov // Eurasian Soil Science. – 2022. – Vol. 55 (5). – P. 556–572.
- 12. Source apportionment and risk estimation of heavy metals in PM10 at a Southern Vietnam megacity / M.T. Truong, L.S.P. Nguyen, T.T. Hien, T.D.H. Pham, T.T.L. Do // Aerosol and Air Quality Research. 2022. Vol. 22 (8). Article ID: 220094.
- 13. Убугунов В.Л., Кашин В.К. Тяжелые металлы в садово-огородных почвах и растениях г. Улан-Удэ. Улан-Удэ: БНЦ CO РАН, 2004. 128 с.
- 14. Корляков И.Д., Касимов Н.С., Кошелева Н.Е. Тяжелые металлы и металлоиды в почвенном покрове города Улан-Удэ // Вестник Пермского национального исследовательского политехнического университета. Прикладная экология. Урбанистика. 2019. Т. 35. № 3. С. 120–137.
- 15. Сычева Д.Г., Кошелева Н.Е., Тимофеев И.В. Загрязнение почвенного покрова соединениями металлов, мышьяка и сурьмы в районе воздействия предприятия топливно-энергетического комплекса // Теоретическая и прикладная экология. 2022. № 2. С. 48–55.
- 16. Сычева Д.Г., Кошелева Н.Е. Эколого-геохимическое состояние почвенного покрова г. Гусиноозерска в зоне влияния угольной ГРЭС // Почвоведение. 2023. № 8. С. 953–969.
- 17. Кошелева Н.Е., Никифорова Е.М., Тимофеев И.В. Загрязнение тяжелыми металлами и металлоидами и экологическое состояние почв г. Северобайкальска // Почвоведение. 2022. № 5. С. 571–585.
- 18. Рябенко В.Е., Сидоренко А.В., Флоренсов Н.А. Геология СССР. Т. 35. Бурятская АССР. Ч. 1. Геологическое описание. М.: Недра, 1964. 628 с.
- 19. Почвы водоохранной зоны озера Байкал и их использование / И.А. Белозерцева, И.Н. Владимиров, В.И. Убугунова, В.Л. Убугунов, О.А. Екимовская, А.В. Бардаш // География и природные ресурсы. 2016. № 5. С. 70–82.
- 20. Антропогенные почвы: генезис, география, рекультивация / М.И. Герасимова, М.Н. Строганова, Н.В. Можарова, Т.В. Прокофьева. Смоленск: Ойкумена, 2003. 268 с.
- 21. Экологический атлас бассейна озера Байкал / под ред. А.К. Тулохонова. Иркутск: Изд-во Института географии им. В.Б. Сочавы CO PAH, 2015. 145 с.
- 22. Биостратиграфия торфяных отложений и климат Северо-Западной части горного обрамления озера Байкал в голоцене / Е.В. Безрукова, А.В. Белов, П.П. Летунова, А.А. Абзаева, Н.В. Кулагина, Е.Э. Фишер, Л.А. Орлова, Е.В. Шейфер, В.И. Воронин // Геология и геофизика. − 2008. − Т. 49. − № 6. − С. 547−558.
- 23. Demetriades A., Birke M. Urban geochemical mapping manual: sampling, sample preparation, laboratory analysis, quality control check, statistical processing and map plotting. Brussels: EuroGeoSurveys, 2015. 162 p.
- 24. Юдович Я.Э., Кетрис М.П. Токсичные элементы-примеси в ископаемых углях. Екатеринбург: УрО РАН, 2005. 655 с.
- 25. Касимов Н.С., Власов Д.В. Кларки химических элементов как эталоны сравнения в экогеохимии // Вестник Моск. ун-та. Серия География. 2015. № 2. С. 7–17.
- 26. Белоголовов В.Ф. Геохимический атлас Улан-Удэ. Улан-Удэ: Бурят. кн. изд-во, 1989. 52 с.
- 27. СанПиН 1.2.3685-21 «Гигиенические нормативы и требования к обеспечению безопасности и (или) безвредности для человека факторов среды обитания». М.: Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека, 2021. 938 с.
- 28. US EPA. Risk assessment guidance for superfund volume I human health evaluation manual (Part A). Washington: Office of Emergency and Remedial Response, U.S. Environmental Protection Agency, 1989. 291 p.
- 29. US EPA. Supplemental guidance for developing soil screening levels for superfund sites. Washington: Office of Emergency and Remedial Response, U.S. Environmental Protection Agency, 2002. 106 p.
- 30. Р 2.1.10.1920-04. Руководство по оценке риска для здоровья населения при воздействии химических веществ, загрязняющих окружающую среду. М.: Федеральный центр Госсанэпиднадзора Минздрава России, 2004. 144 с.
- 31. Human exposure modelling for chemical risk assessment: a review of current approaches and research and policy implications / M. Fryer, C.D. Collins, H. Ferrier, R.N. Colvile, M.J. Nieuwenhuijsen // Environmental Science & Policy. 2006. Vol. 9 (3). P. 261–274.
- 32. Monte Carlo simulation-based health risk assessment of heavy metal soil pollution: a case study in the qixia mining area, China / C. Qu, K. Sun, S. Wang, L. Huang, J. Bi // Human and Ecological Risk Assessment. 2012. Vol. 18 (4). P. 733–750.
- 33. RSL (Regional Screening Level). Generic Tables. 2022. URL: https://www.epa.gov/risk/regional-screening-levels-rslsgeneric-tables-November-2022 (дата обращения 10.04.2023).
- 34. Koedrith P., Seo Y.R. Advances in carcinogenic metal toxicity and potential molecular markers // Int. J. Mol. Sci. 2011. Vol. 12 (12). P. 84–95.
- 35. Association between serum heavy metals and prostate cancer risk a multiple metal analysis / J.T. Lim, Y.Q. Tan, L. Valeri, J. Lee, P.P. Geok, S.E. Chia, W.J. Seow // Environment international. 2019. Vol. 132. Article ID: 105109.
- 36. Государственный доклад «О состоянии озера Байкал и мерах по его охране в 2019 году». Иркутск: ИНЦХТ, 2020. 374 с.
- 37. Журавлева М.А., Зубрев Н.И., Кокин С.М. Загрязнение полосы отвода // Мир транспорта. 2016. № 3. С. 112–118.
- 38. Stancic Z., Fiket Z., Vuger A. Tin and antimony as soil pollutants along railway line a case study from North-Western Croatia // Environments. 2022. Vol. 9. № 1. P. 10–30.
- 39. Limbeck A., Puls C. Particulate emissions from on-road vehicles // Urban airborne particulate matter: origin, chemistry, fate and health impacts. Heidelberg: Springer-Verlag Berlin, 2011. P. 63–76.

- 40. Environmental risk assessment and factors influencing heavy metal concentrations in the soil of municipal solid waste landfills / S. Wang, Z. Han, J. Wang, X. He, Z. Zhou, X. Hu // Waste Management. 2022. Vol. 139. P. 330–340.
- 41. Wei J., Liu J. Heavy metal pollution in the soil around municipal solid waste incinerators and its health risks in China // Environmental Research. 2022. Vol. 203. Article ID: 111871.
- 42. Occurrence, origin and risk assessment of trace metals measured in petroleum tank-farm impacted soils / O.O. Emoyan, B.O. Peretiemo-Clarke, G.O. Tesi, W. Adjerese, E. Ohwo // Soil and Sediment Contamination: An International Journal. − 2021. − V. 30. − № 4. − P. 384–408.
- 43. Jeong H., Ryu J.S., Ra K. Characteristics of potentially toxic elements and multi-isotope signatures (Cu, Zn, Pb) in non-exhaust traffic emission sources // Environmental Pollution. 2022. Vol. 292. Article ID: 118339.
- 44. Emission and transformation behavior of minerals and hazardous trace elements (HTEs) during coal combustion in a circulating fluidized bed boiler / B. Fu, G. Liu, M. Sun, J.C. Hower, M.M. Mian, D. Wu, G. Hu // Environmental Pollution. 2018. Vol. 242. P. 1950–1960.
- 45. Characteristics and speciation of heavy metals in fly ash and FGD gypsum from Chinese coal-fired power plants / B. Fu, G. Liu, M.M. Mian, M. Sun, D. Wu // Fuel. 2019. Vol. 251. P. 593–602.
- 46. Mor S., Vig N., Ravindra K. Distribution of heavy metals in surface soil near a coal power production unit: Potential risk to ecology and human health // Environmental Monitoring and Assessment. − 2022. − Vol. 194. − № 4. − P. 263–275.
- 47. Efunwole H.O., Raimi A.M., Orisadare O.A. Analysis of heavy metals in soils around a scrap metal recycling company in Ile-Ife, Osun State, Southwestern Nigeria // Fountain Journal of Natural and Applied Sciences. − 2020. − Vol. 9. − № 2. − P. 1−9.
- 48. Scrap metal deposits as potential sources of enhanced risk in soil and vegetation / K. Tumova, J. Szakova, J. Najmanova, P. Tlustos // Polish J Environ Stud. 2020. Vol. 29. P. 841–852.
- 49. Orisadare O., Efunwole H., Raimi M. Analysis of heavy metals in soils around a scrap metal recycling company in Ile-Ife, Osun State, Southwestern Nigeria // Fountain Journal of Natural and Applied Sciences. − 2020. − Vol. 9. − № 2. − P. 12−24.
- 50. Health risk assessment of heavy metals in soil around metal scrap recycling areas during wet and dry seasons in Ogijo, Ogun State, SW Nigeria / K. Onanuga, O.N. Maitera, C. Milam, H.M. Olajire, V.N. Daniel // International Research Journal of Pure and Applied Chemistry. − 2023. − Vol. 24. − № 2. − P. 35–48.
- 51. Ghosh S.P., Maiti S.K. Evaluation of heavy metal contamination in roadside deposited sediments and road surface runoff: a case study // Environmental earth sciences. 2018. Vol. 77 (7). P. 1–13.
- 52. Assessment of the enrichment of heavy metals in coal and its combustion residues / A. Altikulac, S. Turhan, A. Kurnaz, E.Goren, C. Duran, A. Hançerliogullari, F.A. Ugur // ACS Omega. 2022. № 7 (24). Article ID: 21239.
- 53. Identifying sources and transport routes of heavy metals in soil with different land uses around a smelting site by GIS based PCA and PMF / R. Anaman, C. Peng, Z. Jiang, X. Liu, Z. Zhou, Z. Guo, X. Xiao // Science of The Total Environment. 2022. Vol. 823. Article ID: 153759.
- 54. Characteristics of real-world non-exhaust particulates from vehicles / S. Mun, H. Chong, J. Lee, Y. Lim // Energies. 2022. Vol. 16. № 1. P. 177–194.
- 55. Геохимия окружающей среды / Ю.Е. Сает, Б.А. Ревич, Е.П. Янин, Р.С Смирнова., Е.Л. Башаркевич, Т.Л. Онищенко, Л.Н. Павлова, Н.Я. Трефилова, А.И. Ачкасов, С.Ш. Саркисян. М.: Недра, 1990. 335 с.
- 56. Gabarron M., Faz A., Acosta J.A. Soil or dust for health risk assessment studies in Urban environment // Archives of Environmental Contamination and Toxicology. 2017. Vol. 73 (3). P. 442–455.
- 57. Potentially toxic elements in urban topsoils and health risk assessment for the mining W-Mo center in the Baikal region / I. Timofeev, N. Shartova, N. Kosheleva, N. Kasimov // Environmental geochemistry and health. 2020. Vol. 42. P. 221–240.
- 58. Pollution characteristics, sources, and health risk assessment of human exposure to Cu, Zn, Cd and Pb pollution in urban street dust across China between 2009 and 2018 / S. Hou, N. Zheng, L. Tang, X. Ji, Y. Li, X. Hua // Environment International. 2019. Vol. 128. P. 430–437.

Информация об авторах

Дарья Геннадьевна Сычева, аспирант кафедры геохимии ландшафтов и географии почв МГУ имени М.В. Ломоносова, Россия, 119991, г. Москва, ул. Ленинские горы, 1. l.msu@yandex.ru; http://orcid.org/0000-0001-8952-5820

Наталья Евгеньевна Кошелева, доктор географических наук, профессор кафедры геохимии ландшафтов и географии почв МГУ имени М.В. Ломоносова, Россия, 119991, г. Москва, ул. Ленинские горы, 1. natalk@mail.ru; http://orcid.org/0000-0002-7107-5718

Поступила в редакцию: 24.05.2023

Поступила после рецензирования: 14.06.2023

Принята к публикации: 21.02.2024

REFERENCES

- 1. Engwa G.A., Ferdinand P.U., Nwalo F.N., Unachukwu M.N. Mechanism and health effects of heavy metal toxicity in humans. *Intechopen*, 2019, vol. 10, pp. 70–90.
- 2. Sonone S.S., Jadhav S., Sankhla M.S., Kumar R. Water contamination by heavy metals and their toxic effect on aquaculture and human health through food Chain. *Lett. Appl. NanoBioScience*, 2020, vol. 10, no. 2, pp. 2148–2166.
- 3. Alengebawy A., Abdelkhalek S.T., Qureshi S.R., Wang, M.Q. Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. *Toxics*, 2021, vol. 9, no. 3, pp. 42–56.
- 4. Kasimov N.S. Ecogeochemistry of landscapes. Moscow, IP Filimonov M.V. Publ., 2013. 208 p. (In Russ.)

- 5. Chen L., Lai J., Tan K., Wang X., Chen Y., Ding J. Development of a soil heavy metal estimation method based on a spectral index: Combining fractional-order derivative pretreatment and the absorption mechanism. *Science of The Total Environment*, 2022, vol. 813, Article ID: 151882.
- 6. Wu Y., Li X., Yu L., Wang T., Wang J., Liu T. Review of soil heavy metal pollution in China: spatial distribution, primary sources, and remediation alternatives. *Resources, Conservation and Recycling*, 2022. vol. 181, Article ID: 106261.
- Kasimov N.S., Vlasov D.V., Kosheleva N.E., Nikiforova E.M. Geochemistry of landscapes of Eastern Moscow. Moscow, APR Publ., 2016. 276 p. (In Russ.)
- 8. Li Y., Dong Z., Feng D., Zhang X., Jia Z., Fan Q., Liu K. Study on the risk of soil heavy metal pollution in typical developed cities in eastern China. *Scientific reports*, 2022, vol. 12, no. 1, Article ID: 3855.
- 9. Sah D., Verma P.K., Kandikonda M.K., Lakhani A. Pollution characteristics, human health risk through multiple exposure pathways, and source apportionment of heavy metals in PM10 at Indo-Gangetic site. *Urban Climate*, 2019, vol. 27, pp. 149–162.
- 10. Rovira J., Domingo J.L., Schuhmacher M. Air quality, health impacts and burden of disease due to air pollution (PM10, PM2. 5, NO2 and O3): application of AirQ+ model to the Camp de Tarragona County (Catalonia, Spain). Science of The Total Environment, 2020, vol. 703, Article ID: 135538.
- 11. Vlasov D.V., Kukushkina O.V., Kosheleva N.E., Kasimov N.S. Levels and factors of the accumulation of metals and metalloids in roadside soils, road dust, and their PM10 fraction in the Western Okrug of Moscow. *Eurasian Soil Science*, 2022, vol. 55 (5), pp. 556–572.
- 12. Truong M.T., Nguyen L.S.P., Hien T.T., Pham T.D.H., Do T.T.L. Source apportionment and risk estimation of heavy metals in PM10 at a Southern Vietnam megacity. *Aerosol and Air Quality Research*, 2022, vol. 22 (8), Article ID: 220094.
- 13. Ubugunov V.L., Kashin V.K. *Heavy metals in horticultural soils and plants in Ulan-Ude*. Ulan-Ude, BNTS SO RAN Publ., 2004. 128 p. (In Russ.)
- 14. Korlyakov I.D., Kasimov N.S., Kosheleva N.E. Heavy metals and metalloids in the soil cover of the city of Ulan-Ude. *Bulletin of the Perm National Research Polytechnic University*. *Applied Ecology*. *Urbanistics*, 2019. vol. 35, no. 3, pp. 120–137. (In Russ.)
- 15. Sycheva D.G., Kosheleva N.E., Timofeev I.V. Pollution of the soil cover with compounds of metals, arsenic and antimony in the area of influence of the fuel and energy complex enterprise. *Theoretical and applied ecology*, 2022, no. 2, pp. 48–55. (In Russ.)
- 16. Sycheva D.G., Kosheleva N.E. Ecological and geochemical state of the soil cover of the city of Gusinoozersk in the zone of influence of the coal-fired power plant. *Eurasian Soil Sci*, 2022, no. 5, pp. 571–585. (In Russ.)
- 17. Kosheleva N.E., Nikiforova E.M., Timofeev I.V. Pollution with heavy metals and metalloids and the ecological state of soils in Severobaikalsk. *Eurasian Soil Sci*, 2022, no. 5, *pp*. 571–585. (In Russ.)
- 18. Ryabenko V.E., Sidorenko A.V., Florensov N.A. Geology of the USSR. Vol. 35. Buryat ASSR. P. 1. Geological description. Moscow, Nedra Publ., 1964. 628 p. (In Russ.)
- 19. Belozertseva I.A., Vladimirov I.N., Ubugunova V.I., Ubugunov V.L., Ekimovskaya O.A., Bardash A.V. Soils of the water protection zone of Lake Baikal and their use. *Geography and natural resources*, 2016, no. 5, pp. 70–82. (In Russ.)
- 20. Gerasimova M.I., Stroganova M.N., Mozharova N.V., Prokofieva T.V. *Anthropogenic soils: genesis, geography, reclamation.* Smolensk, Oikumena Publ., 2003. 268 p. (In Russ.)
- 21. Ecological atlas of the Baikal basin. Ed. by A.K. Tulokhonov. Irkutsk, V.B. Sochavy SB RAS Publ., 2015. 145 p. (In Russ.)
- 22. Bezrukova E.V., Belov A.V., Letunova P.P., Abzaeva A.A., Kulagina N.V., Fisher E.E., Orlova L.A., Sheifer E.V., Voronin V.I. Biostratigraphy of peat deposits and climate of the North-Western part of the mountain framing of Lake Baikal in the Holocene. *Geology and Geophysics*, 2008, vol. 49, no. 6, pp. 547–558. (In Russ.)
- 23. Demetriades A., Birke M. Urban geochemical mapping manual: sampling, sample preparation, laboratory analysis, quality control check, statistical processing and map plotting. Brussels, EuroGeoSurveys, 2015. 162 p.
- 24. Yudovich Ya.E., Ketris M.P. *Toxic elements-impurities in fossil coals*. Ekaterinburg, Ural Branch of the Russian Academy of Sciences Publ., 2005. 655 p.
- 25. Kasimov N.S., Vlasov D.V. Clarks of chemical elements as comparison standards in ecogeochemistry. *Vestnik Mosk. university Series Geography*, 2015, no. 2, pp. 7–17. (In Russ).
- 26. Belogolov V.F. Geochemical Atlas of Ulan-Ude. Ulan-Ude, Buryat book publ. house, 1989. 52 p. (In Russ).
- 27. SanPiN 1.2.3685-21 Hygienic standards and requirements for ensuring the safety and (or) harmlessness of environmental factors for humans. Moscow, Federal Service for Supervision of Consumer Rights Protection and Human Welfare Publ., 2021. 938 p. (In Russ.)
- 28. US EPA. Risk assessment guidance for superfund volume I human health evaluation manual (Part A). Washington, Office of Emergency and Remedial Response, U.S. Environmental Protection Agency, 1989. 291 p.
- 29. US EPA. Supplemental guidance for developing soil screening levels for superfund sites. Washington, Office of Emergency and Remedial Response, U.S. Environmental Protection Agency, 2002. 106 p.
- 30. R 2.1.10.1920-04. Guidelines for assessing the risk to public health from exposure to chemicals that pollute the environment. Moscow, Federal Center of the State Sanitary and Epidemiological Surveillance of the Ministry of Health of Russia Publ., 2004. 144 p. (In Russ.)
- 31. Fryer M., Collins C.D., Ferrier H., Colvile R.N., Nieuwenhuijsen M.J. Human exposure modelling for chemical risk assessment: a review of current approaches and research and policy implications. *Environmental Science & Policy*, 2006, vol. 9 (3), pp. 261–274.
- 32. Qu C., Sun K., Wang S., Huang L., Bi J. Monte Carlo simulation-based health risk assessment of heavy metal soil pollution: a case study in the qixia mining area, China. *Human and Ecological Risk Assessment*, 2012, vol. 18 (4), pp. 733–750.
- 33. RSL (Regional Screening Level). Generic Tables. 2022. Available at: https://www.epa.gov/risk/regional-screening-levels-rslsgeneric-tables-November-2022 (accessed 10 April 2023).
- 34. Koedrith P., Seo Y.R. Advances in carcinogenic metal toxicity and potential molecular markers. *Int. J. Mol. Sci*, 2011, vol. 12 (12), pp. 84–95.
- 35. Lim J.T., Tan Y.Q., Valeri L., Lee J., Geok P.P., Chia S.E., Seow W.J. Association between serum heavy metals and prostate cancer risk a multiple metal analysis. *Environment international*, 2019, vol. 132, Article ID: 105109.

- 36. State report «On the state of Lake Baikal and measures for its protection in 2019». Irkutsk, INTSHT Publ., 2020. 374 p. (In Russ.)
- 37. Zhuravleva M.A., Zubrev N.I., Kokin S.M. Pollution of the right-of-way. World of Transport, 2016, no. 3, pp. 112–118. (In Russ.)
- 38. Stancic Z., Fiket Z., Vuger A. Tin and antimony as soil pollutants along railway line a case study from North-Western Croatia. *Environments*, 2022, vol. 9, no. 1, pp. 10–30.
- 39. Limbeck A., Puls C. Particulate emissions from on-road vehicles. Berlin, Springer-Verlag, 2011. pp. 63–76.
- 40. Wang S., Han Z., Wang J., He X., Zhou Z., Hu, X. Environmental risk assessment and factors influencing heavy metal concentrations in the soil of municipal solid waste landfills. *Waste Management*, 2022, vol. 139, pp. 330–340.
- 41. Wei J., Li H., Liu J. Heavy metal pollution in the soil around municipal solid waste incinerators and its health risks in China. *Environmental Research*, 2022, vol. 203, Article ID: 111871.
- 42. Emoyan O.O., Peretiemo-Clarke B.O., Tesi G.O., Adjerese W., Ohwo E. Occurrence, origin and risk assessment of trace metals measured in petroleum tank-farm impacted soils. *Soil and Sediment Contamination: An International Journal*, 2021, vol. 30, no. 4, pp. 384–408.
- 43. Jeong H., Ryu J.S., Ra K. Characteristics of potentially toxic elements and multi-isotope signatures (Cu, Zn, Pb) in non-exhaust traffic emission sources. *Environmental Pollution*, 2022, vol. 292, Article ID: 118339.
- 44. Fu B., Liu G., Sun M., Hower J.C., Mian M.M., Wu D., Hu G. Emission and transformation behavior of minerals and hazardous trace elements (HTEs) during coal combustion in a circulating fluidized bed boiler. *Environmental Pollution*, 2018, vol. 242, pp. 1950–1960.
- 45. Fu B., Liu G., Mian M.M., Sun M., Wu D. Characteristics and speciation of heavy metals in fly ash and FGD gypsum from Chinese coal-fired power plants. *Fuel*, 2019, vol. 251, pp. 593–602.
- 46. Mor S., Vig N., Ravindra K. Distribution of heavy metals in surface soil near a coal power production unit: potential risk to ecology and human health. *Environmental Monitoring and Assessment*, 2022, vol. 194, no. 4, pp. 263–275.
- 47. Efunwole H.O., Raimi A.M., Orisadare O.A. Analysis of heavy metals in soils around a scrap metal recycling company in Ile-Ife, Osun State, Southwestern Nigeria. *Fountain Journal of Natural and Applied Sciences*, 2020, vol. 9, no. 2, pp. 1–9.
- 48. Tumova K., Szakova J., Najmanova J., Tlustos P. Scrap metal deposits as potential sources of enhanced risk in soil and vegetation. *Polish J Environ Stud*, 2020, vol. 29, pp. 841–852.
- 49. Orisadare O., Efunwole H., Raimi M. Analysis of heavy metals in soils around a scrap metal recycling company in Ile-Ife, Osun State, Southwestern Nigeria. *Fountain Journal of Natural and Applied Sciences*, 2020, vol. 9, no. 2, pp. 12–24.
- 50. Onanuga K., Maitera O.N., Milam C., Olajire H.M., Daniel V.N. Health risk assessment of heavy metals in soil around metal scrap recycling areas during wet and dry seasons in Ogijo, Ogun State, SW Nigeria. *International Research Journal of Pure and Applied Chemistry*, 2023, vol. 24, no. 2, pp. 35–48.
- 51. Ghosh S.P., Maiti S.K. Evaluation of heavy metal contamination in roadside deposited sediments and road surface runoff: a case study. *Environmental earth sciences*, 2018, vol. 77 (7), pp. 1–13.
- 52. Altikulac A., Turhan S., Kurnaz A., Goren E., Duran C., Hançerliogullari A., Ugur F.A. Assessment of the enrichment of heavy metals in coal and its combustion residues. *ACS Omega*, 2022, no. 7 (24), Article ID: 21239.
- 53. Anaman R., Peng C., Jiang Z., Liu X., Zhou Z., Guo Z., Xiao, X. Identifying sources and transport routes of heavy metals in soil with different land uses around a smelting site by GIS based PCA and PMF. *Science of The Total Environment*, 2022, vol. 823, Article ID: 153759.
- 54. Mun S., Chong H., Lee J., Lim Y. Characteristics of real-world non-exhaust particulates from vehicles. *Energies*, 2022, vol. 16, no. 1, pp. 177–194.
- 55. Saet Yu.E., Revich B.A., Yanin E.P., Smirnova R.S., Basharkevich E.L., Onishchenko T.L., Pavlova L.N., Achkasov A.I., Sargsyan S.Sh. *Geochemistry of the environment*. Moscow, Nedra Publ., 1990. 335 p. (In Russ.)
- 56. Gabarron M., Faz A., Acosta J. A. Soil or dust for health risk assessment studies in Urban environment. *Archives of Environmental Contamination and Toxicology*, 2017, vol. 73 (3), pp. 442–455.
- 57. Timofeev I., Shartova N., Kosheleva N., Kasimov N. Potentially toxic elements in urban topsoils and health risk assessment for the mining W–Mo center in the Baikal region. *Environmental geochemistry and health*, 2020, vol. 42, pp. 221–240.
- 58. Hou S., Zheng N., Tang L., Ji X., Li Y., Hua X. Pollution characteristics, sources, and health risk assessment of human exposure to Cu, Zn, Cd and Pb pollution in urban street dust across China between 2009 and 2018. *Environment International*, 2019, vol. 128, pp. 430–437.

Information about the authors

Daria G. Sycheva, Postgraduate Student, Lomonosov Moscow State University, 1, Leninskie Gory street, Moscow, 119991, Russian Federation. l.msu@yandex.ru; http://orcid.org/0000-0001-8952-5820

Natalia E. Kosheleva, Dr. Sc., Professor, Lomonosov Moscow State University, 1, Leninskie Gory street, Moscow, 119991, Russian Federation. natalk@mail.ru; http://orcid.org/0000-0002-7107-5718

Received: 24.05.2023 Revised: 14.06.2023 Accepted: 21.02.2024 УДК 528.94:004.94

DOI: 10.18799/24131830/2024/3/4237 Шифр специальности ВАК: 1.6.20

Анализ и систематизация технических средств и технологий дополненной реальности в картографии

Я.Г. Пошивайло, К.С. Батырова[™]

Сибирский государственный университет геосистем и технологий, Россия, г. Новосибирск
[™] karshiya2011@mail.ru

Аннотация. Актуальность. В современной картографии непрерывно происходит внедрение передовых цифровых технологий, повышающих качество и востребованность картографической продукции. Одним из таких инновационных направлений является технология дополненной реальности, с помощью которой можно расширить содержание карты, используя электронные мобильные устройства. Распространению дополненной реальности способствует широкое проникновение смартфонов и высокоскоростного мобильного интернета не только в крупных городах, но и в сельской местности, а также снижение стоимости электронных устройств и услуг. В зависимости от направления применения дополненной реальности в картографии меняется подход к выбору программного и аппаратного обеспечения. Цель: проанализировать и систематизировать технические средства и технологии дополненной реальности в картографии. Объекты: Технологии дополненной реальности в картографии, технические средства дополненной реальности и их компоненты. Методы: контент-анализ информации по технологиям, аппаратному и программному обеспечению дополненной реальности в картографии. Результаты. Проанализированы аппаратнопрограммные средства дополненной реальности в картографии. Предложены варианты работы с дополненной реальностью в виде сценарных планов для трех способов применения дополненной реальности в картографии: маркерной, безмаркерной и пространственной технологий. Выделены минимальные технические требования разработчиков для использования существующих картографо-навигационных приложений. Рассмотрен ряд цифровых сред для реализации элементов дополненной реальности в картографии, отмечены преимущества каждой из них. Составлена структурная схема типового аппаратно-программного комплекса системы дополненной реальности в картографии и геоинформатике. Систематизированы виды датчиков, которые обеспечивают решение геоинформационных и картографических задач с использованием технологии дополненной реальности.

Ключевые слова: Иммерсивность, дополненная реальность, технические средства, система критериев, тематические карты, AR-приложение

Благодарности: Авторы благодарят Алексея Александровича Колесникова за информацию, предоставленную в процессе работы над статьей и ценные советы.

Для цитирования: Пошивайло Я.Г., Батырова К.С. Анализ и систематизация технических средств и технологий дополненной реальности в картографии // Известия Томского политехнического университета. Инжиниринг георесурсов. – 2024. – Т. 335. – № 3. – С. 154–162. DOI: 10.18799/24131830/2024/3/4237

UDC 528.94:004.94

DOI: 10.18799/24131830/2024/3/4237

Analysis and systematization of technical means and technologies of augmented reality in cartography

Ya.G. Poshivaylo, K.S. Batyrova⊠

Siberian State University of Geosystems and Technologies, Novosibirsk, Russian Federation

□ karshiya2011@mail.ru

Abstract. Relevance. In modern cartography, the introduction of advanced digital technologies is taking place continuously, increasing the quality and demand for cartographic products. One of such innovative directions is augmented reality technology, with which you can expand the content of the map using electronic mobile devices. The spread of augmented reality is facilitated by the widespread penetration of high-speed mobile Internet not only into large cities, but also in rural areas, as well as the reduction in the cost of electronic devices and services. Depending on the direction of application of augmented reality in cartography, the approach to the choice of software and hardware is changing. Aim. Analysis and systematization of the technical means and technologies of augmented reality in cartography. Objects. Augmented reality technologies in cartography, augmented reality technical means and their components. Methods. Content analysis of information on technologies, hardware and software for augmented reality in cartography. Results. The authors have analyzed hardware and software tools of augmented reality in cartography. They proposed the options for working with augmented reality in the form of scenario plans for three types of augmented reality in cartography: marker, markerless and spatial technologies. The minimum technical requirements of developers for the use of existing cartographic and navigation applications were highlighted. The paper considers a number of digital environments for implementation of augmented reality elements in cartography. The advantages of each of them were noted. The authors compiled a block diagram of a typical hardware-software complex of an augmented reality system in cartography and geoinformatics. They systematized types of sensors that solve geoinformation and cartographic tasks using augmented reality technologies.

Keywords: Immersiveness, augmented reality, technical facilities, criteria system, thematic maps, AR application

Acknowledgements: The authors thank Alexey A. Kolesnikov for the information provided during the work on the article and valuable advice.

For citation: Poshivaylo Ya.G., Batyrova K.S. Analysis and systematization of technical means and technologies of augmented reality in cartography. *Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering*, 2024, vol. 335, no. 3, pp. 154–162. DOI: 10.18799/24131830/2024/3/4237

Введение

Сегодня все чаще звучит понятие «иммерсивность», которое означает погружение в определенные, искусственно сформированные условия [1]. Иммерсивность включает в себя дополненную реальность (augmented reality AR), виртуальную реальность (virtual reality VR), смешанную реальность (mixed reality MR) и искусственный интеллект (artificial intelligence AI).

Дополненная реальность - одна из перспективных на сегодняшний день технологий в картографии, с помощью которой можно, например, расширить содержание аналоговой карты, используя смартфоны, планшеты и другие электронные устройства. Это существенно повышает ценность картографической продукции, которая приобретает новый функционал и начинает взаимодействовать с пользователем [2, 3]. На картографическую продукцию можно «добавить» видеоролики, фотогалереи, движущиеся фигуры, 3D-объекты и т. д. Демонстрация виртуальных объектов происходит на дисплее мобильного телефона или планшета, который распознает изображение при помощи встроенной камеры и, по сути, является интерфейсом взаимодействия пользователя и карты. Также дополненная реальность используется в навигационном картографировании.

В цифровой картографии от выбора программного обеспечения во многом зависят перечень и содержание технологических этапов, а также организация производства в целом. Необходимо учитывать такие характеристики программного обеспечения, как качество визуализации пространствен-

ных объектов, функциональность, производительность, легкость в освоении, цена, техническая поддержка и др. Данный аспект недостаточно изучен применительно к технологии дополненной реальности в картографии.

Таким образом, целью исследования является анализ и систематизация современного программного обеспечения и технических средств, применимых для составления карт и атласов с элементами дополненной реальности.

Выделяют три направления применения AR в картографии с подразделением по способу определения объекта (точки) привязки [2]:

- 1) безмаркерная АR-технология;
- 2) пространственная АR-технология;
- 3) маркерная АR-технология.

В безмаркерной AR-технологии важно качество подготовленной базы данных (БД) для идентификации объектов реального мира. Здесь на первый план выходят качество основной камеры мобильного устройства, обеспечивающей высокое разрешение, а также наличие камеры глубины. Безмаркерные технологии в настоящее время развиваются очень активно и существенно различаются в зависимости от производителя и ПО.

Пространственная AR-технология опирается на GNSS-данные и предустановленные навигационные приложения. Кроме БД большую роль в ней играют алгоритмы обработки спутниковых навигационных данных.

Маркерная технология на данный момент наиболее хорошо проработана, в том числе для целей картографии и геоинформатики, как с точки

зрения алгоритмов распознавания маркеров, так и с точки зрения развитых инструментов разработки приложений дополненной реальности (в том числе и бесплатных). Эта технология не является ресурсоемкой, поскольку алгоритмы распознавания маркеров хорошо оптимизированы и требуют небольших затрат ресурсов процессора устройства. Таким образом, на первый план выходит качество камеры устройства.

В зависимости от направления применения AR в картографии, меняется подход к выбору программного и аппаратного обеспечения.

Развитие современной картографии основывается на широком использовании геоинформационных технологий. Каким образом связаны сегодня ГИСтехнологии и АR-технологии? Каковы перспективы развития этого тандема? Эти и другие вопросы использования технологий дополненной реальности в картографии необходимо проанализировать и сделать обоснованные выводы.

Анализ программного обеспечения и технических средств дополненной реальности

Моделирование окружающего мира при помощи карты является привычным, но в то же время сравнительно сложным для восприятия способом отображения пространства, который имеет свои ограничения. Реализация связи картографического представления объектов, процессов и явлений с их реалистичными моделями увеличит наглядность карты, упростит ориентирование на местности, расширит арсенал изобразительных средств картографии, особенно это актуально для детской аудитории.

Технологический подход к реализации функций дополненной реальности подразумевает применение специализированного AR-приложения — программного продукта, реализующего технологии дополненной реальности для различных целей (обучение, навигация, развлечения, туризм и др.).

Реализация конкретного AR-проекта состоит из аппаратной, программной части и сценарного плана. Рассмотрим каждый их этих компонентов с точки зрения применения в картографии.

Работа с дополненной реальностью на картах предполагает использование смартфона, планшета или «умных» очков с видеокамерой и соответствующим программным обеспечением.

Порядок воспроизведения контента с элементами дополненной реальности различается в зависимости от способа определения объекта (точки) привязки. Представим последовательность работы с дополненной реальностью в виде сценарных планов для трех направлений применения AR в картографии.

Сценарий для маркерной технологии

Если камера устройства направлена на картографическое изображение, то программное обеспечение опознает его по предварительно определенному маркеру (характерному объекту карты) или после анализа его формы. В процессе идентификации программа соединяется с корпоративным ГИСсервером или облаком, где находится цифровой двойник объекта. Далее AR-устройство загружает требуемую информацию и накладывает ее на изображение объекта на карте. Результатом является изображение на экране дисплея смартфона или линз очков физической и цифровой реальности.

Трехмерная модель картографического объекта интегрируется в среду разработки посредством выбора из числа предложенных шаблонов на сайте разработчика, либо ее можно создать в сторонних программах и затем импортировать в проект. Предложенные в качестве шаблонов трехмерные объекты, как правило, можно редактировать — задавать текстуру, цвет, прозрачность, закрепить их за определенной меткой.

Если трехмерный картографический объект создается в сторонних программах (Blender, AutoCAD и др.), то расширение соответствующего файла должно входить в перечень поддерживаемых форматов, либо необходимо предварительно конвертировать его [4].

Таким образом, порядок реализации дополненной реальности для расширения функций аналоговой карты следующий:

- 1. Камера устройства (смартфона, планшета или смарт-очков) фиксируется на картографическом изображении.
- 2. AR-приложение, установленное на устройстве, опознает полученное изображение и подбирает подходящее визуальное дополнение.
- 3. АR-приложение совмещает реальное (карту) и виртуальное изображение и воссоздает сцену дополненной реальности на устройстве [5].

Сценарий для пространственной технологии

В навигации процесс реализации технологии дополненной реальности выглядит следующим образом.

- 1. В навигационном приложении определяется местоположение пользователя, по запросу пользователя прокладывается маршрут, запускается процесс отслеживания перемещения по маршруту.
- 2. Включается функция дополненной реальности (алгоритм действий в разных навигационных приложениях может отличаться), при этом происходит процесс совмещения виртуальных объектов с реальными на основе данных датчиков устройства.

Сценарий для безмаркерной технологии [6, 7]

- 1. Камера устройства наводится на окружающее пространство, на объекты реального мира накладывается виртуальная сетка.
- Происходит распознавание контуров и характерных элементов объектов местности. С помощью специальных программных алгоритмов выбираются опорные точки, относительно которых определяют точное расположение объектов дополненной реальности.
- 3. В зависимости от направления камеры устройства воспроизводится соответствующий контент дополненной реальности.

При реализации перечисленных сценарных планов используется целый комплекс аппаратнопрограммных средств. Рассмотрим более детально основные составные части такого комплекса, с учетом специфики картографии (рис. 1).

Аппаратный комплекс включает в себя:

- устройства слежения (мобильная камера) [8];
- тактильные устройства (носимые датчики);
- устройства отображения [9];
- систему рендеринга;
- датчики пространственной ориентации.

Система рендеринга относится как к аппаратной части (видеопроцессор) [10, 11], так и к программной (3D-приложение с определенными алгоритмами преобразования трехмерной сцены в двумерное изображение на устройстве отображения).

Программный комплекс включает в себя платформы для разработки картографической AR [12] и функционал операционной системы, которые повышают качество отображения элементов дополненной реальности.

Проведенный анализ показал, что в настоящее время AR-приложения не связаны напрямую с геоинформационными системами, которые на данном этапе являются основным инструментом в картографии, это во многом является неким препятствием для распространения AR-элементов в картографии. Возможно, что в ближайшем будущем дополненная реальность откроет новые перспективы и воссоздаст виртуальные элементы намного реалистичнее, и займет свое место в функционале ГИС.

Наиболее перспективной видится организация двунаправленного обмена пространственными данными между БД ГИС и ПО AR.

Как видно из рис. 1, важное место в аппаратном комплексе занимают датчики. В источнике [13] дан прогноз относительно развития технологий иммерсивной реальности. По мнению экспертов, в ближайшем будущем применение датчиков расширит рынок периферийных устройств в 10–20 раз (рис. 2). Поскольку дополненная реальность основана на постоянном взаимодействии объектов виртуального и реального мира, роль датчиков невозможно переоценить.

Puc. 1. Структура аппаратно-программного комплекса системы дополненной реальности в картографии и геоинформатике

Fig. 1. Structure of the hardware and software components of an augmented reality system in cartography and geoinformatics

Систематизируем виды датчиков, которые обеспечивают решение геоинформационных и картографических задач, используя технологии AR.

1. Датички на теле — это инструменты для отслеживания и идентификации пользователей и объектов вокруг них, чтобы точно отражать движения их конечностей и физические объекты вокруг них в виртуальном мире (например, портативные устройства или устройства, размещенные в носимых устройствах).

С помощью датчиков на теле управление картографическим AR-приложением будет практичным для пользователя, предоставляя возможность управлять элементами дополненной реальности на карте, учитывая человеческую мимику и ловя движения.

Непосредственное манипулирование — это модель ввода, которая предполагает прикосновение к трехмерным моделям непосредственно руками. Суть этого принципа заключается в том, что объекты ведут себя так же, как в реальном мире. Непосредственное манипулирование основано на возможностях интерфейса, и оно удобно для пользователей [14]. В картографии эти возможности контента AR могут быть использованы для перемещения трехмерного объекта в виртуальном пространстве, для переключения атрибутивной и мультимедийной информации (текста, фото, видео, ссылки на геопорталы).

2. Датички вне тела позволяют точнее воссоздавать элементы физического мира в виртуальных пространствах с потребительскими приложениями, такими как Nintendo Wii, или корпоративными приложениями, такими как оборудование для пространственного картографирования.

Такие датчики монтируются таким образом, чтобы обеспечить беспрепятственный обзор для AR-устройства. Внешние камеры или датчики могут быть теоретически сколь угодно большими и не иметь жестких ограничений в вычислительных ресурсах. Получение преимущества в функциональности означает одновременно потерю мобильности. Такие датчики служат для улучшения качества интеграции виртуальных объектов в объем реально существующего помещения за счет их равномерного распределения по его периметру.

3. Тактильные устройства (например, тактильные перчатки или жилеты) передают пользователю ощущение осязания с помощью вибраций для усиления виртуального опыта. Например, виртуальный объект можно «захватывать», «перемещать» с помощью тактильных перчаток. Очевидно, что такие тактильные устройства помогут пользователю управлять объектами, визуализированными в AR-приложении.

Тактильные ощущения дополняют сенсорные экраны, позволяя имитировать взаимодействие с виртуальными объектами. На данный момент сто-

имость тактильных устройств высока, а их эффективность недостаточно исследована [15].

К тактильным датчикам можно отнести те, которые используют метод электромиографии – метод исследования биоэлектрической активности мышц человека. В картографической индустрии электромиография (ЭМГ) может применяться по принципу тактильных устройств для людей с ограниченными возможностями передвижения (церебральным параличом), так как потенциальным пользователям стоит только подумать о движении и послать электрический сигнал конечностям [16].

- 4. Микроэлектромеханические системы (МЭМС) используются для сбора данных об окружающей среде и основаны на комбинации миниатюрных механических и электронных элементов. Существуют как минимум три вида МЭМС:
- инерциальные датчики и датчики, относящиеся ко всем видам движения;
- датчики, контролирующие состояние окружающей среды;
- датчики, содержащие оптические элементы.
- 5. Датички внутри мобильных устройства. Стандартом для современного мобильного устройства является наличие инерциальных датчиков, таких как гироскоп и акселерометр. Также используются механизмы идентификации (сканирование лица, считыватель отпечатков пальцев) на основе датчиков и оптических систем, выполненных по технологии МЭМС [17]. В картографии эти датчики служат для определения местоположения пользователя и дальнейшего воспроизведения контента, с координатной привязкой.

Рассмотренные выше типы датчиков позволяют реалистично представить виртуальные объекты, корректировать изображение в реальном режиме времени, чтобы перемещения наблюдателя, изменение положения устройства, изменение освещенности и другие действия не нарушали эффект погружения.

Формирование дополненной реальности происходит на устройствах, которые можно подразделить на следующие виды:

- *мобильные*, к которым относятся смартфоны, планшеты, очки, объективы (в будущем будут добавлены линзы дополненной реальности);
- стационарные (экран монитора, телевизор);
- специальные инструменты (например, специализированные шлемы картографов) [2].

Технические характеристики перечисленных видов устройств играют огромную роль в передаче информации конечному пользователю в хорошем качестве. Картографические сервисы и приложения используют весомый объем ресурсов устройства из-за одновременного воспроизведения видео реального окружения и совмещения виртуальных меток и трехмерных объектов [18].

Рис. 2. Датчики для реализации функций иммерсивной реальности

Fig. 2. Sensors for implementing immersive reality functions

В связи с этим необходимо выявить минимальные характеристики, которыми должны обладать устройства, поддерживающие AR-технологии.

Ряд фирм, например, Навител, пошли по пути разработки аппаратного обеспечения, которое адаптировано под требования выпускаемого программного продукта. Предустановленные навигационные приложения с функциями дополненной реальности на планшете NAVITEL RE 5 DUAL (NAVITEL RE900) и смартфоне Яндекс.Телефон [19] выпускаются компаниями Навител и Яндекс соответственно. Компании Google [20] и AutoNavi [21] не выпускают навигационное оборудование под собственным брендом, они являются поставщиками услуг веб-картографии и навигации для стороннего оборудования.

Были исследованы и проанализированы навигационные функции, которые представлены в специализированном ПО, поддерживающем дополненную реальность.

Навител Навигатор: поддерживает GPS и содержит предустановленные карты 47 стран Европы и Казахстана.

Яндекс-Карты: поддерживает GPS, A-GPS, ГЛОНАСС, подробнее всего отражены Россия, Армения, Беларусь, Грузия, Казахстан, Латвия, Турция, Украина и Эстония.

Google Карты: поддерживает GPS, ГЛОНАСС, содержит карты большей части Азии, Африки, Латинской Америки и Европы, а также Соединенных Штатов и Канады.

AutoNavi: поддерживает GCJ-02, БД-09 Байду, ориентирован на Китай.

Следующие функции есть во всех приложениях:

- возможность загрузки дополнительных карт;
- бесплатное обновление карт;
- три альтернативных маршрута;
- голосовые подсказки;
- сервис Пробки.

Минимальные системные требования программного обеспечения, представленного на рынке РФ и реализующего функции дополненной реальности, к техническим характеристикам устройств даны в таблице.

Оценивая минимальные технические требования к современным навигационным приложениям с функцией дополненной реальности, можно отметить, что они удовлетворяются большинством современных смартфонов.

Рассматривая технические характеристики устройств с функцией дополненной реальности, применительно к задачам картографии, можно сформулировать итоговый перечень минимальных характеристик данных устройств:

- тип экрана IPS;
- объем оперативной памяти не менее 1 Гб;
- операционная система Android 6.0. и выше;
- производительность процессора не менее 1,2 ГГц;
- разрешение экрана 1024×600 dpi;
- внутренняя память 16 ГБ;
- емкость аккумулятора 800 мА ч и выше;
- поддержка microSD-карт до 128 ГБ;
- наличие Wi-Fi, 2G/3G (либо 3G/4G).

Таблица. Минимальные системные требования к техническим характеристикам устройства, реализующего функции дополненной реальности в специализированном ПО

Table. Minimum system requirements for the technical characteristics of a device implementing augmented reality functions in specialized software

	junctions in specialized software								
Характеристики устройств Technical specifications		Навител Навигатор Navitel Navigator	Яндекс.Карты Yandex.Maps	Google Карты Google Maps	AutoNavi				
	Тип экрана/Screen type	IPS							
Экран	Диагональ экрана Screen size	5 дюймов/5"							
	Интерактивность экрана Screen interactivity	Сенсорный/Sensory							
	Разрешение экрана Screen resolution	1024×600							
	Операционная система Operating system	Android 6.0 (функция доступна только для NAVITEL RE 900)	Android 8.1 (Яндекс. Смартфон)	Android 6.0 и выше, iOS 13.4 и выше	Android 6.0 и более поздние, iOS 10.0 и выше				
	Процессор Central processing unit	MTK8382 Cortex-A7 Quad Core	Qualcomm Snapdragon SDM630	4-х ядерный ARM 64-битный процессор	4-х ядерный ARM 64-битный процессор				
	Частота процессора, ГГц CPU Frequency procesor, GHz	1,3	2,2	1,2	1,2				
	Внутренняя память, ГБ Storage memory, GB	16	64	16	16				
	Оперативная память, ГБ Random access memory (RAM), GB	1 ГБ/GВ	4	2	2				
	Тип аккумулятора Type of battery	встроенный литий-ионный Built-in lithium-ion	Li-pol	встроенный литий-ионный Built-in lithium-ion	встроенный литий-ионный Built-in lithium-ion				
	Емкость аккумулятора, мА·ч Battery capacity, mA·h	800	3050 3000		3000				
	Подключение внешнего источника питания (12 B) Working current (12V)	Есть/Yes							
нения ection	Интерфейсы Interfaces	Mini-USB, 2 microSD	Bluetooth 4.1, 3G/4G, NFC	USB 2.0, Bluetooth, Wi-Fi, 2G/3G	USB 2.0, Bluetooth, Wi-Fi, 2G/3G				
подклю [,] and conn	SIM-карты SIM cards	Нет/No	2 1		1				
Разъемы и подключения Connectors and connection	Поддержка microSD-карт microSD card capacity	до 64 ГБ/ to 64 GB	до 128 ГБ/to 128 GB						

Основываясь на типовых системных требованиях разработчиков, можно сделать следующий вывод: разработчики отдают предпочтение собственному оборудованию, поддерживая при этом установленные приложения на сторонних устройствах (навигаторы, смартфоны, мультимедийные системы в автомобилях и др.). Отсюда следует, что помимо обновления навигационного приложения с функциями дополненной реальности, они также выпускают новые устройства под собственным брендом либо совершенствуют имеющиеся (внутреннее ПО, комплектующие). Как правило, сначала доступны обновления навигационного приложения для устройств под собственным брендом, а затем для остальных (не является обязательным условием).

Заключение

Анализ картографо-навигационных приложений, использующих элементы дополненной реальности, определил требуемые технические характеристики устройств для реализации данного функционала. Они различаются способом приема спутникового сигнала, версией операционной системы, местом загрузки карт и установки ПО. Если разработчики iOS, как правило, поддерживают последние версии своего ПО и обновление предустановленных приложений доступно исключительно для обновленных ПО, то для Android-устройств большое значение имеет решение разработчиков о поддержке тех или иных версий продукта.

Картографическое покрытие разнится и ориентировано на конечного пользователя цифрового

продукта. Указанные картографические приложения в разной степени коммерциализированы. Именно этот факт способствует их развитию и появлению новых функций в приложениях.

Конкурентоспособность цифрового картографического продукта зависит от качества продукции. Качество зависит от программного обеспечения, выбранного для создания картографического продукта. Отечественный рынок до недавнего времени отдавал предпочтение зарубежным программным решениям, многие из которых сегодня недоступны для российского рынка. В этой связи возникает потребность в отечественных разработках, спрос на которые вырос в последнее время.

СПИСОК ЛИТЕРАТУРЫ

- 1. Sekhar Ch., Sankar Ch., Rao G. Future reality is immersive reality // International Journal of Recent Technology and Engineering. 2018. Vol. 7. P. 302–309.
- 2. Батырова К.С., Пошивайло Я.Г. История дополненной реальности и перспективы ее применения в картографии // Вестник СГУГиТ. 2021. Т. 26. № 5. С. 99–107.
- 3. Schmalstieg D., Reitmayr G. Augmented reality as a medium for cartography // Multimedia Cartography. 2007. P. 267–281.
- 4. Tadepalli K., Ega P., Inugurthi P. Indoor navigation using augmented reality // International Journal of Scientific Research in Science and Technology. − 2021. − Vol. 7. − № 4. − P. 588–592.
- 5. Amorim F., Schmidt M. Classification of dynamic cartographic symbols applied to Augmented Reality (AR) systems // Proceedings of the ICA. 2021. Vol. 4. P. 1–8.
- 6. Jiang Y., Tran T. H., Williams L. Advanced visual SLAM and image segmentation techniques for augmented reality // International Journal of Virtual and Augmented Reality (IJVAR). -2022. Vol. 6. N 1. P. 1-28.
- 7. Sharma M., Chachaundiya S. Augmented Reality Navigation // International Journal of Engineering Research & Technology (IJERT). June 2020. Vol. 09. № 6. P. 406–412.
- 8. Yu L., Ong S.K., Nee A. A tracking solution for mobile augmented reality based on sensor-aided marker-less tracking and panoramic mapping // Multimedia Tools and Applications. 2015. Vol. 75. P. 3199–3220.
- 9. Towards indistinguishable augmented reality: a survey on optical see-through head-mounted displays / Y. Itoh, T. Langlotz, J. Sutton, A. Plopski // ACM Computing Surveys. July 2021. Vol. 54. P. 1–36.
- 10. Siriwardhana Y., Porambage P., Liyanage M., Ylianttila M. A survey on mobile augmented reality with 5G mobile edge computing: architectures, applications, and technical aspects // IEEE Communications Surveys and Tutorials. − 2021. − Vol. 23. − № 2. − P. 1160−1192.
- 11. Zhang C., Lu J., Wang H. Application of augmented reality technology in workshop production management // IOP Conference Series: Materials Science and Engineering. 2018. Vol. 466. № 1. P. 1–7.
- 12. Liu1 X., Sohn Y.-H., Park D.W. Application development with augmented reality technique using unity 3D and Vuforia // International Journal of Applied Engineering Research. 2018. Vol. 13. № 21. P. 15068–15071.
- 13. Oktay O.S., Yuzer T.V. Immersive Learning, Immersive Scenarios, and Immersive Technologies // Shaping the Future of Online Learning: Education in the Metaverse. Hershey, PA: IGI Global, 2023. P. 83–111.
- 14. Intuitive virtual objects manipulation in augmented reality: interaction between user's hand and virtual objects / M. Sakamoto, T. Ishizu, M. Hori, S. Ikeda, A. Takei, T. Ito // Journal of Robotics, Networking and Artificial Life. 2020. Vol. 6. P. 265–269.
- 15. Bermejo C., Hui P. A Survey on Haptic Technologies for Mobile Augmented Reality // ACM Computing Surveys. 2017. Vol. 54. P. 1–35.
- 16. Force-aware interface via electromyography for natural VR/AR interaction / Y. Zhang, B.S. Liang, B. Chen, P.C. Torrens, S.F. Atashzar, D. Lin, Q. Sun // ACM Transactions on Graphics. 2022. Vol. 41. P. 1–18.
- 17. Boysel R.M., Fiscus T.E., Ross L.J. Development of a single chip 6 DOF MEMS IMU for robotic and UV navigation // Proc. of the 24th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2011). Portland, OR, September, 2011. P. 3930–3936.
- 18. Akimoto H., Akimoto Y., Ugawa Y. Utilization of AR and Google Maps in high school geography field work // Theory and Applications of GIS. 2018. Vol. 26. P. 93–99.
- 19. Стрельчунас А.Д., Шевченко П.А., Сугоровский А.В. Обзор и анализ актуальных интернет—приложений и сервисов для навигации и прокладки маршрутов // Управление эксплуатационной работой на транспорте (УЭРТ–2022): Сборник трудов Международной научно-практической конференции. СПб, 2022. С. 276–283.
- 20. Development of educational AR application using Google My MapsGoogle / Y. Ugawa, S. Itoh, Y. Saito, H. Akimoto, K. Satou // Theory and Applications of GIS. 2018. Vol. 26. P. 101–108.
- 21. Measuring spatial accessibility and within-province disparities in accessibility to county hospitals in Shaanxi Province of Western China based on web mapping navigation data / C. Shen, Z. Zhou, S. Lai, L. Lu, W. Dong, M. Su, J. Zhang, X. Wang, Q. Deng, Y. Chen, X. Chen // International Journal for Equity in Health. − 2020. − Vol. 19. − № 1. − P. 99.

Информация об авторах

Ярослава Георгиевна Пошивайло, кандидат технических наук, заведующая кафедрой картографии и геоинформатики, Сибирский государственный университет геосистем и технологий, Россия, 630108, г. Новосибирск, ул. Плахотного, 10. yaroslava@ssga.ru; http://orcid.org/0000-0002-1945-442X

Каршия Сериковна Батырова, аспирант кафедры картографии и геоинформатики, Сибирский государственный университет геосистем и технологий, Россия, 630108, г. Новосибирск, ул. Плахотного, 10. karshiya2011@mail.ru

Поступила в редакцию: 14.05.2023

Поступила после рецензирования: 20.06.2023

Принята к публикации: 21.02.2024

REFERENCES

- 1. Sekhar Ch., Sankar Ch., Rao G. Future reality is immersive reality. *International Journal of Recent Technology and Engineering*, 2018, vol. 7, pp. 302–309.
- 2. Batyrova K.S., Poshivailo Ya.G. The history of augmented reality and further treds of its use in cartography. *Vestnik SSUGT*, 2021, vol. 26, no. 5, pp. 99–107. (In Russ.)
- 3. Schmalstieg D., Reitmayr G. Augmented reality as a medium for cartography. Multimedia Cartography, 2007, pp. 267–281.
- 4. Tadepalli K., Ega P., Inugurthi P. Indoor navigation using augmented reality. *International Journal of Scientific Research in Science and Technology*, 2021, vol. 7, no. 4, pp. 588–592.
- 5. Amorim F., Schmidt M. Classification of dynamic cartographic symbols applied to Augmented Reality (AR) Systems. *Proceedings of the ICA*, 2021, vol. 4, pp. 1–8.
- 6. Jiang Y., Tran T.H., Williams L. Advanced visual SLAM and image segmentation techniques for augmented reality. *International Journal of Virtual and Augmented Reality (IJVAR)*, 2022, vol. 6, no. 1, pp. 1–28.
- 7. Sharma M., Chachaundiya S. Augmented reality navigation. *International Journal of Engineering Research & Technology* (IJERT), June 2020, vol. 09, no. 6, pp. 406–412.
- 8. Yu L., Ong S. K., Nee A. A tracking solution for mobile augmented reality based on sensor-aided marker-less tracking and panoramic mapping. *Multimedia Tools and Applications*, 2015, vol. 75, pp. 3199–3220.
- 9. Itoh Y., Langlotz T., Sutton J., Plopski A. Towards indistinguishable augmented reality: a survey on optical see-through head-mounted displays. *ACM Computing Surveys*, July 2021, vol. 54, pp. 1–36.
- 10. Siriwardhana Y., Porambage P., Liyanage M., Ylianttila M. A survey on mobile augmented reality with 5G mobile edge computing: architectures, applications, and technical aspects. *IEEE Communications Surveys and Tutorials*, 2021, vol. 23, no. 2, pp. 1160–1192.
- 11. Zhang C., Lu J., Wang H. Application of augmented reality technology in workshop production management. *IOP Conference Series: Materials Science and Engineering*, 2018, vol. 466, no. 1, pp. 1–7.
- 12. Liu1 X., Sohn Y.-H., Park D.W. Application development with augmented reality technique using unity 3D and Vuforia. *International Journal of Applied Engineering Research*, 2018, vol. 13, no. 21, pp. 15068–15071.
- 13. Oktay O.S., Yuzer T.V. Immersive Learning, Immersive Scenarios, and Immersive Technologies. *Shaping the Future of Online Learning: Education in the Metaverse*. Hershey, PA, IGI Global, 2023. pp. 83–111.
- 14. Sakamoto M., Ishizu T., Hori M., Ikeda S., Takei A., Ito T. Intuitive virtual objects manipulation in augmented reality: interaction between user's hand and virtual objects. *Journal of Robotics, Networking and Artificial Life*, 2020, vol. 6, pp. 265–269.
- 15. Bermejo C., Hui P. A Survey on haptic technologies for mobile augmented reality. *ACM Computing Surveys*, 2017, vol. 54, pp. 1–35.
- 16. Zhang Y., Liang B.S., Chen B., Torrens P.C., Atashzar S.F., Lin D., Sun Q. Force-aware interface via electromyography for natural VR/AR interaction. *ACM Transactions on Graphics*, 2022, vol. 41, pp. 1–18.
- 17. Boysel R.M., Fiscus T.E., Ross L.J. Development of a single chip 6 DOF MEMS IMU for robotic and UV navigation. *Proc. of the 24th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2011)*. Portland, OR, September, 2011. pp. 3930–3936.
- 18. Akimoto H., Akimoto Y., Ugawa Y. Utilization of AR and Google Maps in high school geography field work. *Theory and Applications of GIS*, 2018, vol. 26, pp. 93–99.
- 19. Strelchunas A.D., Shevchenko P.A., Sugorovsky A.V. Overview and analysis of current internet applications and services for navigation and routing. *Management of operational work on transport (MOWT–2022). Proc. of the International Scientific and Practical Conference*. St. Petersburg, 2022. pp. 276–283. (In Russ.)
- 20. Ugawa Y., Itoh S., Saito Y., Akimoto H., Satou K. Development of educational AR application using Google My MapsGoogle. *Theory and Applications of GIS*, 2018, vol. 26, pp. 101–108.
- 21. Shen C., Zhou Z., Lai S., Lu L., Dong W., Su M., Zhang J., Wang X., Deng Q., Chen Y., Chen X. Measuring spatial accessibility and within-province disparities in accessibility to county hospitals in Shaanxi Province of Western China based on web mapping navigation data. *International Journal for Equity in Health*, 2020, vol. 19, no. 1, pp. 99.

Information about the authors

Yaroslava G. Poshivaylo, Cand. Sc., Head of the Cartography and Geoinformatics Department, Siberian State University of Geosystems and Technologies, 10, Plakhotny street, Novosibirsk, 630108, Russian Federation. yaroslava@ssga.ru; http://orcid.org/0000-0002-1945-442X

Karshiya S. Batyrova, Postgraduate Student, Siberian State University of Geosystems and Technologies, 10, Plakhotny street, Novosibirsk, 630108, Russian Federation. karshiya2011@mail.ru

Received: 14.05.2023 Revised: 20.06.2023 Accepted: 21.02.2024 УДК 552.578.3:550.4

DOI: 10.18799/24131830/2024/3/4254

Шифр специальности ВАК: 1.6.5

Литолого-геохимическая характеристика и обстановки седиментации высокоуглеродистых отложений кембрия восточной окраины Сибирской платформы (бассейн р. Кюленке)

И.В. Вараксина[™]

Институт нефтегазовой геологии и геофизики им. А.А. Трофимука Сибирского отделения Российской академии наук, Россия, г. Новосибирск

[™]VaraksinaIV@ipgg.sbras.ru

Аннотация. Актуальность исследования обусловлена необходимостью изучения высокоуглеродистых отложений как потенциальных источников углеводородов и рудных полезных ископаемых, способных существенно увеличить минерально-сырьевой ресурс России. Кроме того, анализ литолого-геохимических особенностей и реконструкция условий седиментации куонамской свиты позволяют более точно судить о характере нижне-среднекембрийского палеобассейна на востоке Сибирской платформы. Цель: выявить литолого-геохимические особенности состава и определить обстановки седиментации куонамской свиты. Объект: высокоуглеродистые отложения куонамской свиты, вскрытые поисковыми скважинами на восточной окраине Мунского сводового поднятия Сибирской платформы в бассейне р. Кюленке. Методы: литологическое послойное описание кернового материала; минералогопетрографический анализ; рентгеноструктурный, рентгенофлуоресцентный и микроэлементный анализы; определение содержания форм серы и железа методом мокрой химии; сканирующая электронная микроскопия с применением ренгеноспектрального микрозонда; анализ петрохимических модулей. Результаты. Установлено, что куонамская свита в изученных разрезах обладает выдержанным строением, в котором четко прослеживаются четыре литолого-стратиграфических горизонта. Состав отложений преимущественно смешанный и определяется вариациями трёх основных минеральных групп: глинистой, карбонатной и кремнистой, а также органического вещества. Показаны разные формы нахождения органического вещества, подтверждающие смешанный водорослевобактериальный генезис биоценоза куонамского бассейна. Выявленные литологические особенности и литохимические данные свидетельствуют о накоплении высокоуглеродистых отложений на значительном удалении от источников сноса в депрессионной зоне открыто-морского бассейна со слабой циркуляцией придонных вод в бескислородных условиях. Геохимическая среда в карбонатно-кремнистых илах была преимущественно эвксинной. Седиментация происходила на протяжении одного крупного трансгрессивно-регрессивного седиментационного цикла, представляющего типичную последовательность заполнения глубоководной депрессии с некомпенсированным осадконакоплением.

Ключевые слова: куонамская свита, кембрий, литогеохимия, условия седиментации, Сибирская платформа

Благодарности: Работа выполнена в рамках темы FWZZ-2022-0008 Государственной программы ФНИ.

Для цитирования: Вараксина И.В. Литолого-геохимическая характеристика и обстановки седиментации высокоуглеродистых отложений кембрия восточной окраины Сибирской платформы (бассейн р. Кюленке) // Известия Томского политехнического унивесритета. Инжиниринг георесуросв. − 2024. − Т. 335. − № 3. − С. 163−175. DOI: 10.18799/24131830/2024/3/4254 UDC 552.578.3:550.4

DOI: 10.18799/24131830/2024/3/4254

Lithological and geochemical characteristics and sedimentary environments of the Cambrian high-carbon deposits in the east of the Siberian platform (Kyulenke river basin)

I.V. Varaksina[⊠]

Trofimuk Institute of Petroleum Geology and Geophysics of Siberian branch of Russian Academy of Sciences, Novosibirsk, Russian Federation

[™]VaraksinaIV@ipgg.sbras.ru

Abstract. Relevance. The need to study high-carbon deposits as potential sources of hydrocarbons and ore minerals that can significantly increase the mineral resource of Russia. In addition, the analysis of lithological and geochemical features and the reconstruction of the sedimentation conditions of the Kuonamka Formation make it possible to more accurately judge the nature of the Lower and Middle Cambrian paleobasin in the east of the Siberian Platform. Aim. To identify lithological and geochemical features of the composition and determine the sedimentation environment of the Kuonamka Formation. Object. High-carbon deposits of the Kuonamka Formation uncovered by exploration wells on the eastern margin of the Mun arch of the Siberian platform in the Kulenke river basin. Methods. Lithological description of core material; mineralogical and petrographic analysis; X-ray diffraction, X-ray fluorescence and microelement analysis; determination of the content of sulfur and iron forms by wet chemistry; scanning electron microscopy using X-ray spectral microprobe; analysis of petrochemical modules, Results. It was established that the Kuonamka Formation in the studied sections has a consistent structure of four well-defined lithological-stratigraphic horizons. The composition of the deposits is predominantly mixed and is determined by variations in three main mineral groups: clay, carbonate and siliceous, in addition organic matter. The paper demonstrates different forms of organic matter confirming the mixed algal-bacterial genesis of the biocenosis of the Kuonamka basin. The revealed lithological features and lithochemical data indicate the accumulation of high-carbon deposits at a considerable distance from the drift sources in the depression zone of the open sea basin with weak circulation of bottom waters in anoxic conditions. The geochemical euxinic environment was dominant in carbonate-siliceous muds. Sedimentation occurred during one major transgressive-regressive sedimentation cycle being a typical sequence of filling a uncompensated deep depression.

Keywords: Kuonamka Formation, Cambrian, lithogeochemistry, sedimentary environments, Siberian platform

Acknowledgements: The research was carried out within the framework of the topic FWZZ-2022-0008 of the State Program of the FSR.

For citation: Varaksina I.V. Lithological and geochemical characteristics and sedimentary environments of the Cambrian high-carbon deposits in the east of the Siberian platform (Kyulenke river basin). *Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering*, 2024, vol. 335, no. 3, pp. 163–175. DOI: 10.18799/24131830/2024/3/4254

Введение

Высокоуглеродистые отложения на сегодняшний день являются объектом повышенного внимания в первую очередь как потенциальные источники углеводородов, хотя нередко с ними связаны и другие полезные ископаемые, такие как редкие и благородные металлы, уран, фософориты и др. [1–5 и др.]. В литературе используются разные понятия для их обозначения: «доманиковые свиты», «доманикиты», «доманикоиды», «черные сланцы» и т. д. Все эти термины относятся к осадочным образованиям глинистого, карбонатно-глинистого, кремнисто-глинистого или карбонатно-кремнистоглинистого состава, обогащенным органическим веществом (ОВ) [6, 7 и др.]. Отложения подобного типа широко развиты в кембрийском осадочном комплексе на востоке Сибирской платформы. Они выделены в куонамскую битуминозную карбонат-но-сланцевую формацию, объединяющую одно-именную свиту и её возрастные аналоги [7–9].

Куонамская свита распространена на большей части Анабарской антеклизы, где довольно детально исследована в районах выхода на дневную поверхность. Однако литолого-геохимические особенности её погруженных горизонтов, вскрытые немногочисленными скважинами, освещены пока ещё недостаточно. Кроме того, среди исследователей до сих пор нет единого мнения относительно морфоструктуры и глубины куонамского бассейна. Согласно модели, предложенной в 1970 г. А.Э. Конторовичем и В.Е. Савицким, накопление куонамского комплекса проходило в мелководном хорошо аэрируемом бас-

сейне в условиях гумидного климата [10]. В дальнейшем эта идея получила широкую поддержку [7, 8 и др.]. При этом одновременно с ней было высказано предположение о глубоководном генезисе куонамских отложений [11]. Последующее поступление новых данных, комплексный анализ результатов различных геолого-геофизических исследований и применение фациально-седиментационного моделирования позволили сторонникам данной гипотезы достаточно убедительно обосновать наличие на востоке Сибирского кратона глубоководного некомпенсированного окраинно-депрессионного бассейна с аноксичной средой [9, 12]. Тем не менее окончательного признания этот вариант не получил, и ряд авторов попрежнему продолжают придерживаться модели мелководной седиментации куонамской свиты [13, 14]. Очевидно, что для преодоления этих разногласий необходимы дополнительные исследования.

Материалы и методы

Объектом данного исследования стали высокоуглеродистые отложения куонамской свиты, вскрытые поисковыми скважинами на восточной окраине Мунского сводового поднятия [15] в бассейне р. Кюленке (рис. 1).

Рис. 1. Обзорная карта района исследований [15]. Границы структур: 1 – надпорядковых, 2 – І порядка; 3 – район исследований; 4 – изученные разрезы. Структуры: 1 – Анабарский мегасвод, 2 – Оленёкский свод, 3 – Мунский свод, 4 – Суханская впадина

Fig. 1. Overview map of the study area [15]. Borders of structures: 1 – supra-order, 2 – I order; 3 – study area; 4 – studied sections. Structures: 1 – Anabar mega arch, 2 – Olenyok arch, 3 – Mun arch, 4 – Sukhan depression

Литологическое изучение куонамских отложений базировалось на детальном описании керна четырёх скважин, петрографического анализа шлифов (80 образцов) и данных сканирующей электронной микроскопии с применением ренгеноспектрального микрозонда. Дополнительно для уточнения вещественного состава и обстановок седиментации учитывались результаты геохимических исследований (75 образцов): рентгенофлуоресцентного анализа с определением основных породообразующих окислов, рентгеноструктурного анализа глинистой фракции, микроэлементного анализа методом масс-спектрометрии с индуктивно связанной плазмой (ICP-MS), анализа методом мокрой химии содержания серы сульфатной и сульфидной, а также форм железа, выполненных в аналитическом центре Института геологии и минералогии Сибирского отделения (СО) Российской Академии наук (РАН). Содержание в породах органического углерода определялось в лаборатории геохимии нефти и газа Института нефтегазовой геологии и геофизики СО РАН.

Результаты литологических исследований

В рассматриваемом районе осадочный чехол состоит из верхнепротерозойско-кембрийских терригенно-карбонатных отложений и несогласно перекрывающих их четвертичных алевро-песчаных образований. Возрастной диапазон куонамской свиты охватывает верхнюю часть ботомского яруса, тойонский ярус нижнего кембрия и нижнюю часть амгинского яруса среднего кембрия [9]. В изученных разрезах куонамская свита согласно залегает на глинистых известняках эмяксинской свиты и характеризуется выдержанными строением и мощностью около 30 м (рис. 2). В её составе выделяются четыре литолого-стратиграфических горизонта [7].

Нижний бороулахский горизонт, соответствующий пачке I, имеет мощность около 8 м и представлен переслаиванием чёрных глинистокремнистых и глинистых, неравномерно карбонатизированных пород. Наблюдается постепенное снижение глинистости пачки в результате уменьшения мощности прослоев аргиллитов от 0,3-1,1 м в основании разреза до 0,01-0,05 м в верхней части. Для глинисто-кремнистых пород характерна тонкая (≤10 мм) линзовидно-горизонтальная слоистость, обусловленная неравномерным распределением карбонатного, кремнистого, глинистого и органического вещества (рис. 3, а). Содержание кремнезёма изменяется от 35 до 50 %. Глинистый материал в количестве 20-35 % представлен иллитом. В составе карбонатной примеси, количество которой не превышает 15 %, присутствуют кальцит и доломит. Концентрация органического углерода $(C_{opr.})$ по всему разрезу высокая (8–10 %).

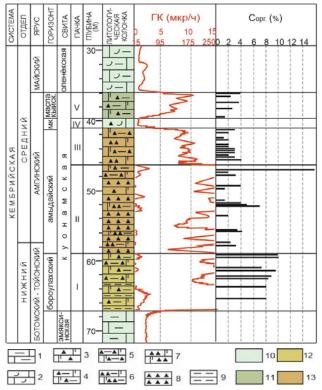


Рис. 2. Строение и состав куонамской свиты (на примере одной из скважин). 1, 2 – известняки: 1 – глинистые, 2 – с фаунистическим детритом; 3–5 – смешанные породы: 3 – кремнисто-карбонатные, 4 – глинисто-кремнисто-карбонатные, 5 – карбонатно-глинисто-кремнистые; 6–8 – силициты: 6 – глинисто-карбонатные, 7 – карбонатные, 8 – с примесью карбонатного материала <5%; 9 – аргиллиты; 10–13 – преобладающий состав пород в разных пачках: 10 – карбонатный, 11 – кремнисто-карбонатный, 12 – кремнисто-глинистый, 13 – кремнистый

Fig. 2. Structure and composition of the Kuonamka formation (on the example of one of the wells). 1, 2 – limestones: 1 – argillaceous, 2 – with faunal detritus; 3–5 – mixed rocks: 3 – siliceous-carbonate, 4 – argillaceous-siliceous-carbonate, 5 – carbonate-clay-siliceous; 6–8 – silicites: 6 – clay-carbonate, 7 – carbonate, 8 – with carbonate material <5%; 9 – mudstones; 10–13 – prevailing composition of rocks in different members: 10 – calcareous, 11 – siliceous-calcareous, 12 – siliceous-argillaceous, 13 – siliceous

В основании горизонта наблюдается довольно существенная примесь обломков кварца, полевых шпатов и реже мусковита пелитово-алевритовой размерности, доля которой вверх по разрезу постепенно снижается от 5 до 1 %. Достаточно широко развита пиритизация (4–5 %). Пирит присутствует в виде неравномерно рассеянных мелких зерен и стяжений (от долей мм до 2–3 мм), нередко минерализует органическое вещество. Следует отметить, что в обнажениях (в том числе в долине р. Кюленке) в основании горизонта залегает пласт

аргиллитов с конкрециями фосфоритов [7]. В изученных разрезах фосфатные конкреции не зафиксированы, что связано, по-видимому, с неполным выносом при бурении тонкослоистых листоватых аргиллитов. Ввиду того, что бороулахский горизонт отличается повышенными содержаниями глинистого, углеродистого и фосфатного вещества, он принят в качестве маркирующего [7, 16].

Вышележащий амыдайский горизонт характеризуется наибольшей мощностью (18-21 м), преобладанием кремнистой составляющей и двучленным строением. Нижняя пачка II сложена силицитами с примесью карбонатного материала и прослоями кремнистых известняков. Породы чёрные углеромикроскопически линзовидногоризонтальнослоистые за счет неравномерного распределения кремнистого, карбонатного и органического вещества (рис. 3, δ , ϵ). Карбонатная составляющая силицитов изменяется от 3-5 до 35 % и представлена в основном кальцитом, в меньшей степени доломитом. Содержание Сорг. меняется от 2 до 14 %, преобладающее 3-5 %. Примесь глинистого материала незначительная, в основном 2-4 %. В верхней пачке III глинистой примеси становится больше (7–15 %), возрастает роль карбонатной компоненты с доминированием доломита (10-40 %) и начинают преобладать смешанные глинистокарбонатно-кремнистые и глинисто-кремнистокарбонатные породы (рис. 3, г). Концентрация ОВ становится ниже, в целом 2-3 %, за исключением единичного прослоя глинисто-кремнистого известняка в приподошвенной части, где содержание Сорг достигает 17 %. Повсеместно присутствует пирит (1-3 %) в виде тонкой сыпи, глобулей и линзовидных стяжений (до 0,7 мм), часто приуроченных к детритовому ОВ.

Следующий малокуонамский горизонт (пачка IV), несмотря на малую мощность (0,3–1,7 м), тоже рассматривается в качестве маркирующего, поскольку отличается исключительно известковым составом и прослеживается на всей площади развития свиты [1, 4, 9]. В изученных разрезах горизонт мощностью 1,0–1,5 м представлен серыми глинистыми, участками слабо окремненными известняками с примесью фаунистического детрита (рис. 3, *д*), значения Сорг. в которых меньше 1 %.

Завершает разрез пачка V мощностью 3–4 м, относящаяся к маспакыйскому горизонту, сложенная темно-серыми до чёрных глинисто-кремнисто-карбонатными горизонтально-тонкослоистыми породами с прослоями черных известковистых аргиллитов. В смешанных породах слоистость обусловлена чередованием слойков (0,5–10,0 мм) с преобладанием глинистого, кремнистого или карбонатного материала (рис. 3, *e*).

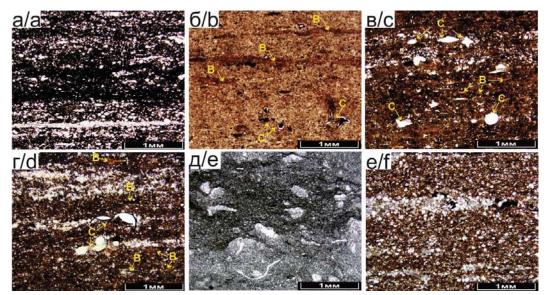


Рис. 3. Основные типы пород куонамской свиты: а) кремнисто-глинистая слабо карбонатизированная порода с высоким содержанием Сорг. (7 %) и нечеткой микрослоистостью (бороулахский горизонт); б, в) силициты с детритом кремниевых организмов (С) и бактериально-водорослевыми остатками (В). Примесь карбонатного материала 1–5 %, содержание Сорг. 6–8 % (нижняя пачка амыдайского горизонта); г) глинисто-карбонатно-кремнистая порода с содержанием Сорг. 5 %, послойной концентрацией карбонатного материала, бактериально-водорослевым и фаунистическим детритом (верхняя пачка амыдайского горизонта); д) известняк микрокристаллический с редко рассеянным скелетным детритом (малокуонамский горизонт); е) глинисто-кремнисто-карбонатная порода с микролинзовидной слоистостью за счет обособлений карбонатного материала в глинисто-кремнистой матрице, обогащенной ОВ (Сорг. 3 %, маспакыйский горизонт)

Fig. 3. The main types of rocks of the Kuonamka Formation: a) siliceous-argillaceous low carbonatized rock with a high content Corg. (7%) and illegible microlayering (Boroulakh horizon); b, c) silicites with detritus of silicic organisms (C) and bacterial-algal remnants (C). Admixture of carbonate material 1–5%, Corg. content 6–8% (lower member of the Amydai horizon); d) argillaceous-carbonate-siliceous rock with Corg. content 5%, layered concentration of carbonate material, bacterial-algal and faunal detritus (upper member of the Amydai horizon), e) microcrystalline limestone with sparsely scattered skeletal detritus (Malokuonam horizon); f) argillaceous-siliceous-carbonate rock with microlenticular lamination caused segregation of carbonate material in a argillaceous-siliceous matrix enriched in organic matter (Corg. 3%, Maspakiy horizon)

Содержание кремнезёма изменяется в пределах $20{\text -}35$ %, кальцита $20{\text -}45$ %, доломита $15{\text -}20$ %, а глинистого материала от 7 до 25 %. ОВ присутствует в количестве $2{\text -}3$ %, редко 4 %. Пирит (${\le}4$ %) встречается в виде хаотично рассеянных зерен и мелких скоплений ($0,1{\text -}0,5$ мм), преимущественно в ассоциации с OB.

Перекрываются углеродистые отложения куонамской свиты светло-серыми и пестроцветными глинистыми известняками с остатками разнообразной фауны оленёкской свиты. Содержание ОВ в них резко падает до 0,5 % и ниже.

Анализ строения и состава куонамской свиты показал, что в ней присутствует три основных породообразующих компоненты: глинистая, кремнистая и карбонатная, соотношения между которыми в каждом горизонте различны. В нижнем бороулахском горизонте преобладает глинистый материал, в амыдайском горизонте доминирует кремнистая составляющая, верхние малокуонамский и маспакыйский горизонты отличаются высоким содержанием карбонатного вещества.

Среди глинистых минералов аргиллитов и смешанных пород по данным рентгеновского анализа наиболее распространены иллит, смектит и смешанослойные образования ряда иллит—смектит. В меньшем количестве присутствует хлорит, причем в основном он концентрируется в бороулахском горизонте. Преобладание смектита и иллита при отсутствии каолинита указывает на существенную удаленность источника сноса. Об этом же свидетельствует незначительное содержание терригенных обломков исключительно алевритовой размерности.

В карбонатной части зафиксировано два минерала: кальцит и доломит, преимущественно тонкомикрокристаллические, в большинстве случаев присутствующие совместно. Иногда встречается яснокристаллический кальцит, выполняющий остатки скелетной фауны, состав которой из-за очень мелких размеров (\leq 0,2 мм) определить затруднительно (рис. 4, a). Судя по незначительной примеси фаунистического детрита, накопление карбонатного вещества в большей степени было

связано с привносом тонкозернистого материала из достаточно удаленных мелководных областей, чем с отмиранием планктонных организмов. Только в малокуонамское время наблюдается некоторое увеличение содержания скелетных остатков.

Кремнезём представлен тонкозернистым агрегатом в виде смеси тонкокристаллического кварца и халцедона с хаотично рассеянными остатками спикул кремнёвых губок, центральные части которых нередко выполнены чёрным ОВ, реже радиоляриями (рис. $4, \delta$). Нередко наблюдается перекристаллизация сферолитово-волокнистых агрегатов, слагающих фаунистические остатки, в тонкокристаллические, что свидетельствует о преимущественно биогенном характере кремнистой седиментации.

Кроме основных компонентов, иногда в качестве породообразующего выступает ОВ, морфология и форма нахождения которого различны. Исследование ОВ в прозрачных шлифах под поляризационным микроскопом и методом сканирующей электронной микроскопии показало, что оно присутствует в двух формах: 1) в виде тонкоперетертого детрита (размер частиц меньше 0,05 мм), неравномерно рассеянного и/или образующего послойные скопления (рис. 4, в); 2) в виде аморфного ве-

щества, окрашенного в проходящем свете в разные оттенки красного, желтого и бурого цвета, выполняющего послойно ориентированные сильно уплощенные линзочки (шириной $0,01-0,15\,$ мм, длиной от $0,05\,$ до $1-2\,$ мм) (рис. $4,\,$ г).

Детритовое OB представлено в основном фрагментами цианобактериального планктона. Степень преобразования органических остатков различна: от хорошо сохранившихся нитевидных и палочковидных форм, присущих цианобактериям, в составе которых, согласно данным рентгеноспектрального микрозондового анализа, помимо углерода присутствуют такие элементы, как O, P, Cl, S, Si, Al, K, Na, Ca, Mg, Fe, V (рис. 5, a), до углефицицированных остатков неясного генезиса без элементов-примесей (рис. 5, 6). Линзовидные выделения бесструктурного OB, похожего на коллоальгенит с незначительной примесью микроэлементов (рис. 5, 6), встречаются реже и представляют собой разложившиеся до аморфного состояния остатки водорослей неясной систематики. Каких-либо закономерностей в распределении различных форм ОВ не выявлено, нередко они присутствуют вместе, что подтверждает данные геохимических исследований смешанном водорослевобактериальном биоценозе куонамского бассейна [17].

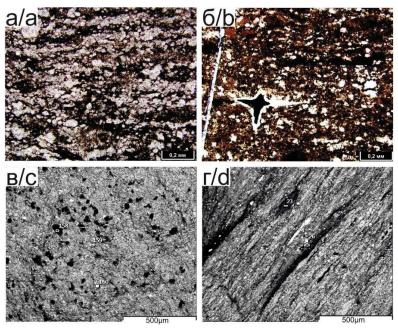


Рис. 4. Породообразующие компоненты (а, б – фото шлифов в параллельных николях; в, г – фото образцов в обратнорассеянных электронах – ОРЭ): а) яснокристаллический кальцит слагает фаунистические остатки округлых форм,
образующих послойно-линзовидные скопления в углеродисто-кремнисто-глинистой матрице; б) многочисленные
остатки кремниевых спикул и раковин (белое) в силиците, обогащенным ОВ; в) тонкоперетертый водорослево-бактериальный детрит (чёрное) хаотично распределен в глинисто-кремнисто-карбонатной матрице;
г) послойно-линзовидное распределение аморфного ОВ (чёрное) в карбонатном силиците

Fig. 4. Rock-forming components (a, b – photo of thin sections in plain light; c, d – photo of samples in back-scattered electrons – BSE): a) clear-crystalline calcite composes faunal remnants of rounded forms, forming layered lenticular accumulations in a carbonaceous-siliceous-argillaceous matrix; b) numerous remnants of siliceous spicules and shells (white) in silicite enriched in organic matter; c) finely ground algal-bacterial detritus (black) randomly distributed in a argillaceous-siliceous-carbonate matrix; d) layered lenticular distribution of amorphous organic matter (black) in carbonate silicite

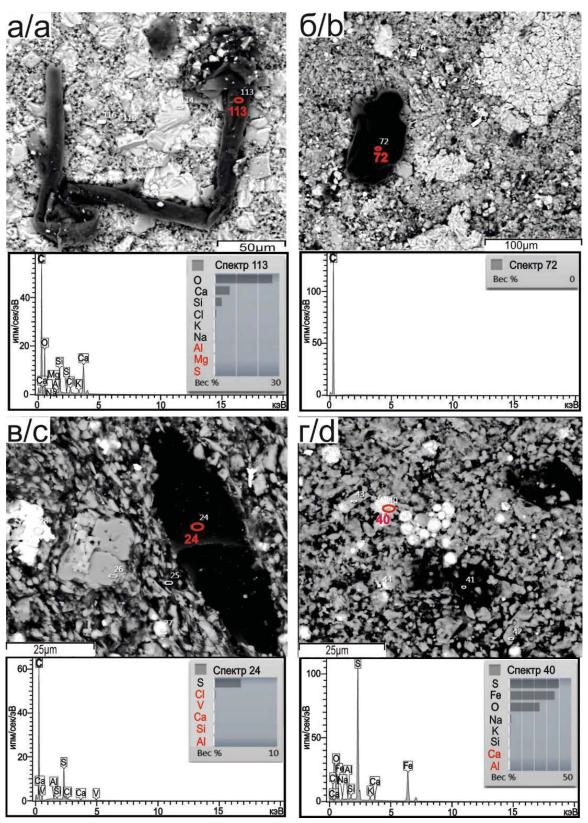
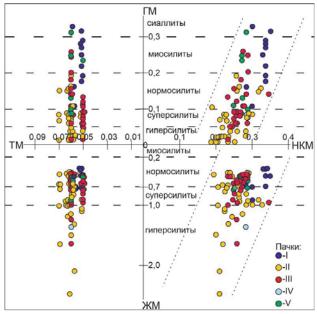



Рис. 5. Органическое вещество (снимки в ОРЭ с результатами рентгеноспектрального микроанализа): а) хорошо сохранившийся фрагмент цианобактериального планктона нитевидной формы; б) углефицированный остаток, в составе которого отсутствуют элементы-примеси; в) линзовидное выделение коллоальгенита; г) тонкоперетертый цианобактериальный детрит в ассоциации с фрамбоидальным пиритом

Fig. 5. Organic matter (images in the BSE with the results of X-ray spectral microanalysis): a) well-preserved filiform fragment of cyanobacterial plankton; b) carbonized remnant without admixtury elements; c) lenticular segregation of colloalgenite; d) finely ground cyanobacterial detritus in association with framboidal pyrite

Результаты геохимических исследований

Для уточнения минералогического состава и условий седиментации куонамской свиты использовались петрохимические модули [18]. На рис. 6 приведены сводные диаграммы петрохимических модулей, на которых видны вариации в химическом составе пород различных пачек. Карбонатные породы Я.Э. Юдович выделяет в отдельный тип карбонатолитов, однако с помощью гидролизатного модуля можно оценить состав силикатной примеси в этих породах.

Рис. 6. Положение фигуративных точек составов пород куонамской свиты на сводной модульной диаграмме [18]

Fig. 6. Position of the figurative points of the rock compositions of the Kuonamka Formation on the summary modular diagram [18]

Согласно значениям гидролизатного модуля – Γ М ($TiO_2+Al_2O_3+Fe_2O_3+MnO$)/ SiO_2) куонамская свита на территории исследования сложена главным образом силитами (ГМ менее 0,30), но распределение их типов по разрезу неравномерное. В нижнем бороулахском и верхнем маспакыйском горизонтах доминируют нормо- и миосилиты, что связано с несколько повышенной глинистостью этих отложений. Наибольшее содержание глинистого материала наблюдается в образцах из подошвы боханского и кровли маспакыйского горизонта, которые относятся к сиаллитам (ГМ=0,3-0,55). В нижней части амыдайского горизонта (пачка II) преобладают гипер- и суперсилиты (ГМ не более 0,2), что отражает повышенную кремнистость этой части разреза. В верхней части амыдайского горизонта (пачка III) наблюдается переслаивание всех типов силитов при преобладании супер- и нормосилитов

Вместе с ГМ для разделения глиноземистых и железистых компонентов применяется железный модуль — $\rm ЖM$ (Fe₂O₃+FeO+MnO/TiO₂+Al₂O₃). Согласно показателям $\rm ЖM$ в бороулахском и маспакыйском горизонтах с более высоким содержанием глинистого и карбонатного материала доминируют нормально железистые силиты. В амыдайском горизонте наблюдается переслаивание нормо-, гипери супержелезистых пород, причем первые два типа присутствуют примерно в равных количествах, а объем силитов с повышенным $\rm ЖM$ заметно меньше.

По значениям модуля нормированной щелочности HKM (Na_2O+K_2O)/ Al_2O_3) породы куонамской свиты нормально щелочные (HKM=0,2-0,4), примесь полевых шпатов в них незначительна, что подтверждается результатами петрографического анализа. На модульных диаграммах отмечается тренд на позитивную корреляцию ΓM –HKM, что отражает возрастание роли $\Pi IIII$ с увеличением глинистости пород. Тренд на негативную корреляцию $\mathcal{K}M$ –HKM указывает на более высокую железистость кремнистых и карбонатно-кремнистых пород.

Титановый модуль — TM (TiO_2/Al_2O_3) обычно используют для определения происхождения осадка. В изученных разрезах абсолютно все породы характеризуются стабильно низкими значениями TM (в среднем 0,05–0,06), что характерно для силицитов, а также свидетельствует об отсутствии примеси основной вулканокластики [19] и может служить индикатором глубоководных обстановок [20].

Алюмокремниевый модуль — АМ (Al₂O₃/SiO₂) по химическому смыслу дублирует гидролизатный модуль, но в более грубом виде отражает глинистость обломочных пород. Значения АМ практически во всех образцах амыдайского горизонта низкие (от 0,01 до 0,1), что указывает на их повышенную кремнистость, а в маспакыйском и бороудахском горизонтах нередко отмечаются образцы с более высокими значениями от 0,11 до 0,24, соответствующие нормоглиноземистым породам.

Фемический модуль ФМ (Fe₂O_{3общ}+MgO/SiO₂) полезен для распознавания вулканокластической примеси. В образцах, содержащих доломит в породообразующих количествах, его применение ограничено, поэтому они не рассматривались. В остальных породах куонамской свиты ФМ изменяется от 0,01 до 0,15, что позволяет классифицировать их как гипо- и нормофемические силиты.

Диаграмма ФМ-НКМ (рис. 7) используется для установления состава глинистого вещества. На ней видно, что фигуративные точки составов пород в большинстве сосредоточены в полях IV и V, отве-

чая преобладанию глинистого вещества хлоритиллитового состава (IV) и смешанослойных минералов (V), за исключением нескольких образцов боханского горизонта, в глинистом веществе которых помимо гидрослюды есть тонкодисперсная примесь полевых шпатов (VI). Этот вывод полностью совпадает с петрографическими наблюдениями и данными рентгеноструктурных исследований.

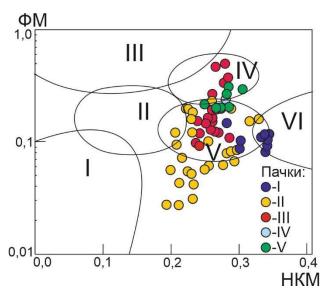


Рис. 7. Модульная диаграмма ФМ-НКМ [18]. Поля глинистых пород: I – с преобладанием каолинита, II – с преобладанием смектита с примесью каолинита и гидрослюды, III – с преобладанием хлорита с примесью железистых гидрослюд, IV – хлорит-гидрослюдистого состава, V – хлорит-смектит-гидрослюдистого состава, VI – гидрослюдистого состава с тонкой примесью полевых шпатов

Fig. 7. FM-SPM module diagramm [18]. The fields of clay rocks: I – with a predominance of kaolinite, II – with a predominance of smectite with an admixture of kaolinite and hydromica, III – with a predominance of chlorite with an admixture of ferruginous hydromicas, IV – chlorite-hydromica composition, VI – chlorite-smectite-hydromica composition, VI – hydromica composition with a fine admixture of feldspars

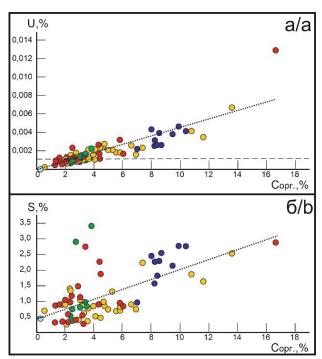
Анализ микроэлементного состава (таблица) показал, что куонамской свите свойственны повышенные содержания ванадия, никеля и молибдена, что характерно для черносланцевых толщ по всему миру [21]. При этом наблюдается неравномерное распределение их по разрезу на фоне общего тренда на уменьшение вверх. В целом повышенные концентрации этих элементов наблюдаются в породах, обогащенных ОВ, при этом наиболее углеродистый бороулахский горизонт (пачка I) отличается аномально высокими количествами. Содержа-

ния Си в основной части разреза пониженные, за исключением бороулахского горизонта, где они немного выше кларковых. Концентрация марганца в разрезе значительно ниже кларка, за исключением редких образцов, где карбонатная составляющая занимает более 40 %. Тенденция на увеличение концентраций по мере возрастания карбонатности характерна и для стронция, значения которого часто выше кларковых. Распределение бария неравномерное. В бороулахском горизонте его содержание заметно превышает кларковые значения, в остальных горизонтах Ва в основном ниже кларка, лишь в нескольких образцах наблюдаются кларковые и более высокие количества. Концентрации урана в большинстве случаев выше кларковых (13 ±2 г/т или $0,0013 \pm 0,0002$ %), при этом наблюдается хорошая корреляция между U и Сорг. (рис. 8, а). Содержания редкоземельных элементов в изученных отложениях ниже кларковых, что обусловлено незначительным количеством терригенной примеси.

Таблица. Микроэлементный состав пород куонамской свиты

Table. Microelement composition of the rocks of the Kuonamka Formation

7	Содержание, г/т/Content, g/t							
Элементы Elements	Пачка/Member							
Elements	I	II	III	IV	V	Clark		
V	<u>482 - 2971</u> 1581	<u>45 - 685</u> 197	<u>65 - 653</u> 232	12	<u>60 - 255</u> 145	250		
Ni	<u>66 – 213</u> 157	<u>18 - 160</u> 41	<u>17 - 196</u> 56	10	<u>21 - 79</u> 43	68		
Мо	<u>61 - 276</u> 122	<u>8 - 169</u> 35	<u>22 - 68</u> 32	1	<u>19 - 70</u> 33	20		
Cu	<u>40 - 111</u> 94	<u>8 - 47</u> 23	<u>16 - 53</u> 28	19	<u>16 - 51</u> 24	70		
Mn	<u>124 - 279</u> 193	<u>27 - 292</u> 68	<u>40 - 471</u> 179	458	<u>118 - 558</u> 224	400		
Ва	<u>668 – 954</u> 762	<u>228 - 725</u> 473	301 - 1079 565	335	<u>407 - 666</u> 556	500		
Sr	<u>207 - 446</u> 310	<u>83 - 736</u> 291	<u>91 - 787</u> 291	396	<u>477 - 797</u> 519	190		
U	<u>23 - 46</u> 35	<u>6 - 67</u> 16	<u>6 - 127</u> 13	1	<u>8 - 23</u> 13	13		


Примечание: числитель – минимальное и максимальное значения, знаменатель – среднее значение.

Note: the numerator is the minimum and maximum values, the denominator is the mean value.

Для реконструкции окислительно-восстановительных обстановок использовался ряд классических показателей. В первую очередь, степень пиритизации железа — СП [22], согласно значениям которой во время формирования куонамской свиты господствовали восстановительные обстановки. Средние величины СП в амыдайском горизонте — 0,7, а в бороулахском и маспакыйском горизонтах — 0,8, что говорит об условиях близких к эвксинско-

му типу и подтверждается низким содержанием оксида марганца ≤0,03 %.

Хорошо согласуется с данными, полученными при анализе СП, такой показатель редокс-обстановок, как отношение Сорг. и сульфидной серы [23], который изменяется от 0,7 до 12,6 (в среднем 5) при среднем медианном значении 4,4. Существование обстановок близких к эвксинным подтверждается тем фактом, что линия регресии $C_{\text{орг.}}$ и S начинается не с нуля, при этом прослеживается довольно тесная связь органического углерода и серы сульфидной (рис. 8, б). К тому же анализ пород под электронным сканирующим микроскопом показал широкое развитие по органическому веществу фрамбоидального пирита (рис. 5, г), образование которого, по мнению многих исследователей, обусловлено деятельностью сульфатредуцирующих бактерий в восстановительных условиях, существовавших в наддонных водах и в верхнем слое осадков [24, 25 и др.].

Рис. 8. Взаимосвязь содержания органического углерода и урана (а) и серы (б)

Fig. 8. Relationship between the content of organic carbon and uranium (a) and sulfur (b)

Еще одним доказательством бескислородных условий седиментации являются высокие значения отношения Мо/Мп, поскольку молибден активно осаждается в обстановках сероводородного заражения, а марганец в данной ситуации находится в растворенной форме [26]. В большинстве образцов куонамской свиты величина Мо/Мп более 0,09 при среднем значении 0,5. В бороулахском горизонте

она наиболее высокая и изменяется в диапазоне от 0,7 до 2. Самый низкий показатель Мо/Мп=0,02 зафиксирован в малокуонамском горизонте. Тем не менее он тоже характеризует аноксидные условия, хоть и близок к границе перехода к субоксидным. Кроме того, существование восстановительных обстановок подтверждает такой показатель, как содержание аутигенного урана (U_{аут.}), осаждение которого из морской воды происходит в бескислородных условиях [27–29]. Доля $U_{\rm avr.}$ в общем содержании урана (Uобщ.), находящегося в породах, [28], определяется ПО $U_{\text{аут.}} = U_{\text{общ.}} - \text{Th/3}$. По данным [28, 29] значения $10 < U_{avt} < 15$ указывают на бескислородную среду, а U_{avr} >15 характеризуют эвксинные условия. В куонамской свите доля аутигенного урана изменяется от 10 до 66, причем наиболее высокие значения (>15) наблюдаются в бороулахском горизонте и нижней пачке амыдайского горизонта.

Присутствие в осадках эксгаляционных компонентов устанавливается по модулю Fe+Mn/Ti [30], значения которого должно быть \geq 25. Во всех изученных пачках этот модуль изменяется от 7 до 24, причем значения более 20 фиксируются в единичных случаях, а средние значения составляют 10-12. Подтверждением практически полного отсутствия подводной эксгалятивной деятельности является и модуль Бострёма — Al/Al+Fe+Mn [31], величина которого повсеместно \geq 0,4 (в среднем 0,6), при том что влияние эксгалятивного компонента определяется значениями <0,4.

Индикатором палеосолености является соотношение в породе Sr/Ba, значение которого в большинстве образцов куонамской свиты равно или чуть более 1, что соответствует обстановкам нормальной морской солености [32, 33].

Заключение

Анализ литолого-геохимических характеристик высокоуглеродистых отложений кембрия в бассейне р. Кюленке показал:

Куонамская свита в изученных разрезах обладает выдержанным строением, в котором четко прослеживаются четыре литологостратиграфических горизонта. Состав отложений преимущественно смешанный и определяется вариациями трёх основных минеральных групп: глинистой, карбонатной и кремнистой. Кроме того, в качестве породообразующего участвует органическое вещество, содержание которого изменяется от 2 до 17 %, при средних значениях около 5 %, за исключением малокуонамского горизонта, где Сорг.<1 %. Наибольшие концентрации ОВ приурочены к породам смешанного карбонатно-глинисто-кремнистого состава, высокие содержания также характерны

- для силицитов, а самые низкие показатели Сорг. отмечаются в известняках. Вверх по разрезу фиксируется тренд на сокращение роли кремнистого материала (от 90 до 10 %) и органического вещества (от 7 до 1 %) на фоне повышения содержания карбонатной составляющей.
- 2. Литохимические данные и такие литологические особенности свиты, как наличие тонкоперетертого карбонатного материала, отсутствие крупных фаунистических остатков, широкое развитие радиоляриево-спикуловых кремней, минимальное содержание терригенной примеси, высокая концентрация ОВ и доминирование тонкослоистых текстур, указывают на то, что осадконакопление происходило далеко от источников сноса в депрессионной зоне открытоморского бассейна со слабой циркуляцией придонных вод в бескислородных условиях. Геохимическая среда в карбонатно-кремнистых илах была преимущественно эвксинной.
- 3. Изменения в составе горизонтов отражают эволюцию осадочного бассейна. Начало формирования куонамской свиты связано с трансгрессией [9, 10, 13], достигшей максимума во время накопления нижней пачки амыдайского горизонта, что отразилось в преобладании кремнистой биогенной составляющей. Увеличение доли карбонатных осадков в малокуонамское и маспакыйское время связано с постепенным заполнением окраинных частей бассейна продуктами разрушения расположенной на западе барьерно-рифовой системы [9, 10, 12] и последующим обмелением. Таким образом, куонамская свита сформировалась в течение одного крупного трансгрессивно-регрессивного седиментационного цикла и представляет собой последовательность заполнения глубоководной депрессии с некомпенсированным осадконакоплением.

СПИСОК ЛИТЕРАТУРЫ

- 1. Гриненко В.С., Баранов В.В., Девятов В.П. Северо-Азиатская черносланцевая рудоносная мегапровинция на северовостоке Евразии и её перспективная мирагения // Руды и металлы. 2022. № 2. С. 36–55.
- 2. Мустафин С.К., Трифонов А.Н., Стручков К.К. Горючие сланцы как комплексное минеральное сырьё: региональные аспекты прогнозирования и оценки, перспективы освоения // Проблемы минералогии, петрографии и металлогении. Научные чтения памяти П.Н. Чирвинского. 2021. № 24. С. 146–154.
- 3. Organic-matter-rich Shales of China / C. Zou, R. Zhu, S. Wu, D. Dong, Z. Qiu, Y. Wang, L. Wang, S. Lin, J. Cui, L. Su, Z. Yang, Z.Q. Chen, J.G. Ogg // Earth-Science Reviews. 2019. Vol. 189. P. 51–78.
- 4. Enrichment of platinum group elements in Lower Cambrian polymetallic black shale, SE Yangtze Block, China / Y. Fu, Z. Yang, P. Xia, C. Li // Frontiers in Earth Science. 2021. Vol. 9. P. 651948.
- Kerogen composition and origin, oil and gas generation potential of the Berriasian Wealden Shales of the Lower Saxony Basin / F. Froidl, R. Littke, S. Grohmann, A. Baniasad, J. Böcker, C. Hartkopf-Fröder, P. Weniger // International Journal of Coal Geology. – 2021. – Vol. 246. – P. 103831.
- 6. Гурари Ф.Г. Доманикиты и их нефтегазоносность // Советская геология. 1981. № 11. С. 3–12.
- 7. Бахтуров С.Ф., Евтушенко В.М., Переладов В.С. Куонамская битуминозная карбонатно-сланцевая формация. Новосибирск: Наука, 1988. 160 с.
- 8. Кембрий Сибирской платформы (Юдомо-Оленекский тип разреза. Куонамский комплекс отложений) / В.Е. Савицкий, В.М. Евтушенко, Л.И. Егорова, А.Э. Конторович, Ю.Я. Шабанов. М.: Недра, 1972. 199 с.
- 9. Стратиграфия нефтегазоносных бассейнов Сибири. Кембрий Сибирской платформы / С.С. Сухов, Ю.Я. Шабанов, Т.В. Пегель, С.В. Сараев, Ю.Ф. Филиппов, И.В. Коровников, В.М. Сундуков, А.Б. Федоров, А.И. Варламов, А.С. Ефимов, В.А. Конторович, А.Э. Конторович. Новосибирск: ИНГГ СО РАН, 2016. 497 с.
- 10. Конторович А.Э., Савицкий В.Е. К палеогеографии Сибирской платформы в раннюю и среднюю кембрийскую эпохи // Вопросы литологии и палеогеографии Сибири. Новосибирск: СНИИГГиМС, 1970. С. 95–106.
- Вопросы литологии и палеогеографии Сибири. Новосибирск: СНИЙГТиМС, 1970. С. 95–106.

 11. Эллерн С.С. О причинах образования Восточно–Сибирской системы некомпенсированных прогибов // Некомпенсированные прогибы платформ и их нефтегазоносность. Казань: Изд-во Казан. Ун-та, 1976. С. 30–41.
- 12. Перспективы нефтегазоносности кембрийских барьерных рифовых систем Сибирской платформы в свете новых геолого–геофизических данных / М.А. Масленников, С.С. Сухов, П.Н. Соболев, Е.Г. Наумова, А.Н. Процко, И.В. Ракитина, О.Л. Константинова // Геология нефти и газа. 2021. № 4. С. 29–50.
- 13. Старосельцев В.С., Шишкин Б.Б. Обстановки накопления углеродистых пород кембрия Сибирской платформы // Геология и геофизика. 2014. Т. 55. № 5–6. С. 787–796.
- 14. Коровников И.В., Парфенова Т.М. Трилобиты, биостратиграфия и геохимия куонамской свиты среднего кембрия (северо-восток Сибирской платформы, р. Кюленке) // Геология и геофизика. 2021. Т. 62. № 11. С. 1531–1545.
- 15. Тектоническая карта нефтегазоносных провинций Сибирской платформы / под ред. В.С. Старосельцева. Новосибирск: СНИИГГиМС, 2001.
- 16. Савицкий В.Е. Стратиграфия и фации нижнего и среднего кембрил Сибирской платформы: автореф. дис. ... д-ра геол.минерал. наук. – Новосибирск, 1971. – 44 с.
- 17. Геохимия органического вещества нефтепроизводящих пород среднего кембрия (северо–восток Сибирской платформы) / Т.М. Парфенова, И.В. Коровников, Е.Н. Иванова, В.Н. Меленевский // Геология нефти и газа. 2011. № 5. С. 64–72.
- 18. Юдович Я.Э., Кетрис М.П. Основы литохимии. СПб.: Hayka, 2000. 479 с.
- 19. Grasso V.G. The TiO2 frequency in volcanic rocks // Geologische Rundschau. 1968. Vol. 57. P. 930–935.
- 20. Юдович Я.Э., Кетрис М.П. Геохимия черных сланцев. Л.: Наука, 1988. 272 с.

- 21. Vind J., Tamm K. Review of the extraction of key metallic values from black shales in relation to their geological and mineralogical properties // Minerals Engineering. 2021. Vol. 174. P. 107271.
- 22. Degree of pyritisation of iron as a paleoenvironmental indicator of bottom-water oxygenation / R. Raiswell, F. Buckley, R.A. Berner, T.F. Anderson // Journal of Sedimentary Petrology. − 1988. − № 58. − P. 812−819.
- 23. Berner R.A., Raiswell R. Burial of organic carbon and pyrite sulphur in sediments over Phanerozoic time: a new theory // Geochim et Cosmochim. Acta. 1983. Vol. 47. P. 855–862.
- 24. A high-resolution chemical and structural study of framboidal pyrite formed within a low- temperature bacterial biofilm / L.C. Maclean, T. Tyliszczak, P.U. Gilbert, D. Zhou, T.J. Pray, T.C. Onstott, G. Southam // Geobiology. − 2008. − № 6 (5). − P. 471–480.
- 25. Mechanisms of pyrite formation promoted by sulfate-reducing bacteria in pure culture / A. Duverger, J.S. Berg, F. Guyot, S. Bernard, J. Miot, V. Busigny // Frontiers in Earth Science. 2020. Vol. 8. P. 588310.
- 26. Холодов В.Н., Недумов Р.И. О геохимических критериях появления сероводородного заражения в водах древних водоемов // Известия АН СССР, Серия геологическая. 1991. № 12. С. 74–82.
- 27. Algeo T.J., Li C. Redox classification and calibration of redox thresholds in sedimentary systems // Geochimica et Cosmochimica. Acta. 2020. Vol. 287. P. 8–26.
- 28. Wignall P.B., Myers K.J. Interpreting benthic oxygen levels in mudrocks: a new approach // Geology. 1988. № 16. P. 452–455.
- 29. Wignall P.B. Black shales. Oxford: Oxford University Press, 1994. 130 p.
- 30. Страхов Н.М. Проблемы геохимии современного океанского литогенеза. М.: Наука, 1976. 300 с.
- 31. Aluminum-poor ferromanganoan sediments on active oceanic ridges / K. Boström, M.N.A. Peterson, O. Joensuu, D.E. Fisher // Journal of Geophysical Research. 1969. Vol. 74. № 12. P. 3261–3270.
- 32. Юдович Я.Э., Кетрис М.П. Геохимические индикаторы литогенеза (литологическая геохимия). Сыктывкар: Геопринт, 2011. 742 с.
- 33. Wei W., Algeo T.J. Elemental proxies for paleosalinity analysis of ancient shales and mudrocks // Geochimica et Cosmochimica Acta. 2020. Vol. 287. P. 341–366.

Информация об авторах

Ирина Валерьевна Вараксина, кандидат геолого-минералогических наук, старший научный сотрудник лаборатории седиментологии Института нефтегазовой геологии и геофизики им. А.А. Трофимука Сибирского отделения Российской академии наук, Россия, 630090, г. Новосибирск, пр. Академика Коптюга, 3. VaraksinalV@ipgg.sbras.ru

Поступила в редакцию: 22.05.2023

Поступила после рецензирования: 08.08.2023

Принята к публикации: 21.02.2024

REFERENCES

- 1. Grinenko V.S., Baranov V.V., Devyatov V.P. North-Asian black shale ore-bearing megaprovince in the northeastern Eurasia and its prospective minerogeny. *Ores and metals*, 2022, no. 2, pp. 36–55. (In Russ.)
- 2. Mustafin S.K., Trifonov A.N., Struchkov K.K. Oil shale as a complex mineral raw material: regional aspects of forecasting and assessment, development prospects. *Problems of mineralogy, petrography and metallogeny. Scientific readings in memory of P.N. Chirvinsky*, 2021, no. 24, pp. 146–154. (In Russ.)
- 3. Zou C., Zhu R., Wu S., Dong D., Qiu Z., Wang Y., Wang L., Lin S., Cui J., Su L., Yang Z., Chen Z.Q., Ogg J.G. Organic-matterrich Shales of China. *Earth-Science Reviews*, 2019, vol. 189, pp. 51–78.
- 4. Fu Y., Yang Z., Xia P., Li C. Enrichment of platinum group elements in lower Cambrian polymetallic black shale, SE Yangtze Block, China. *Frontiers in Earth Science*, 2021, vol. 9, pp. 651948.
- 5. Froidl F., Littke R., Grohmann S., Baniasad A., Böcker J., Hartkopf-Fröder C., Weniger P. Kerogen composition and origin, oil and gas generation potential of the Berriasian Wealden Shales of the Lower Saxony Basin. *International Journal of Coal Geology*, 2021, vol. 246, pp. 103831.
- 6. Gurari F.G. Domanikites and their oil and gas potential. Sovetskaya geologiya, 1981, no. 11, pp. 3–12. (In Russ.)
- 7. Bahturov S.F., Evtushenko V.M., Pereladov V.S. *Kuonamska bituminous carbonate-shale Formation*. Novosibirsk, Nauka Publ., 1988. 160 p. (In Russ.)
- 8. Savitskiy V.E., Evtushenko V.M., Egorova L.I., Kontorovich A.E., Shabanov Yu.Ya. *Cambrian of the Siberian Platform (Yudomo-Oleneksky type of section. Kuonamsky sedimentary complex)*. Moscow, Nedra Publ., 1972. 199 p. (In Russ.)
- 9. Suhov S.S., Shabanov Yu.Ya., Pegel T.V., Saraev S.V., Filippov YU.F., Korovnikov I.V., Sundukov V.M., Fedorov A.B., Varlamov A.I., Efimov A.S., Kontorovich V.A., Kontorovich A.E. *Stratigraphy of oil and gas bearing basins of Siberia. Cambrian of the Siberian Platform.* Novosibirsk, INGG SO RAN Publ., 2016. 497 p. (In Russ.)
- 10. Kontorovich A.E., Savitskiy V.E. On the Paleogeography of the Siberian Platform in the Early and Middle Cambrian. *Questions of lithology and paleogeography of Siberia*. Novosibirsk, SNIIGGiMS Publ., 1970. pp. 95–106. (In Russ.)
- 11. Ellern S.S. On the reasons for the formation of the East Siberian system of uncompensated troughs. *Uncompensated platform deflections and their oil and gas potential*. Kazan, Kazan University Publ., 1976. pp. 30–41. (In Russ.)
- 12. Maslennikov M.A., Suhov S.S., Sobolev P.N., Naumova E.G., Procko A.N., Rakitina I.V., Konstantinova O.L. Cambrian barrier reef systems of Siberian platform: petroleum potential in light of new geological and geophysical data. *Oil and gas geology*, 2021, no. 4, pp. 29–50. (In Russ.)

- 13. Staroselcev V.S., Shishkin B.B. Environmental conditions of accumulation of Cambrian carbonaceous rocks in the Siberian platform. *Russian Geology and Geophysics*, 2014, vol. 55, no. 5–6, pp. 787–796. (In Russ.)
- 14. Korovnikov I.V., Parfenova T.M. Trilobites, biostratigraphy, and geochemistry of the Middle Cambrian Kuonamka Formation (northeastern Siberian platform, Kyulenke river). *Russian Geology and Geophysics*, 2021, vol. 62, no. 11, pp. 1531–1545. (In Russ.)
- 15. Staroselcev V.S. Tectonic map of the oil and gas provinces of the Siberian Platform. Novosibirsk, SNIIGGiMS Publ., 2001. (In Russ.)
- 16. Savitskiy V.E. Stratigraphy and facies of the Lower and Middle Cambrian of the Siberian Platform. Dr. Diss. Abstract. Novosibirsk, 1971. 44 p. (In Russ.)
- 17. Parfenova T.M., Korovnikov I.V., Ivanova E.N., Melenevskiy V.N. Geochemistry of organic matter of Middle cambrian oil producing rocks (north-east of Siberian platform). *Oil and gas geology*, 2011, no. 5, pp. 64–72. (In Russ.)
- 18. Yudovich Ya.E., Ketris M.P. Fundamentals of lithochemistry. St Petersburg, Nauka Publ., 2000. 479 p. (In Russ.)
- 19. Grasso V.G. The TiO₂ frequency in volcanic rocks. *Geologische Rundschau*, 1968, vol. 57, pp. 930–935.
- 20. Yudovich Ya.E., Ketris M.P. Geochemistry of black shales. St Petersburg, Nauka Publ., 1988. 272 p. (In Russ.)
- 21. Vind J., Tamm K. Review of the extraction of key metallic values from black shales in relation to their geological and mineralogical properties. *Minerals Engineering*, 2021, vol. 174, pp. 107271.
- 22. Raiswell R., Buckley F., Berner R.A., Anderson T.F. Degree of pyritisation of iron as a paleoenvironmental indicator of bottom-water oxygenation. *Journal of Sedimentary Petrology*, 1988, no. 58, pp. 812–819.
- 23. Berner R.A., Raiswell R. Burial of organic carbon and pyrite sulphur in sediments over Phanerozoic time: a new theory. *Geochim et Cosmochim. Acta*, 1983, vol. 47, pp. 855–862.
- 24. Maclean L.C., Tyliszczak T., Gilbert P.U., Zhou D., Pray T.J., Onstott T.C., Southam G. A high-resolution chemical and structural study of framboidal pyrite formed within a low-temperature bacterial biofilm. *Geobiology*, 2008, no. 6 (5), pp. 471–480.
- 25. Duverger A., Berg J.S., Guyot F., Bernard S., Miot J., Busigny V. Mechanisms of pyrite formation promoted by sulfate-reducing bacteria in pure culture. *Frontiers in Earth Science*, 2020, vol. 8, pp. 588310.
- 26. Holodov V.N., Nedumov R.I. On geochemical criteria for the appearance of hydrogen sulfide contamination in the waters of ancient reservoirs. *Izvestiya AN SSSR, Seriya geologicheskaya*, 1991, no. 12, pp. 74–82. (In Russ.)
- 27. Algeo T.J., Li C. Redox classification and calibration of redox thresholds in sedimentary systems. *Geochimica et Cosmochimica*. *Acta*, 2020, vol. 287, pp. 8–26.
- 28. Wignall P.B., Myers K.J. Interpreting benthic oxygen levels in mudrocks: a new approach. Geology, 1988, no. 16, pp. 452–455.
- 29. Wignall P.B. Black shales. Oxford, Oxford University Press, 1994. 130 p.
- 30. Strahov N.M. Problems of geochemistry of modern oceanic lithogenesis. Moscow, Nauka Publ., 1976. 300 p.
- 31. Boström K., Peterson M.N.A., Joensuu O., Fisher D.E. Aluminum-poor ferromanganoan sediments on active oceanic ridges. *Journal of Geophysical Research*, 1969, vol. 74, no. 12, pp. 3261–3270.
- 32. Yudovich Ya.E., Ketris M.P Geochemical indicators of lithogenesis (lithological geochemistry). Syktyvkar, Geoprint Publ., 2011. 742 p. (In Russ.)
- 33. Wei W., Algeo T.J. Elemental proxies for paleosalinity analysis of ancient shales and mudrocks. *Geochimica et Cosmochimica Acta*, 2020, vol. 287, pp. 341–366.

Information about the authors

Irina V. Varaksina, Cand. Sc., Senior Researcher, Trofimuk Institute of Petroleum Geology and Geophysics of Siberian branch of Russian Academy of Sciences, 3, Koptyug avenue, Novosibirsk, 630090, Russian Federation. VaraksinalV@ipgg.sbras.ru

Received: 22.05.2023 Revised: 08.08.2023 Accepted: 21.02.2024 УДК 551.732.2:56(571.5)

DOI: 10.18799/24131830/2024/3/4275 Шифр специальности ВАК: 25.00.01

Осинская подсвита усольской свиты нижнего кембрия центральной и южной частей Непско-Ботуобинской антеклизы: строение, условия формирования и биостратиграфическая характеристика

Д.А. Токарев^{1,2}, А.В. Плюснин^{3⊠}, А.А. Терлеев¹, Д.А. Староселец³, Е.В. Никулин³, И.В. Афонин⁴, Е.А. Агашева⁴

¹ Институт нефтегазовой геологии и геофизики им. А.А. Трофимука СО РАН, Россия, г. Новосибирск ² Новосибирский государственный университет, Россия, г. Новосибирск ³ Тюменский государственный университет, Россия, г. Тюмень ⁴ Томский государственный университет, Россия, г. Томск

[⊠]a.v.plyusnin@mail.ru

Аннотация. Актуальность. Современная активная разведка и освоение углеводородсодержащих отложений Лено-Тунгусской нефтегазоносной провинции актуализировали исследования карбонатных пород осинской подсвиты. Особую перспективность среди них занимают работы, позволяющие выявить закономерности формирования ловушек нефти и газа. Цель: представить результаты литолого-фациального, биостратиграфического и петрофизического изучения осинского горизонта южной и центральной части Непско-Ботуобинской антеклизы. Объекты: карбонатные породы средней (осинской) подсвиты усольской свиты томмотского яруса нижнего кембрия, изученные по керну скважин. Методы: комплекс ГИС, детальное литолого-седиментологическое описание керна, секвенсстратиграфический анализ, петрографический анализ 300 образцов и изучение палеонтологических остатков кернового материала. Результаты. На основании выполненных исследований выделены, прослежены и впервые описаны три зоны осадконакопления: глубоководная, краевая и мелководная. Для глубоководной зоны характерно некомпенсированное осадконакопление, присутствие одиночных рифов и приуроченность к депрессионным впадинам и прогибам. Она окаймлялась краевой зоной карбонатной платформы, связанной с повышенными толщинами подсвиты и распространением по площади рифов. Следом за ней располагалась мелководная зона, представленная средними и уменьшенными толщинами осинской подсвиты, её отложения сложены породами карбонатного зернистого и глинистого составов с маломощными одиночными рифами. Локализованная краевая зона карбонатной платформы протяжённого распространения согласуется с ранее выделенными Чамбинско-Алтыбско-Мирнинской и Верхнетохомско-Катско-Пилюдинской зонами распространения рифоподобных органогенных построек. На основании изученных скважин выполнено описание строения трех пачек согласно литолого-фациальному профилю. Приведен авторский вариант проведения границ пачек. Выявлено, что в глубоководной зоне перспективы поиска пород-коллекторов связаны с одиночными карбонатными постройками, в краевой с площадным биогермом, а в мелководной с детритовыми отложениями и мелкими биогермами. Показана приуроченность палеонтологических находок к выделенным зонам осадконакопления и пачкам. Определено, что в формировании второй и третьей пачек, краевой зоны карбонатной платформы участвовали водоросли, диагностированные в баундстоунах (автохтонные). Археоциаты диагностированы в детритовых карбонатных породах второй пачки (аллохтонные) в скв. № 7 и автохтонные в баундстоунах скв. 2Х. Крибрициаты найдены в баундстоунах третьей пачки (автохтонные). Археоциаты, крибрициаты, намакалатусы, известковые водоросли, изученные из керна скважин Западно-Ярактинская № 45, 361, Большетирская № 7, 3X, 2X, 4X, 5X, 6X, являлись основными эдификаторами раннекембрийских органогенных построек (биостромы, биогермы, биогермные массивы, рифогенные образования).

Ключевые слова: кембрий, осинская подсвита, Восточная Сибирь, археоциаты, цианобактерии, органогенные постройки, секвенс-стратиграфический анализ

Благодарности: Работа выполнена в рамках госзадания РАН по Фундаментальным научным исследованиям, проект FW ZZ-2022-0003, FW ZZ-2022-0002.

Для цитирования: Осинская подсвита усольской свиты нижнего кембрия центральной и южной частей Непско-Ботуобинской антеклизы: строение, условия формирования и биостратиграфическая характеристика / Д.А. Токарев, А.В. Плюснин, А.А. Терлеев, Д.А. Староселец, Е.В. Никулин, И.В. Афонин, Е.А. Агашева // Известия Томского политехнического университета. Инжиниринг георесурсов. − 2024. − Т. 335. − № 3. − С. 176−191. DOI: 10.18799/24131830/2024/3/4275

UDC 551.732.2:56(571.5)

DOI: 10.18799/24131830/2024/3/4275

Osinskaya subformation of the Usolsky formation of the Lower Cambrian of the central and southern parts of the Nepa-Botuoba anteclise: structure, formation conditions and biostratigraphical characteristics

D.A. Tokarev^{1,2}, A.V. Plusnin^{3⊠}, A.A. Terleev¹, D.A. Staroselets³, E.V. Nikulin³, I.V. Afonin⁴, E.A. Agasheva⁴

¹ Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch Russian Academy of Sciences,
Novosibirsk, Russian Federation

² Novosibirsk State University, Novosibirsk, Russian Federation

³ University of Tyumen, Tyumen, Russian Federation

⁴ Tomsk State University, Tomsk, Russian Federation

[™]a.v.plyusnin@mail.ru

Abstract. Relevance. Geological prospecting carried out recently throughout the Lena-Tunguska oil-and-gas province makes studies of carbonates of the Osinskaya subformation particularly relevant, as they make it possible to establish the patterns of hydrocarbon trap formation. Aim. To present the results of the lithological and facial, biostratigraphic and petrophysical studies of the Osinskaya subformation in the southern and central part of the Nepa-Botuoba anteclise. Objects. Carbonate rocks of the middle Osinskaya subformation of the Usolskiy Formation of the Lower Cambrian Tommotian Stage, studied from well cores. Methods. GIS complex, detailed lithological and sedimentological description of the core, sequential stratigraphic analysis, petrographic analysis of 300 samples and examination of paleontological remains taken from the core; analysis. Results. Based on these studies, three sedimentation zones were identified, traced, and described for the first time: deep-water, marginal, and shallow-water. The deepwater zone is characterized by uncompensated sedimentation, the presence of single reefs, and confinement to depressions and troughs. It was flanked by an edge zone of carbonate platform associated with elevated thicknesses of the subformation and distribution of reefs over the area. It was followed by a shallow-water zone, represented by medium and reduced thicknesses of the Osinskaya subformation, its sediments are composed of carbonate grained and clayey rocks with small single reefs. The localized marginal zone of the extended carbonate platform agrees with the previously identified Chambinsko-Altybsko-Mirninskaya and Verkhnetokhomsko-Katsko-Pilyudinskaya zones of distribution of reef-like organogenic structures. On the basis of the studied wells, the structure of three formations according to the lithologic-facial profile was described. The paper introduces the authors' variant of conducting the boundaries of the members. It was revealed that in the deep-water zone the prospects of searching for reservoir rocks are associated with single carbonate structures, in the marginal zone with area bioherms, and in the shallow-water zone with detrital deposits and shallow bioherms. The paleontological finds are shown to be confined to the selected sedimentation zones and beds. It was determined that algae diagnosed in the boudstones (autochthonous) were involved in the formation of the second and third strata, the edge zone of the carbonate platform. Archaeocyaths were diagnosed in detrital carbonate rocks of the second pack (allochthonous) in well no. 7 and autochthonous in boudstones of well no. 2X. Cribriciates were diagnosed in the boudstones of the third member (autochthonous). Archaeocyaths, cribriciates, namacalatusses, and calcareous algae studied from the cores of wells West Yaractinian no. 45, 361, Bolshetyrskaya no. 7, 3X, 2X, 4X, 5X, 6X were major edificators of Early Cambrian organogenic structures (biostromes, bioherms, bioherms massifs, reef formations).

Keywords: Cambrian, Osinskaya subformation, Eastern Siberia, archaeocyaths, cyanobacteria, organogenic structures, sequence stratigraphic analysis

Acknowledgements: The work was carried out within the framework of the state assignment of the Russian Academy of Sciences for Fundamental Intermediate Research, project FW ZZ-2022-0003, FW ZZ-2022-0002.

For citation: Tokarev D.A., Plusnin A.V., Terleev A.A., Staroselets D.A., Nikulin E.V., Afonin I.V., Agasheva E.A. Osinskaya subformation of the Usolsky formation of the Lower Cambrian of the central and southern parts of the Nepa-Botuoba anteclise: structure, formation conditions and biostratigraphical characteristics. *Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering*, 2024, vol. 335, no. 3, pp. 176–191. DOI: 10.18799/24131830/2024/3/4275

Введение

Венд-кембрийский карбонатный комплекс юга Восточной Сибири в последнее время представляет собой объект пристального внимания геологов-

нефтяников, так как является одним из основных нефтегазопродуктивных горизонтов Лено-Тунгусской провинции. Наибольшие перспективы в Иркутской области связывают с осинским продуктивным го-

ризонтом. Уже доказана его продуктивность на таких месторождениях, как Марковское, Талаканское, Ичединское, Северо-Даниловское и др. [1]. В настоящий период в пределах всей Лено-Тунгусской нефтегазоносной провинции ведутся активные геологоразведочные работы, что делает исследования карбонатов осинской подсвиты особенно актуальными, поскольку результаты подобных изучений позволят установить закономерности образования ловушек углеводородов. Работа является продолжением цикла публикаций, посвящённых строению осинской карбонатной эпиконтинентальной платформы [2-5]. В настоящем исследовании авторы публикуют результаты комплексного литолого-биостратиграфического исследования различных типов разреза осинской подсвиты.

Объект и методы исследования

Основой для работы послужили результаты литолого-фациального и секвенс-стратиграфического анализа керна карбонатных пород осинской под-

свиты, вскрытых скважинами Западно-Ярактинскими № 45 и 361, № 7 Большетирской, а также № 1X, 2X, 3X, 4X, 5X и 6X. Территориально скважины располагаются на севере Иркутской области, в междуречье р. Лены и Нижней Тунгуски (рис. 1, a, b).

Общий метраж изученного керна составил более 900 м. Помимо этого изучался комплекс ГИС, включавший гамма- (ГК) и нейтронный-гамма (НГК) каротажи. Проведено петрографическое изучение шлифов в количестве 600 шт. При построении концептуальной фациальной схемы (рис. 1, c) использовались данные ГИС 875 скважин, а также данные сейсморазведочных работ 2D МОГТ. При литолого-фациальных, секвенс-стратиграфических и петрографических исследованиях применялась литература, перечисленная в работах [5-15], а также источники, посвящённые моделированию карбонатных систем [16-18].

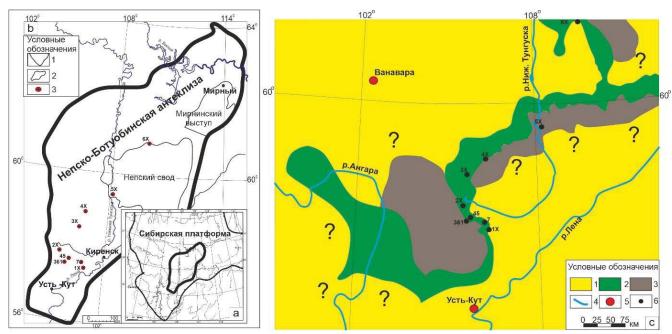


Рис. 1. Район исследования (а) и местоположение изученных скважин на схеме тектонического районирования (b) и концептуальной фациальной схеме осинского шельфа (c). Условные обозначения к рисункам (a) и (b): 1 – граница Сибирской платформы; 2 – граница Непско-Ботуобинской антеклизы; 3 – номера изученных скважин. Условные обозначения к рисунку (c): 1 – зона мелководной седиментации; 2 – площадная рифовая система, окаймляющая крупные прогибы и впадины; 3 – относительно глубоководная зона; 4 – гидросеть; 5 – города; 6 – точки изученных скважин. Знаком вопроса отмечены участки с недостаточными скважинными данными (Вопросами обозначены области, не представленные скважинными данными)

Fig. 1. Study area (a) and location of the studied wells in the tectonic zoning scheme (b) and conceptual facies scheme of the Osinsky shelf (c). Symbols for figures (a) and (b): 1 – boundary of the Siberian platform; 2 – boundary of the Nepa-Botuoba anteclise; 3 – numbers of studied wells. Symbols for figure (c): 1 – zone of shallow water sedimentation; 2 – area reef system, bordering large troughs and depressions; 3 – deep water zone; 4 – hydraulic network; 5 – cities; 6 – points of the studied wells. A question marks areas with insufficient well data (Questions indicate areas not represented by borehole data)

Краткие сведения о геологическом строении

Объект изучения – карбонатные породы средней (осинской) подсвиты усольской свиты томмотского яруса нижнего кембрия. Осинская подсвита выделена М.А. Жарковым и В.В. Хоментовским [19, 20]. Стратотип находится в Иркутской области, в скважинах вблизи г. Усолье-Сибирское. Изучаемые разрезы скважин Непско-Ботуобинской антеклизы (НБА) соответствуют Непской зоне Ангаро-Непского фациального района, Иркутско-Байкитской области, и Ботуобинскому фациальному району, Ботуобинско-Олекминской фациальной области, которые входят в Турухано-Иркутско-Олекминский регион [21].

Непская фациальная зона, с типовым разрезом скв. Ярактинская-27, охватывает юг и центр НБА. Усольская свита делится на три подсвиты. Нижняя - галогенно-доломитовая, в интервале от подошвы свиты до подошвы осинской подсвиты. Среднеусольская (осинская) подсвита сложена карбонатными и сульфатно-карбонатными породами. Промышленные притоки углеводородов в осинской подсвите выделяются в одноимённый продуктивный горизонт. Верхнеусольская подсвита сложена карбонатно-галогенными породами. Осинская рифовая система окаймляет частично НБА по внешнему краю и на исследуемом участке прослеживается с севера на юг от Среднеботуобинского месторождения к Талаканскому и далее субпараллельно границе с Предпатомским прогибом. На севере она проходит субширотно по юго-восточному борту Тунгусской синеклизы. Содержание коллекторов уменьшается по мере удаления от рифовой зоны от 50 до 5 % от мощности разреза, как в сторону развития глинисто-карбонатной подформации склона, так и в сторону лагунных и приливно-отливных отложений [22].

Литолого-фациальное строение

Основными типами пород, формирующими изучаемые отложения, являются в различной степени доломитизированные известняки, глинистые известняки и доломиты, а также сульфатизированные доломиты, переходящие в ангидриты.

В изученных разрезах осинского горизонта выделены типы пород, закономерно сменяющие друг друга по разрезу снизу вверх и соответствующие различным фациальным обстановкам мелководного шельфа. Детальное описание авторами рассмотрено в работах [1, 2]. Далее кратко перечислим их: 1. Доломитовый плоско-галечный конгломерат (флоатстоун); 2. Доломиты известковистые до известняков доломитистых (Породы), кристаллические, реликтово-мелкообломочные (грейнстоун); 3. Породы с несохранившейся первичной структурой; 4. Породы микритовые со структурой мадстоун; 5. Породы микрофитолитовые со структурой пакстоун; 6. Породы микрофитолитовые со структу-7. грейнстоун; Породы реликтовомелкообломочные со структурой грейнстоун и рудстоун; 8. Породы реликтово-микробиальные со структурой баундстоун; 9. Породы органогенномикробиальные (цианобактериально-водорослевые), включая пластовые строматолиты или биоламиниты, со структурой баундстон; 10. Карстовая щебенчато-глыбовая брекчия известняков доломитистых, галитистых и микробиальных; 11. Породы микробиально-водорослевые со структурой баундстоун; 12. Породы строматолитовые со структурой байндстоун.

Выделенные выше литотипы были объединены в несколько групп по структурным признакам: глинистые, породы со структурой мадстоун (ЛТ-4); зернистые: пакстоун, грейнстоун и рудстоун (5, 6, 2, 7); обломочные, со структурой флоатстоун (1, 10); органогенные, баунстоун (8, 9, 11, 12).

Формирование отложений происходило в условиях сублиторали, литорали и супралиторали. На (рис. 2–4) показана схема корреляции изученных скважин с распределением выделенных типов пород и обстановок осадконакопления (рис. 5).

Зональность осинского шельфа

Анализ карт толщин, материалов сейсморазведки, ГИС и керна на большой площади юга и центра НБА позволил выделить и дифференцировать три зоны (макрофации), характеризующиеся определенным набором признаков.

Относительно глубоководная зона характеризовалась некомпенсированным осадконакоплением. Соответствует глубинам сублиторали в пределах шельфа. Локализовалась, по-видимому, в депрессионных впадинах и прогибах на мелководном шельфе (рис. 1, c). Литологически разрез представлен карбонатными глинистыми породами с прослоями зернистых и обломочных пород. От центральной части глубоководных зон к их периферии могут появляться одиночные биогермы. Биогермы представлены в основном конусовидными высокими, но небольшими по площади, органогенными постройками типа башен (пиннаклы по английской терминологии). Мощность до 100 м. Разрез краевой части такого пиннакла изучен в скв. 5X на югозападе Непского свода (рис. 4).

Краевая зона карбонатной платформы характеризуется повышенными толщинами, изрезанностью, неоднородностью, увеличивающимися в сторону глубоководной зоны, которую она окаймляет, и простирается в субмеридиональном направлении через Большетирское, Ичединское месторождения до свода НБА, где далее разворачивается в субширотном направлении и простирается на 130 км, заканчиваясь

на Талаканском месторождении (рис. 1, *c*). Ширина зоны в поперечнике может достигать 4,5–11 км.

Во фронтальной части краевой зоны располагаются шлейфовые образования (склоновая часть краевой зоны). Примером служит скважина Западно-Ярактинская 361, описанная в работе [2]. Отложения представлены карбонатными зернистыми (преимущественно грейнстоун, рудстоун) и обломочными (флоатстоун) разностями с прослоями карбонатно-глинистых (мадстоун, вакстоун) пород. Мощность отложений в изученной скважине составляет 38 м.

Разрезы органогенных построек краевой зоны карбонатной платформы имеют сложное строение

и неравномерную структуры. Преобладают органогенные породы. Они изучены в скважинах Западно-Ярактинская 45 [2], Большетирская 7 [1], а также 1X, 2X, 3X, 4X. Мощность отложений колеблется в диапазоне от 70 до 115 м, закономерно сокращаясь в сторону мелководья (рис. 2, 3).

Мелководная зона характеризуется средними и уменьшенными мощностями осинской подсвиты, карбонатным зернистым и глинистым составом отложений с маломощными одиночными биогермами изометричной и неправильной формы типа пэтч-риф. Мощность отложений колеблется в диапазоне 55–75 м. Разрез мелководной зоны изучен в скв. 6X (рис. 4).

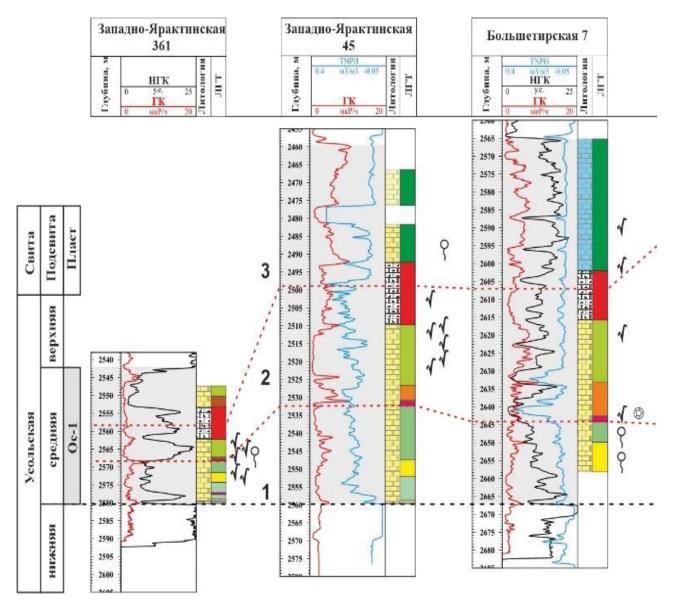
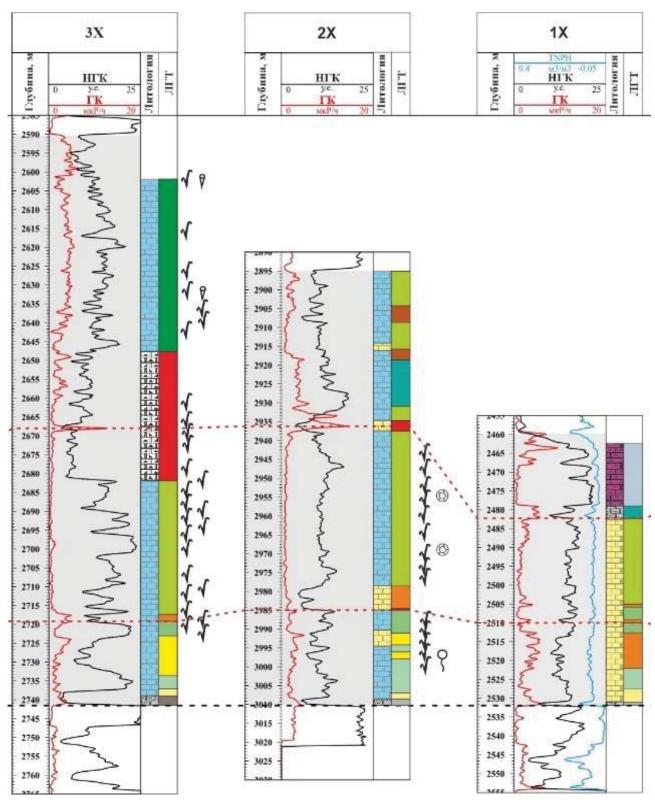



Рис. 2. Схема корреляции изученных скважин (начало)

Fig. 2. Well survey correlation scheme (beginning)

Рис. 3. Схема корреляции изученных скважин (продолжение)

Fig. 3. Well survey correlation scheme (continuation)

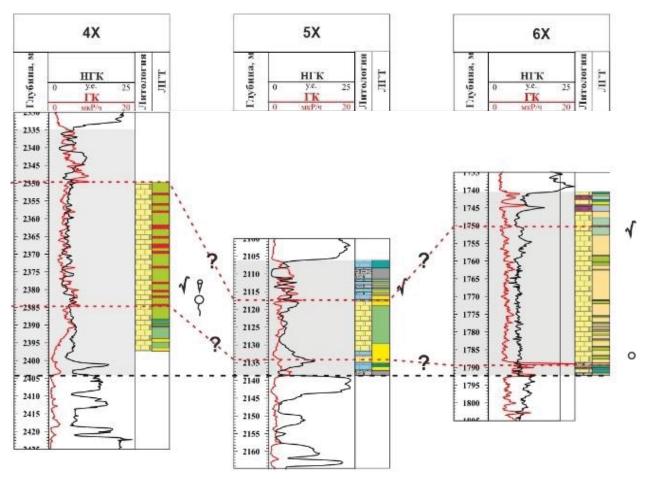
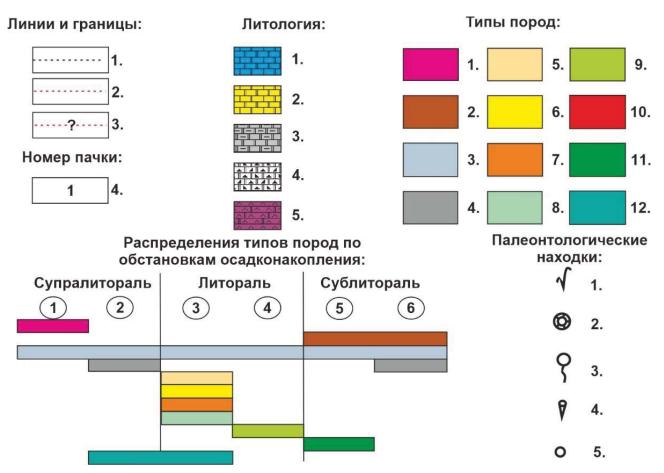


Рис. 4. Схема корреляции изученных скважин (окончание)

Fig. 4. Well survey correlation scheme (ending)

Строение и условия формирования


Осинская подсвита имеет трехчленное строение и разделяется исследователями на три пачки, или секвенса [1]. Далее по тексту авторы рассмотрят особенности строения каждой из пачек в зависимости от зоны шельфа.

Нижняя пачка (1) представлена известняками, реже доломитами (зернистыми, органогенными и обломочными) с прослоями карбонатно-глинистых и сульфатно-карбонатных пород. Накопление отложений происходило в условиях приливно-отливной равнины открытого мелководного шельфа. По керну диагностированы фации литорали и верхней (мелководной) сублиторали. Мощность пачки изменяется от первых метров до первых десятков метров. Вариации мощностей обусловлены унаследованным от предыдущего этапа рельефом дна и гидродинамическим режимом. Согласно схеме корреляции, показанной на (рис. 2–4), видно, что мощность отложений пачки в скважинах, попавших в зону краевой части карбонатной платформы, выше, чем в других

скважинах. При этом дифференциация зон оскопления еще не произошла.

Средняя пачка (2) представлена карбонатноглинистыми и глинисто-карбонатными породами в глубоководной зоне, карбонатными (зернистыми, органогенными и обломочными) породами в краевой зоне и карбонатными (органогенными и зернистыми) в мелководной зоне. Накопление отложений связано со вторым этапом осадконакопления. В это время общая трансгрессия достигла максимума и способствовала активной дифференциации отложений шельфа в период седиментации осинского горизонта. Далее по тексту рассмотрим особенности строения пачки в различных зонах.

Глубоководная зона с одиночными биогермами. В разрезе одиночного биогерма преобладают органогенные и органогенно-обломочные доломиты и известняки слоистые и пятнистые водорослевые, микрофитолитовые, сгустково-комковатые. Мощность отложений значительно меньше, чем в зоне краевой части карбонатной платформы, так как скважина вскрыла краевую часть.

Условные обозначения к рис. 2-4. Линии и границы: 1 – линия выравнивания, подошва осинской подсвиты; 2 – достоверные границы пачек внутри осинской подсвиты; 3 – предполагаемые границы пачек. Номер пачки (4). Литология: 1 - известняки доломитистые и доломитовые; 2 - доломиты известковистые и известковые; 3 – доломиты глинистые; 4 – карбонатные брекчии; 5 – ангидриты доломитистые и ангидриты. Типы пород: 1 - доломитовый плоско-галечный конгломерат; 2 - доломиты известковистые до известняков доломитистых, кристаллические, реликтово мелкообломочные (грейнстоун); 3 – породы с несохранившейся первичной структурой; 4 - породы микритовые со структурой мадстоун; 5 - породы микрофитолитовые со структурой пактсоун; 6 - породы микрофитолитовые со структурой грейнстоун; 7 - породы реликтовомелкообломочные со структурой грейнстоун; 8 – породы реликтово-микробиальные со структурой баундстоун; 9 – породы органогенно-микробиальные (цианобактериально-водорослевые), включая пластовые строматолиты или биоламиниты, со структурой баундстон; 10 – карстовая щебенчато-глыбовая брекчия известняков доломитистых, галитистых и микробиальных; 11 - породы микробиально-водорослевые со структурой баундстоун; 12 – породы строматолитовые со структурой байндстоун. Распределения типов пород по обстановкам осадконакопления: 1 - субаэральный перерыв (супралитораль); 2 - себха на супралиторали; 3 – верхняя литораль; 4 – нижняя литораль; 5 – верхняя сублитораль; 6 – нижняя сублитораль. Палеонтологические находки: 1 – известковые водоросли; 2 – археоциаты; 3 – мелкораковинная фауна; 4 – крибрициаты; 5 – проблематика

Fig. 5. Symbols for Fig. 2–4. Lines and boundaries: 1 – alignment line, the sole of the Osinskaya subformation; 2 – reliable boundaries of bundles inside the Osinskaya subformation; 3 – assumed boundaries of bundles. Pack number (4). Lithology: 1 – dolomitic and dolomitic limestones; 2 – calcareous and calcareous dolomites; 3 – clay dolomites; 4 – carbonate breccias; 5 – dolomitic anhydrites and anhydrites. Types of rocks: 1 – dolomite flat-pebble conglomerate; 2 – dolomites calcareous to dolomitic limestones, crystalline, relict small-block (grainstone); 3 – rocks with non-preserved primary structure; 4 – micrite rocks with madstone structure; 5 – microphytolite rocks with paktsoun structure; 6 – microphytolite rocks with grainstone structure; 7 – relict-small-block rocks with grainstone structure; 8 – relict-microbial rocks with boundstone structure; 9 – organogenic-microbial rocks (cyanobacterial-algae), including stratified stromatolites or biolaminites, with a boundstone structure; 10 – karst crushed-block breccia of dolomitic, halitic and microbial limestones; 11 – microbial-algal rocks with a boundstone structure; 12 – stromatolite rocks with a bindstone structure. Distribution of rock types by sedimentation conditions: 1 – subaeral break (supralitoral); 2 – sebha on the supralitoral; 3 –upper littoral; 4 – lower littoral; 5 – upper sublitoral; 6 – lower sublitoral. Paleontological finds: 1 – calcareous algae; 2 – archaeocyates; 3 – small-scale fauna; 4 – cribritiates; 5 – problematics

Краевая зона карбонатной платформы. В разрезе склоновой части доминируют обломочные и органогенные доломиты. Разрезы органогенных построек представлены главным образом доломитами и известняками органогенными водорослевыми и микробиальными (баундстоунами), образующими каркасные постройки краевой зоны мощностью порядка 40–60 м. В скважинах Западно-Ярактинская 45, Большетирская 7, 3X и 2X, как показано на рис. 2, в верхней части хорошо выражена и прослеживается по ГИС зона карста между 2 и 3 пачками мощностью до 20 м.

Мелководная зона в разрезе скважины 6X представлена доломитами зернистыми (преимущественно пакстоун) с прослоями баундстоунов. Формирование отложений происходило в приливно-отливных и супралиторальных условиях. Разделение на пачки в донном разрезе дискуссионно.

Верхняя пачка (3) представлена карбонатными и карбонатно-глинистыми обломочными, органогенными, зернистыми породами, а также сульфатами. Накопление отложений связано с высоким и стабильным уровнем моря. Далее по тексту рассмотрим особенности строения пачки в различных зонах.

Глубоководная зона. В разрезе преобладают глинисто-карбонатные породы.

Краевая зона карбонатной платформы. В разрезе склоновой части доминируют доломиты обломочные. Разрезы органогенных построек представлены главным образом известняками, реже доломитами органогенными, образующими постройки мощностью порядка 30–50 м. Изменение в строении наблюдается в скважинах 2X и 1X. В 2X наблюдается переход на более мелководные отложения (переходный подтип). В переходном подтипе наблюдается наличие прослоев грейнстоунов от слабоволнистых до косослоистых и пачка пластовых строматолитов с повышенными значениями гамма-каротажа. В скважине IX наблюдаются пластовые ангидриты, по-видимому, сформировавшиеся в изолированных условиях забарьерной лагуны.

Мелководная зона представлена карбонатнымизернистыми породами с прослоями глинистокарбонатных и ангидритов. Обстановки схожи со второй пачкой.

Биостратиграфическая характеристика

При микроскопическом изучении палеонтологических остатков керна скважин осинской подсвиты усольской свиты раннего кембрия центральной и южной части НБА (скважины: Западно-Ярактинская № 45, 361, Большетирская № 7X, 3X, 2X, 4X, 5X, 6X) отчетливо выделяются комплексы органических остатков (известковые водоросли, археоциаты, крибрициаты, мелкораковинная фауна) (рис. 6, 7). Проведенный палеонтологический и

биостратиграфический анализ подтверждает раннекембрийский возраст вмещающих отложений.

В отложениях, вскрытых скважиной Западно-Ярактинская № 45, ранее нами были обнаружены и определены остатки известковых водорослей (цианобактерий): Renalcis polymorphum, Renalcis levis, Botomaella zelenovi, Epiphyton zonatum Korde, Epiphyton celsum, Epiphyton scapulum, Chabakovia ramosa, Chabakovia nodosa, а также мелкораковинная фауна Namacalathus sp (рис. 6, фиг. 13). В скважине № 361 — известковые водоросли Renalcis polymorphum, Renalcis granosus, Renalcis sp, Renalcis levis, Renalcis seriata, Korilophyton sp (рис. 7, фиг. 15), Chabakovia sp и SSF Namacalathus Grotzinger (рис. 7, фиг. 12). С глубинами обнаруженных остатков можно познакомиться в публикации [2].

Скважина Большетирская № 7. Археоциаты рода Nochoroicyathus Zhur. и известковые водоросли Renalcis polymorphum, Renalcis gelatinosum, Renalcis granosum, Botomaella zelenovi. Помимо этого, встречена мелкораковинная фауна рода Namacalathus Grotzinger, Watters et Knoll. [1].

Скважина 3X. Известковые водоросли: Botomaella sp (рис. 7, фиг. 3), Epiphyton scapulum (рис. 7, фиг. 4), Epiphyton zonatum, Renalcis seriata (рис. 7, фиг. 6, 7), Renalcis polymorphus (рис. 7, фиг. 8), Renalcis granosus (рис. 6, фиг. 9), Renalcis levis (рис. 7, фиг. 11), Korilophyton inopinatum (рис. 7, фиг. 10), Tubophyllum viktorii (рис. 7, фиг. 14), Chabakovia sp; крибрициатиды: Dubius uncatus (рис. 7, фиг. 1), Ramifir angulosus (рис. 7, фиг. 2), а также археоциаты отряда Ayacicyathida (рис. 7, фиг. 5).

Скважина 2X. Известковые водоросли: Renalcis polymorphus (рис. 6, фиг. 5), Renalcis seriata (рис. 6, фиг. 14), Віја sp (рис. 6, фиг. 6), Korilopyton sp (рис. 6, фиг. 6); археоциаты (рис. 6, фиг. 1, 2, 13), мелкораковинная фауна Namacalathus sp (рис. 6, фиг. 3, 4).

Скважина 4X. Известковые водоросли: Renalcis levis (рис. 6, фиг. 10), Renalcis seriata, Renalcis granosus; крибрициатиды: Ramifir sp (рис. 6, фиг. 12); мелкораковинная фауна Namacalathus sp.

Скважина 5X. Известковые водоросли: Renalcis granosus, Renalcis polymorphus, Chabakovia sp (рис. 6, фиг. 11).

Скважина 6X. Проблематика (фораминиферы?) Archaesphaera cambrica (рис. 6, фиг. 8).

Представители мелкораковинной фауны рода Namacalathus Grodzinger характерны для эдиакарских отложений по всему миру [23–28]. Нами впервые они были обнаружены и описаны совместно с археоциатами в керне скважины Большетирская № 7 [1], что говорит и о ее раннекембрийском возрасте.

Согласно полученным результатам исследований выявлена следующая приуроченность палеонтологических находок, представленная в таблице.

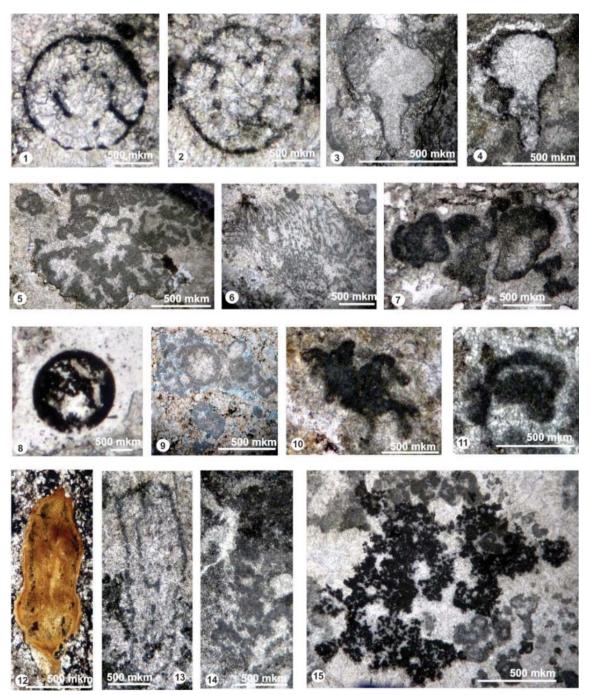
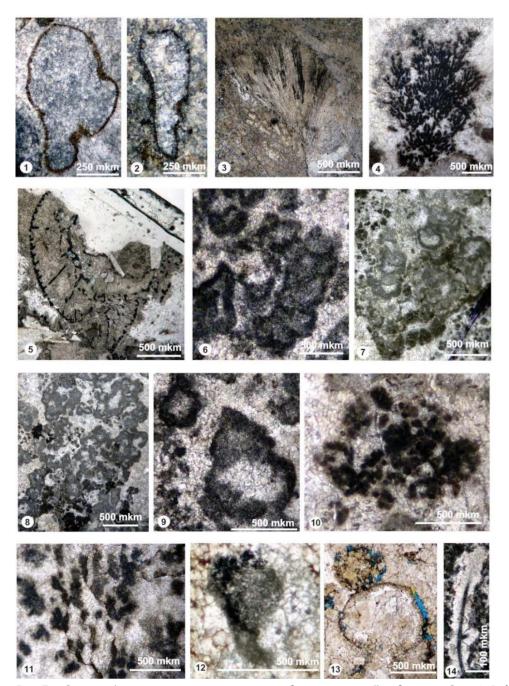



Рис. 6. Фототаблица палеонтологических находок из осинской подсвиты. Фиг. 1. Archaeocyatha. шл. № 132645 гл. 2955,52 м; Фиг. 2. Archaeocyatha. шл. № 132662 гл. 2969,57 м; Фиг. 3. Namacalathus sp. шл. № 132701 гл. 2997,68 м; Фиг. 5. Renalcis polymorphus. шл. № 132645 гл. 2955,52 м; Фиг. 6. Віја sp, Korilophyton sp. шл. № 132645 гл. 2955,52 м; Фиг. 7. Renalcis granosus. шл. № 129414 гл. 2113,80 м; Фиг. 8. Archaesphaera cambrica. шл. № 89 гл. 1787,63 м; Фиг. 9. Renalcis seriata, Renalcis granosus. шл. № 105698 гл. 23786,19 м; Фиг. 10. Renalcis levis. шл. № 105703 гл. 2379,33 м; Фиг. 11. Chabakovia sp. шл. № 129414 гл. 2113,80 м; Фиг. 12. Ramifir sp. шл. № 105703 гл. 2379,33 м; Фиг. 13. Archaeocyatha. шл. № 132664 гл. 2970,50 м; Фиг. 14. Renalcis seriata. шл. № 132685 гл. 2991,33 м; Фиг. 15. Korilophyton sp. шл. № 132662 гл.

Fig. 6. Photo table of paleontological finds from the Osinskaya subformation. Fig. 1. Archaeocyatha. schl. no. 132645 chl. 2955.52 m; Fig. 2. Archaeocyatha. schl. no. 132662 hl. 2969.57 m; Fig. 3. Namacalathus sp. shl. no. 132701 hl. 2997.68 m; Fig. 4. Namacalathus sp. fl. no. 132701 hl. 2997.68 m; Fig. 5. Renalcis polymorphus. fl. no. 132645 hl. 2955.52 m; Fig. 6. Bija sp., Korilophyton sp. sl. no. 132645 hl. 2955.52 m; Fig. 7. Renalcis granosus. fl. no. 129414 hl. 2113.80 m; Fig. 8. Archaesphaera cambrica. fl. no. 89 hl. 1787.63 m; Fig. 9. Renalcis seriata, Renalcis granosus. fl. no. 105698 hl. 23786.19 m; Fig. 10. Renalcis levis. fl. no. 105703 hl. 2379.33 m; Fig. 11. Chabakovia sp. fl. no. 129414 hl. 2113.80 m; Fig. 12. Ramifir sp. fl. no. 105703 hl. 2379.33 m; Fig. 13. Archaeocyatha. fl. no. 132664 hl. 2970.50 m; Fig. 14. Renalcis seriata. fl. no. 132685 hl. 2991.33 m; Fig. 15. Korilophyton sp. fl. no. 132662 hl.

Рис. 7. Фототаблица палеонтологических находок из осинской подсвиты. Фиг. 1. Dubius uncatus. шл. № 140692 гл. 2602,69 м; Фиг. 2. Ramifir angulosus. шл. № 140724 гл. 2633,39 м; Фиг. 3. Botomaella sp. шл. № 140716 гл. 2626,54 м; Фиг. 4. Epiphyton scapulum. шл. № 140800 гл. 2684,48 м; Фиг. 5. Archaeocyatha. шл. № 140806 гл. 2688,80 м; Фиг. 6. Renalcis seriata. шл. № 140808 гл. 2690,65 м; Фиг. 7. Renalcis seriata. шл. № 140830 гл. 2712,42 м; Фиг. 9. Renalcis granosus. шл. № 140808 гл. 2690,65 м; Фиг. 9. Renalcis granosus. шл. № 140808 гл. 2690,65 м; Фиг. 10. Korilophyton inopinatum. шл. № 140802 гл. 2686,05 м; Фиг. 11. Renalcis levis. шл. № 140763 гл. 2661,59 м; Фиг. 12. Namacalathus sp. шл. № 118398 гл. 2567,65 м; Фиг. 13. Namacalathus. шл. № 110540 гл. 2488.72 м; Фиг. 14. Tubophyllum viktorii. шл. № 140814 гл. 2696,52 м. Фиг. 1–11, 14 – 3Х. Фиг. 12 – Западно-Ярактинская 361; 13 – Западно-Ярактинская 45

Fig. 7. Photo table of paleontological finds from the Osinskaya subformation. Fig. 1. Dubius uncatus. shl. no. 140692 hl. 2602.69 m; Fig. 2. Ramifir angulosus. fl. no. 140724 hl. 2633.39 m; Fig. 3. Botomaella sp. fl. no. 140716 hl. 2626.54 m; Fig. 4. Epiphyton scapulum. fl. no. 140800 hl. 2684.48 m; Fig. 5. Archaeocyatha. fl. no. 140806 hl. 2688.80 m; Fig. 6. Renalcis seriata. fl. no. 140808 hl. 2690.65 m; Fig. 7. Renalcis seriata. shl. no. 140830 hl. 2712.42 m; Fig. 8. Renalcis polymorphus. fl. no. 140830 hl. 2712.42 m; Fig. 9. Renalcis granosus. vll. no. 140808 hl. 2690.65 m; Fig. 10. Korilophyton inopinatum. ch. no. 140802 ch. 2686.05 m; Fig. 11. Renalcis levis. ch. 140763 ch. 2661.59 m; Fig. 12. Namacalathus sp. ch. no. 118398 ch. 2567.65 m; Fig. 13. Namacalathus. ch. 110540 ch. 2488.72 m; Fig. 14. Tubophyllum viktorii. sch. no. 140814 hl. 2696.52 m. Figs. 1–11, 14 – 3X. Figs. 12 – Zapadno-Yaraktinskaya 361; 13 – Zapadno-Yaraktinskaya 45

Таблица. Приуроченность палеонтологических находок к макрофациям и пачкам **Table.** Relevance of paleontological findings to macrophages and kidneys

Скважина Well	Макрофация Macrofation	Пачка Member	Палеонтологические находки/Paleontological finds
№ 361	Склоновая часть краевой зоны Slope part of the marginal zone	Нижняя Lower	Известковые водоросли Renalcis polymorphum, Renalcis granosus, Renalcis sp, Renalcis levis, Renalcis seriata, Korilophyton sp, Chabakovia sp, и SSF Namacalathus Grotzinger Calcareous algae Renalcis polymorphum, Renalcis granosus, Renalcis sp, Renalcis levis, Renalcis seriata, Korilophyton sp, Chabakovia sp, and SSF Namacalathus Grotzinger
№ 45		Верхняя Upper	Остатки известковых водорослей (цианобактерий) Renalcis polymorphum, Renalcis levis, Botomaella zelenovi, Epiphyton zonatum Korde, Epiphyton celsum, Epiphyton scapulum, Chabakovia ramosa, Chabakovia nodosa; мелкораковинная фауна Namacalathus sp Remains of calcareous algae (cyanobacteria) Renalcis polymorphum, Renalcis levis, Botomaella zelenovi, Epiphyton zonatum Korde, Epiphyton celsum, Epiphyton scapulum, Chabakovia ramosa, Chabakovia nodosa; small crustacean fauna Namacalathus sp
Nº 7	Краевая зона карбо-	Средняя Medium	Археоциаты рода Nochoroicyathus Zhur.; известковые водоросли Renalcis polymorphum, Renalcis gelatinosum, Renalcis granosum, Botomaella zelenovi; мелкораковинная фауна рода Namacalathus Grotzinger, Watters et Knoll Archaeocyaths of the genus Nochoroicyathus Zhur.; calcareous algae Renalcis polymorphum, Renalcis gelatinosum, Renalcis granosum, Botomaella zelenovi; small crustacean fauna of the genus Namacalathus Grotzinger, Watters et Knoll
3X	натной платформы Marginal zone of the carbonate platform	Верхняя Upper	Крибрициатиды: Dubius uncatus, Ramifir angulosus; археоциаты отряда Ayacicyathida. Известковые водоросли: Botomaella sp, Renalcis levis Cribriciatids: Dubius uncatus, Ramifir angulosus; archaeocyathids of the order Ayacicyathida. Calcareous algae: Botomaella sp, Renalcis levis
		Средняя Medium	Epiphyton scapulum, Epiphyton zonatum, Renalcis seriata, Renalcis polymorphus, Renalcis granosus, Korilophyton inopinatum, Tubophyllum viktorii, Chabakovia sp; Ayacicyathida
2X		Средняя Medium Нижняя	Известковые водоросли: Renalcis polymorphus, Bija sp, Korilopyton sp; археоциаты Calcareous algae: Renalcis polymorphus, Bija sp, Korilopyton sp; archaeocyaths Мелкораковинная фауна Namacalathus sp., Renalcis seriata
4X		Lower Средняя Medium	Small crustacean fauna Namacalathus sp., Renalcis seriata Известковые водоросли: Renalcis levis, Renalcis seriata, Renalcis granosus; крибрициатиды: Ramifir sp; мелкораковинная фауна Namacalathus sp. Calcareous algae: Renalcis levis, Renalcis seriata, Renalcis granosus; Cribriziatidae: Ramifir sp; fine crustacean fauna Namacalathus sp.
5X	Пиннаклы на отно- сительно глубоко- водной зоне Pinnacles in a relatively deep-water area	Верхняя Upper	Известковые водоросли: Renalcis granosus, Renalcis polymorphus, Chabakovia sp. Calcareous algae: Renalcis granosus, Renalcis polymorphus, Chabakovia sp.
6X	Мелководная часть карбонатной плат- формы Shallow part of the carbonate platform	Средняя Medium	Проблематика (фораминиферы?) Archaesphaera cambrica. Problematics (foraminifera?) Archaesphaera cambrica.

Заключение

• Проведение региональных геологоразведочных работ на НБА позволило выделить, проследить и впервые описать три зоны осадконакопления – глубоководную, краевую и мелководную. Глубоководная зона характеризовалась некомпенсированным осадконакоплением с одиночными рифами. Локализовалась, по-видимому, в депрессионных впадинах и прогибах. Ее окаймляла краевая зона карбонатной платформы. Она характеризуется повышенными толщинами, связанными с площадными рифами. За ней располагалась мелководная зона, характеризующаяся средними и уменьшенными мощностями осинской подсвиты, карбонатным зернистым и

- глинистым составом отложений с маломощными одиночными рифами. Краевая зона карбонатной платформы, имеющая протяженное распространение, не противоречит работам предшественников и согласуется с Чамбинско-Алтыбско-Мирнинской и Верхнетохомско-Катско-Пилюдинской зонами распространения рифоподобных органогенных построек [29].
- На примере изученных скважин описано строение трех пачек согласно литолого-фациальному профилю. Приведен авторский вариант проведения границ пачек. Перспективы обнаружения коллекторов в глубоководной зоне связаны с одиночными постройками. В краевой зоне связаны как с площадным биогермом, так и с отло-

- жениями передового шлейфа (склоновыми отложениями). В мелководной зоне как с детритовыми отложениями, так и с мелкими биогермами. Главным условием является отсутствие вторичного засолонения и сульфатизации пустотного пространства коллекторов.
- Представлены данные приуроченности палеонтологических находок к выделенным зонам осадконакопления и пачкам. В формировании второй и третей пачек, краевой зоны карбонатной платформы участвовали водоросли, диагностированые в баундстоунах, а значит автохтонные. Археоциаты диагностированы в детритовых карбонатных породах второй пачки (аллохтонные) в скв. № 7 и автохтонные в баундстоунах скв. 2X. Крибрициаты диагностированы в баундстоунах третьей пачки (автохтонные).
- Археоциаты, крибрициаты, намакалатусы, известковые водоросли, изученные из керна скважин Западно-Ярактинская № 45, 361, Большетирская № 7, 3X, 2X, 4X, 5X, 6X, являлись основными эдификаторами раннекембрийских ор-

- ганогенных построек (биостромы, биогермы, биогермные массивы, рифогенные образования) [30]. Для этой биоты характерны небольшие глубины (первые десятки метров, фотическая зона) литорали—сублиторали. Полученные палеонтолого-биостратиграфические данные подтверждают и существенно дополняют результаты проведенного литолого-фациального исследования.
- Выделенные зоны осинского шельфа (относительно глубоководная, краевая часть и мелководная часть карбонатной платформы) в первую очередь отличаются характером захоронения организмов. В биогермах и биостромах мы находим в первую очередь автохтонную биоту. Зернистые осадки, в частности мелководной зоны, характеризуются аллохтонной биотой. Выделение биофаций для характеристики разных типов разреза затруднено неравномерной доломитизацией разреза. В известняках мы можем увидеть и определить больше биоты, чем в доломитах.

СПИСОК ЛИТЕРАТУРЫ

- 1. Никулина М.Ю., Мышевский Н.В., Никулин Е.В. Классические и аномальные объекты, выявленные в результате геологоразведочных работ на территории Иркутской нефтяной компании // Нефтяное хозяйство. − 2020. − № 9. − С. 26–29.
- 2. Новые результаты комплексного литолого-фациального и биостратиграфического изучения осинского горизонта нижнего кембрия юга Сибирской платформы (Большетирская скв. 7) / Д.А. Токарев, А.В. Плюснин, А.А. Терлеев, Н.А. Иванова, И.В. Вараксина, А.В. Липянина // Геология и минерально-сырьевые ресурсы Сибири. − 2021. − № 2. − С. 11–20.
- 3. Токарев Д.А., Плюснин А.В., Терлеев А.А. Новые результаты комплексного литолого-фациального и биостратиграфического изучения осинского горизонта нижнего кембрия юга Сибирской платформы (скважины Западно-Ярактинские 45, 361) // Известия Томского политехнического университета. Инжиниринг георесурсов. 2022. Т. 333. № 4. С. 157—167.
- Токарев Д.А., Терлеев А.А., Плюснин А.В. Известковые водоросли (цианобактерии) усольской свиты нижнего кембрия юга Сибирской платформы (новые данные по скв. Ичединская № 45) // Теоретические и прикладные аспекты палеонтологии: материалы LXVII сессии палеонтологического общества при РАН. – СПб: Изд-во «ВСЕГЕИ», 2021. – С. 82–84.
- 5. Вишняков С.Г. Генетические типы доломитовых пород северо-западной окраины Русской платформы // Труды Геол. института АН СССР. 1956. № 4. С. 209–225.
- 6. Киркинская В.Н. Смехов. Е.М. Карбонатные породы-коллекторы нефти и газа. Л.: Изд-во «Недра», 1981. 255 с.
- 7. Кузнецов В.Г. Литология основы общей (теоретической) литологии. М.: Изд-во «Научный мир», 2011. 360 с.
- 8. Маслов А.В. Осадочные породы: методы изучения и интерпретация полученных данных. Екатеринбург: УГГУ, 2005. 289 с.
- 9. Теодорович Г.И. Аутигенные минералы осадочных пород. М.: Изд-во «Гостоптехиздат», 1958. 572 с.
- 10. Dunham R.J. Classification of carbonate rocks according to deposition texture // Classification of Carbonate rocks. Simposium Amer. Assoc. Petrol.Geol. Mem. Tulsa, 1962. P. 108–121.
- 11. Flügel E., Flügel-Kahler E. Phanerozoic reef evolution: basic questions and data base // Facies. 1992. Vol. 26. P. 167–277.
- 12. Уилсон Дж.Л. Карбонатные фации в геологической истории. М.: Изд-во «Недра», 1980. 463 с.
- 13. Einsele G. Sedimentary basins, evolution, facies and sediment budget. Berlin: Springer-Verlag, 2000. 792 p.
- $14. \ Stanley \ G. \ The \ history \ and \ sedimentology \ of \ ancient \ reef \ systems. New \ York: \ Kluwer-Academic, \ 2001. 458 \ p.$
- 15. Catuneanu O. Principles of sequence stratigraphy. 2nd ed. Amsterdam: Elsevier, 2022. 486 p.
- 16. Ferreira D., Lupinacci W. Advanced techniques for 3d reservoir characterization: models for the Buzios field, Santos basin. Niterói: Universidade Federal Fluminense, 2022. 116 p.
- 17. Tucker M.E. Shallow-marine carbonate facies and facies models Geological Society. London, Special Publications, 1985. Vol. 18. P. 147–169.
- 18. Alonso-Zarza A.M., Tanner L.H. Carbonates in continental settings: facies, environments, and processes. Amsterdam: Elselvier, 2010. 381 p.
- 19. Мельников Н.В., Шабанов Ю.Я., Шабанова О.С. Стратиграфическая схема кембрийских отложений Турухано-Иркутско-Олекминского региона Сибирской платформы // Геология и геофизика. 2010. Т. 51. С. 863–875.
- 20. Жарков М.А., Хоментовский В.В. Основные вопросы стратиграфии нижнего кембрия и венда юга Сибирской платформы в связи с соленостью // Бюл. МОИП, Отд. геол. − 1965. № 1. С. 110–118.

- Мельников Н.В. Венд-кембрийский соленосный бассейн Сибирской платформы (стратиграфия, история развития). Новосибирск, Изд-во СО РАН, 2009. – 146 с.
- 22. Фортунатова Н.К., Швец-Тэнэта-Гурий А.Г., Ларкин В.Н. Строение и перспективы нефтегазоносности венднижнекембрийских отложений Непско-Ботуобинской антеклизы и ее обрамления // Геология нефти и газа. 2010. № 5. С. 54–61.
- 23. Grotzinger J.P., Watters W.A., Knoll A.H. Calcified metazonas in thrombolite-stromatolite reefs in the terminal Proterozoic Nama Group, Namibia // Paleobiology. 2000. Vol. 26. P. 334–359.
- 24. Carbonate reservoir as a source rock / G.N. Gordadze, M.V. Giruts, A.R. Poshibaeva, O.V. Postnikova, V.V. Poshibaev, O.A. Antipova, S.Yu. Rudakovskaya, V.N. Koshelev, V.G. Martynov // Journal of Siberian Federal University. Chemistry. 2018. Vol. 11. № 4. P. 575–592. DOI: 10.17516/1998-2836-0101
- 25. Hofmann H.J., Mountjoy E.W. Namacalathus-Cloudina assemblage in Neoproterozoic Miette Group (Byng Formation), British Columbia: Canada's oldest shelly fossils // Geology. 2001. Vol. 29. P. 1091–1094.
- 26. Cloudina-Namacalathus-Kolophyton association in the Vendian of Altai-Sayan Foldbelt (Siberia) / A.A. Terleev, A.A. Postnikov, D.A. Tokarev, O.V. Sosnovskaya, G.N. Bagmet // Neoproterozoic sedimentary basins: stratigraphy, geodynamics and petroleum potential: Proc. of the International conf. Novosibirsk, 30 July 02 August, 2011. C. 96–98.
- 27. Известковые водоросли и строматолиты: систематика, биостратиграфия, фациальный анализ: сборник научных трудов ИГиГ СО АН СССР / отв. ред. В.Н. Дубатолов, Т.А. Москаленко. Новосибирск: Изд-во «Наука», 1988. 228 с.
- 28. Warren J.K. Evaporites: a compendium. Berlin: Springer, 2016. 1854 p.
- 29. Шемин Г.Г. Модель строения, условия формирования и перспективы нефтегазоносности с выделением объектов поисково-оценочных работ осинского горизонта Нижнего кембрия центральных районов Сибирской платформы // Гео-Сибирь. 2008. Т. 5. С. 100–104.
- 30. Разрез переходных венд-кембрийских отложений восточной части Западно-Сибирской геосинеклизы (по результатам бурения параметрической скважины Восток-3) / Д.В. Гражданкин, Г.А. Карлова, А.Г. Клец, В.А. Конторович, С.В. Сараев, А.А. Терлеев, С.Ю. Беляев, И.В. Вараксина, А.С. Ефимов, Б.Б. Кочнев, К.Е. Наговицин, А.А. Постников, Ю.Ф. Филиппов // Геология и геофизика. − 2008. № 12. С. 1238–1247.

Информация об авторах

Дмитрий Александрович Токарев, кандидат геолого-минералогических наук, старший научный сотрудник Институт нефтегазовой геологии и геофизики им. А.А. Трофимука СО РАН, Россия, 630090, г. Новосибирск, пр. Академика Коптюга, 3; старший преподаватель кафедры исторической геологии и палеонтологии Геолого-геофизического факультета Новосибирского государственного университета, Россия, 630090, г. Новосибирск, ул. Пирогова, 1. Tokarevda@ipgg.sbras.ru

Алексей Владимирович Плюснин, кандидат геолого-минералогических наук, старший научный сотрудник лаборатории седиментологии и эволюции палеобиосферы Тюменского Государственного университета, Россия, 625003, г. Тюмень, ул. Ленина, 23, лаб. 14. a.v.plyusnin@mail.ru; http://orcid.org:0000-0002-2386-0287

Александр Анатольевич Терлеев, кандидат геолого-минералогических наук, старший научный сотрудник, Институт нефтегазовой геологии и геофизики им. А.А. Трофимука СО РАН, Россия, 630090, г. Новосибирск, пр. Академика Коптюга, 3. Terleevaa@ipgg.sbras.ru

Дмитрий Андреевич Староселец, аспирант, лаборант-исследователь лаборатории седиментологии и эволюции палеобиосферы Тюменского Государственного университета, Россия, 625003, г. Тюмень, ул. Ленина, 23, лаб. 14. d_star1997@mail.ru

Евгений Владимирович Никулин, аспирант, лаборант-исследователь лаборатории седиментологии и эволюции палеобиосферы Тюменского Государственного университета, Россия, 625003, г. Тюмень, ул. Ленина, 23, лаб. 14. nikulinev80@gmail.com

Игорь Викторович Афонин, кандидат геолого-минералогических наук, старший научный сотрудник научно-исследовательской лаборатории структурной петрологии и минерагении, Томский государственный университет, Россия, 634050, г. Томск, пр. Ленина, 36. heaven05@list.ru

Екатерина Андреевна Агашева, инженер-исследователь испытательной лаборатории «Аналитический центр геохимии природных систем», Томский государственный университет, Россия, 634050, г. Томск, пр. Ленина, 36. ekaterinaagasheva@gmail.com

Поступила в редакцию: 07.06.2023

Поступила после рецензирования: 14.06.2023

Принята к публикации: 21.02.2024

REFERENCE

- 1. Nikulina M.Yu., Myshevsky N.V., Nikulin E.V. Classical and anomalous objects identified as a result of geological exploration on the territory of the Irkutsk Oil Company. *Oil economy-Oil industry*, 2020, vol. 9, pp. 26–29. (In Russ.)
- 2. Tokarev D.A., Plyusnin A.V., Terleev A.A., Ivanova N.A., Varaksina I.V., Lipyanina A.V. New results of complex lithological-facies and biostratigraphic study of the Osinsky horizon of the Lower Cambrian of the southern Siberian platform (well Bolshetirskaya no. 7). *Geology and mineral resources of Siberia*, 2021, vol. 2, pp. 11–20. (In Russ.)

- 3. Tokarev D.A., Plusnin A.V., Terleev A.A. New results of comprehensive lithologic-facial and biostratigraphic study of the Osin horizon of the Lower Cambrian of the southern Siberian platform (wells West Yaractinian 45, 361). *Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering*, 2022, vol. 333, no. 4, pp. 157–167. (In Russ.)
- 4. Tokarev D.A., Terleev A.A., Plusnin A.V. Calcareous algae (cyanobacteria) of the Usolian Formation of the Lower Cambrian of the southern Siberian Platform (new data on Ichedinskaya well No. 45). *Theoretical and applied aspects of paleontology. Materials of LXVII session of paleontological society at RAS.* St.-Petersburg, Vseghei Publ., 2021. pp. 82–84. (In Russ.)
- 5. Vishnyakov S.G. Genetic types of dolomite rocks of the northwestern margin of the Russian Platform. *Proceedings of the Geological Institute of the USSR Academy of Sciences*, 1956, vol. 4, pp. 209–225. (In Russ.)
- 6. Kirkinskaya V.N., Smekhov E.M. Carbonate rock-reservoirs of oil and gas. Leningrad, Nedra Publ., 1981. 255 p. (In Russ.)
- 7. Kuznetsov V.G. Lithology fundamentals of general (theoretical) lithology. Moscow, Nauchniy mir Publ., 2011. 360 p. (In Russ.)
- 8. Maslov A.V. Sedimentary rocks: methods for studying and interpreting the data obtained. Ekaterinburg, UGGU Publ., 2005. 289 p. (In Russ.)
- 9. Teodorovich G.I. Autigenic minerals of sedimentary rocks. Moscow, Gostoptehizdat Publ., 1958. 572 p. (In Russ.)
- 10. Dunham R.J. Classification of carbonate rocks according to deposition texture. Classification of Carbonate rocks. Simposium Amer. Assoc. Petrol. Geol. Mem. Tulsa, 1962. pp. 108–121.
- 11. Flügel E., Flügel-Kahler E. Phanerozoic reef evolution: basic questions and data base. Facies, 2003, vol. 26. pp. 167–277.
- 12. Wilson J.L. Carbonate facies in geological history. Moscow, Nedra Publ., 1980. 463 p. (In Russ.)
- 13. Einsele G. Sedimentary basins: evolution, facies and sediment budget. Berlin, Springer-Verlag Publ., 2000. 792 p.
- 14. Stanley G. The history and sedimentology of ancient reef systems. New York, Kluwer Academic, 2001. 458 p.
- 15. Catuneanu O. *Principles of sequence stratigraphy*. 2nd ed. Amsterdam, Elsevier Publ., 2022. 486 p.
- 16. Ferreira D., Lupinacci W. Advanced techniques for 3d reservoir characterization: models for the Buzios field, Santos basin. Niterói, Universidade Federal Fluminense, 2022. 116 p.
- 17. Tucker M.E. Shallow-marine carbonate facies and facies models Geological Society. London, Special Publications, 1985. Vol. 18, pp. 147–169.
- 18. Alonso-Zarza A.M., Tanner L.H. Carbonates in continental settings: facies, environments, and processes. Amsterdam, Elselvier, 2010. 381 p.
- 19. Melnikov N.V., Shabanov Yu.Ya., Shabanova O.S. Stratigraphic scheme of the Cambrian deposits of the Turukhano-Irkutsko-Olekminsky region of the Siberian Platform. *Geology and Geophysics*, 2010, vol. 51. pp. 863–875. (In Russ.)
- 20. Zharkov M.A., Khomentovsky V.V. Basic issues of the Lower Cambrian and Vendian stratigraphy of the South Siberian Platform in relation to salinity. *Bulletin of the MEP, Department of Geology*, 1965, no. 1, pp. 110–118. (In Russ.)
- 21. Melnikov N.V. Vendian-Cambrian saline basin of the Siberian platform (stratigraphy, development history). Novosibirsk, Siberian Branch of RAS Publ. House, 2009. 146 p. (In Russ.)
- 22. Fortunatova N.K., Shvets-Teneta-Guriy A.G., Larkin V.N. Structure and prospects of oil and gas potential of the Vendian-Lower Cambrian deposits of the Nepa-Botuoba anteclise and its framing. *Geology of Oil and Gas*, 2010, vol. 5, pp. 54–61. (In Russ.)
- 23. Grotzinger J.P., Watters W.A., Knoll A.H. Calcified metazonas in thrombolite-stromatolite reefs in the terminal Proterozoic Nama Group, Namibia. *Paleobiology*, 2000, vol. 26, pp. 334–359.
- 24. Gordadze G.N., Giruts M.V., Poshibaeva A.R., Postnikova O.V., Poshibaev V.V., Antipova O.A., Rudakovskaya S.Yu., Koshelev V.N., Martynov V.G. Carbonate reservoir as a source rock. *Journal of Siberian Federal University. Chemistry*, 2018, vol. 11, no. 4, pp. 575–592.
- 25. Hofmann H.J., Mountjoy E.W. Namacalathus-Cloudina assemblage in Neoproterozoic Miette Group (Byng Formation), British Columbia: Canada's oldest shelly fossils. *Geology*, 2001, vol. 29, pp. 1091–1094.
- 26. Terleev A.A., Postnikov A.A., Tokarev D.A., Sosnovskaya O.V., Bagmet G.N. Cloudina-Namacalathus-Kolophyton association in the Vendian of Altai-Sayan Foldbelt (Siberia). *Neoproterozoic sedimentary basins: stratigraphy, geodynamics and petroleum potential. Proc. of the International conference*. Novosibirsk, 30 July 02 August, 2011. pp. 96–98.
- 27. Calcareous algae and stromatolites: systematics, biostratigraphy, facial analysis. Eds. V.N. Dubatolov, T.A. Moskalenko. Novosibirsk, Nauka Publ., 1988. 228 p. (In Russ.)
- 28. Warren J.K. Evaporites: a compendium. Berlin, Springer, 2016. 1854 p.
- 29. Shemin G.G. Model of structure, formation conditions and prospects of oil and gas bearing capacity with allocation of objects of prospecting and evaluation works of Osinskiy horizon of Lower Cambrian of central regions of Siberian platform. *Geo-Siberia*, 2008, vol. 5, pp. 100–104.
- 30. Grazhdankin D.V., Karlova G.A., Klets A.G., Kontorovich V.A., Saraev S.V., Terleev A.A., Belyaev S.Yu., Varaksina I.V., Efimov A.S., Kochnev B.B., Nagovitsin K.E., Postnikov A.A., Filippov Yu.F. Section of transitional Vendian-Cambrian deposits of the eastern part of the West Siberian geosyneclise (according to the results of drilling of the parametric well Vostok-3). *Geology and Geophysics*, 2008, no. 12, pp. 1238–1247. (In Russ.)

Information about the authors

Dmitry A. Tokarev, Cand. Sc., Senior Researcher, Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch Russian Academy of Sciences, 3, Academician Koptyug avenue, Novosibirsk, 630090, Russian Federation; Senior Lecturer, Novosibirsk State University, 1 Pirogov street, Novosibirsk, 630090, Russian Federation. Tokarevda@ipgg.sbras.ru

Aleksey V. Plusnin, Cand. Sc., Senior Researcher, University of Tyumen, 23, lab. 313, Lenin street, Tyumen, 625003, Russian Federation. a.v.plyusnin@mail.ru; http://orcid.org:0000-0002-2386-0287

Alexander A. Terleev, Cand. Sc., Senior Researcher, Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch Russian Academy of Sciences, 3, Academician Koptyug avenue, Novosibirsk, 630090, Russian Federation. Terleevaa@ipgg.sbras.ru

Dmitry A. Staroselets, Postgraduate Student, Laboratory Researcher, University of Tyumen, 23, lab. 313, Lenin street, Tyumen, 625003, Russian Federation. d star1997@mail.ru

Evgeniy V. Nikulin, Postgraduate Student, Laboratory Researcher, University of Tyumen, 23, lab. 313, Lenin street, Tyumen, 625003, Russian Federation. nikulinev80@gmail.com

Igor V. Afonin, Cand. Sc., Senior Researcher, Tomsk State University, 36, Lenin avenue, Tomsk, 634050, Russian Federation. heaven05@list.ru

Ekaterina A. Agasheva, Research Engineer, Tomsk State University, 36, Lenin avenue, Tomsk, 634050, Russian Federation. ekaterinaagasheva@gmail.com

Received: 07.06.2023 Revised: 14.06.2023 Accepted: 21.02.2024 UDC 622.24.08

DOI: 10.18799/24131830/2024/3/4376

Prediction of penetration rate and optimization of weight on a bit using artificial neural networks

Vu Hong Duong™, Nguyen Minh Hoa, Nguyen Tien Hung, Nguyen The Vinh

Hanoi University of Mining and Geology, Hanoi, Vietnam

[™]vuhongduong@humg.edu.vn

Abstract. *Relevance.* Achieving the greatest rate of penetration is the aim of every drilling engineer because it is one of the most significant factors influencing drilling costs. However, a variety of drilling conditions could have an impact on rate of penetration, complicating its forecast. *Aim.* To suggest a novel strategy to accurately predict rate of penetration and optimize drilling parameters. *Objects.* Real-time drilling data of a few wells in the Ca Tam oil field, Vietnam, with more than 900 datasets including significant parameters like rotary speed, weight on bit, standpipe pressure, flow rate, weight of mud, torque. *Methods.* Various methods using Artificial Neural Network was proposed to estimate rate of penetration. *Results.* The number of neurons in a hidden layer was varied then the results of different Artificial Neural Network models were compared in order to obtain the optimal model. The final Artificial Neural Network model shows high exactness when contrasted with actual rate of penetration, in this manner, it tends to be suggested as a successful and reasonable approach to predict the rate of penetration of different wells in the Ca Tam oil field. Based on the proposed Artificial Neural Network model, the optimal weight on bit was determined for the drilling interval from 1800 to 2300 m of oil wells in the research region.

Keywords: optimization of drilling parameters, rate of penetration, artificial neural network, Ca Tam field

Acknowledgements: This research is funded by Hanoi University of Mining and Geology under grant number T22-14. Authors express their sincere thanks to the anonymous reviewers for their comments, which helped them to improve this draft.

For citation: Vu Hong Duong, Nguyen Minh Hoa, Nguyen Tien Hung, Nguyen The Vinh. Prediction of penetration rate and optimization of weight on a bit using artificial neural networks. *Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering*, 2024, vol. 335, no. 3, pp. 192–203. DOI: 10.18799/24131830/2024/3/4376

УДК 622.24.08

DOI: 10.18799/24131830/2024/3/4376

Прогнозирование механической скорости бурения и оптимизация нагрузки на долото с использованием искусственных нейронных сетей

By Хонг Зыонг[⊠], Hryeн Минь Хоа, Hryeн Тиен Хунг, Hryeн Тхе Винь

Ханойский университет горного дела и геологии, Вьетнам, г. Ханой

[™]vuhongduong@humg.edu.vn

Аннотация. Актуальность. Достижение максимальной механической скорости бурения является целью каждого инженера-буровика, поскольку механическая скорость бурения является одним из наиболее важных факторов, влияющих на затраты на бурение. Однако различные условия бурения могут оказать влияние на скорость бурения, усложняя ее прогноз. Целью исследования является предложение новой стратегии для точного прогнозирования механической скорости бурения и оптимизации параметров бурения. Объектом исследования являются данные бурения в реальном времени нескольких скважин на нефтяном месторождении Белуга в Кыулонгском бассейне шельфа Южного Вьетнама с более чем 900 наборами данных, включая важные параметры, такие как скорость вращения, нагрузка на долото, давление на стояке, дебит, вес бурового раствора, крутящий момент. Методы. Для оценки механической скорости бурения была предложена различная методология, использующая искусственную

нейронную сеть. *Результаты*. Количество нейронов в скрытом слое варьировалось, после чего сравнивались результаты разных моделей искусственной нейронной сети с целью получения оптимальной модели. Окончательная модель искусственной нейронной сети показывает высокую точность по сравнению с фактической механической скоростью бурения, поэтому ее можно рассматривать как успешный и разумный подход к прогнозированию механической скорости бурения различных скважин на нефтяном месторождении Белуга. Также на основе предложенной модели искусственной нейронной сети был определен оптимальный режим нагрузки на долото для интервала бурения от 1800 до 2300 м в районе исследования.

Ключевые слова: оптимизация параметров бурения, механическая скорость бурения, искусственная нейронная сеть, месторождение Белуга

Благодарности: Работа выполнена при поддержке Ханойского университета горного дела и геологии, г. Ханой, код Т22-14. Авторы выражают глубокую благодарность всем за полезные комментарии, которые помогли улучшить статью.

Для цитирования: Прогнозирование механической скорости бурения и оптимизация нагрузки на долото с использованием искусственных нейронных сетей / Ву Хонг Зыонг, Нгуен Минь Хоа, Нгуен Тиен Хунг, Нгуен Тхе Винь // Известия Томского политехнического университета. Инжиниринг георесурсов. − 2024. − Т. 335. − № 3. − С. 192−203. DOI: 10.18799/24131830/2024/3/4376

Introduction

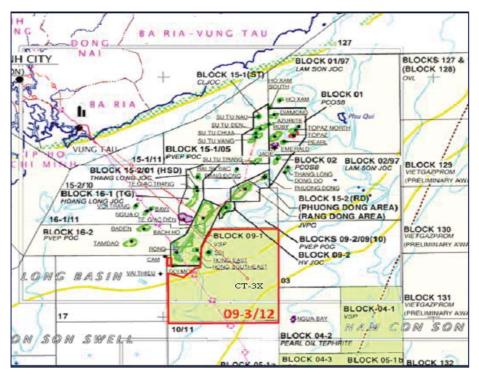
Achieving the greatest Rate of Penetration (ROP) is the aim of every drilling engineer because it could save time, diminish cost and limit drilling problems [1]. Nonetheless, ROP could be affected by many drilling parameters which lead to complication in its prediction. There have been many studies propose mathematical relationships between various drilling parameters and ROP. In 1962, W.C. Maurer proposed an equation for roller-cone bits that predicts ROP assuming that the bottom hole is perfectly cleaned [2]. Galle et al. [3] developed a method using graphs and diagrams to determine the optimal combination of weight on bit (WOB) and rotation per minute (RPM) for roller cone bits, while Bingham modified Maurer's model with a simple experimental model that only considers low WOB and RPM, but doesn't account for drilling depth [4]. Bourgoyne and Young created an empirical model to predict ROP based on multiple drilling parameters, which has become a widely used approach for realtime optimization of drilling parameters [5]. Warren presented a perfect cleaning ROP model for soft formations that relates ROP to WOB, RPM, and bit size. Later, he added a wear function to reflect the bit wear impact [6]. Al-Betairi et al. proposed a new ROP model that uses controllable and uncontrollable drilling variables to predict the optimum penetration rate, evaluated the sensitivity of each parameter on ROP, and determined correlational coefficients through multiple regression analysis [7]. However, these predict equations normally proposed from limited database in particular research area. Therefore, when applying them to other case, which has different geological properties, the result is normally inaccurate. Subsequently, it is essential and critical to propose a new approach to predict ROP with high accuracy. Because of the intricacy of the relationship between ROP and drilling parameters, artificial neural network (ANN) is by all accounts a reasonable choice to demonstrate this complicated interaction. Some ANN models were proposed to predict ROP from drilling data [8-16]. These authors discuss the application of various artificial intelligence (AI) techniques such as ANNs, support vector regression (SVR), decision trees (DT), and machine learning (ML) in predicting the rate of penetration during drilling operations. They compare the performance of these models against traditional empirical models and evaluate their accuracy using statistical measures such as mean absolute error (MAE), root mean square error (RMSE), and determination coefficient (R²). These articles demonstrate the potential of AI techniques to improve drilling efficiency and reduce costs in the petroleum industry. However, most of these published articles just present ANN models without providing specific equations to predict ROP.

In this study, authors apply ANN method with real time drilling data to generate a specific ANN model and calculation to predict ROP.

Input data

The Ca Tam field is located at block 09-3/12 of the Cuu Long basin, Vietnam, about 160 km to the southeast of Vung Tau city (Fig. 1). The block covers an area of approximately 6,000 km², with water depths ranging from 15 to 60 m. The field is being developed by a consortium comprising Vietsovpetro (55%), a joint venture between Vietnam Oil & Gas Group (PetroVietnam) and Zarubezhneft, PetroVietnam Exploration Production (PVEP, 30%) and Bitexco Group (15%).

When drilling through the Miocene strata, wells frequently encounter numerous difficulties and issues connected to borehole instability. It is as a result of the long-term open-hole conditions of wells and the high clay content of the rock (Table 1 summarizes the stratigraphic description of three study wells).



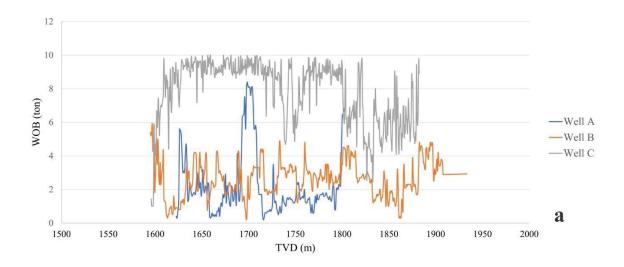

Fig. 1. Red rectangle shows the study area

Рис. 1. Красный прямоугольник показывает района исследования

 Table 1.
 Stratigraphic description of three study wells

Таблица 1. Стратиграфическое описание трех изучаемых скважин

	Well/Скважина						
	A	В	С				
Formation Формация	Middle Miocene: 1707.0-1985.0 mMD	Middle Miocene (N ₁ ²): (1992.0–2511.0 mMD)	Middle Miocene: 2156- 2654 mMD				
ıati	(1584.3-1833.5 mTVD)	(1595.2-1933.15 mTVD)	(1595–1882.33 mTVD)				
nru op	Средний Миоцен: 1707.0-1985.0 м	Средний Миоцен: 1992.0-2511.0 м	Средний Миоцен: 2156- 2654 м				
FC		(глубина по стволу)	(глубина по стволу)				
	1584.3-1833.5 м	1595.2-1933.15 м	1595–1882.33 м				
	(Истинная глубина по вертикали)	(Истинная глубина по вертикали)	(Истинная глубина по вертикали)				
		1992–2100 m: Predominantly clay and sand.	2156–2200 m: Predominantly clay, sand.				
		Clay: brownish gray, brown, reddish brown,	Clay: grayish green, light brown, soft,				
		soft, washable.	subblocky.				
		Sand: light gray, light greenish gray,	Sand: transparent to translucent, light gray				
	1722-1800 m: Predominantly sand	transparent to translucent, fine to coarse grains,	to gray, greenish gray, medium to coarse,				
	and clay.	common medium grains, subangular to	commonly coarse grained, subangular to				
	Clay: brownish gray, brown, reddish	subrounded, poorly sorted.	subrounded, poorly sorted.				
	brown, soft. Sand: greenish gray, transparent to translucent, fine to coarse,	2100–2410 m: Predominantly clay and sand.	2200–2300 m: Predominantly clay, sand.				
		Clay: brown, light brown, brownish gray, light gray, soft, and washable.	Clay: moderate brown, light gray to gray,				
		Sand: light gray, greenish gray, occasionally	greenish gray, soft, subblocky. Sand: transparent to translucent, light gray				
	commonly medium grains, poorly	light reddish brown, transparent to translucent,	to gray, greenish gray, fine to medium				
e n	sorted, sub-angular to sub-rounded.	fine to coarse grains, common medium grains,	grained, subangular to subrounded,				
Description Описание	1800–1985 m: Predominantly	subangular to subrounded, poorly sorted.	moderately sorted.				
crij	sandstone and claystone.	2410–2480 m: Predominantly clay and sand.	2300– 2400 m: Predominantly clay, sand.				
es UIIC	Claystone: gray, brownish gray, light	Clay: greenish gray, light gray, soft, washable.	Clay: light gray, moderate brown, gray,				
	gray, light brownish gray brown,	Sand: light gray, greenish gray, occasionally	greenish gray, soft, subblocky.				
	reddish brown, soft, soft to firm.	light reddish brown, transparent to translucent,	Sand: transparent to translucent, light gray				
	Sandstone: greenish gray, light gray,	fine to coarse grains, common medium grains,	to gray, greenish gray, fine to medium				
	transparent to translucent, fine to	subangular to subrounded, poorly sorted.	grained, subangular to subrounded,				
	coarse, commonly very coarse	2480–2511 m: Predominantly clay, sand,	moderately sorted. Trace of coal.				
	grains, poorly sorted, sub-angular to sub-rounded.	claystone and sandstone.	2400- 2650 m: Predominantly clay, sand.				
	sub-rounded.	Clay: greenish gray, light gray, soft, soluble in	Clay: moderate brown, light gray to gray,				
		part.	greenish gray, soft, subblocky.				
		Sand: light gray, greenish gray, occasionally	Sand: transparent to translucent, light gray,				
		light reddish brown, transparent to translucent,	greenish gray, fine to medium grained,				
		fine to coarse grains, common medium grains,	subangular to subrounded, moderately				
		subangular to subrounded, poorly sorted.	sorted.				

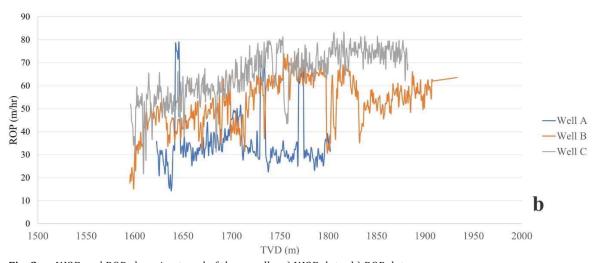


Fig. 2. WOB and ROP changing trend of three wells: a) WOB data; b) ROP data Тенденция изменения нагрузки на долото (а) и механической скорости бурения (b) по трем скважинам

It can be seen from Fig. 2 that:

- ROP is unpredictable and changes quickly;
- due to the different WOB used, there is a considerable variance in ROP between three wells, indicating that WOB is one of the most sensitive parameters that affect ROP;
- despite the fact that the obtained ROP in well C is significantly higher than that of other wells, the adjustment range of WOB is quite broad and defies all laws;
- although high achieved ROP was maintained when applying increased WOB, it would raise the cost of destruction energy and shorten bit life.

The best rate ROP must be established in order to avoid drilling issues and save time for wells in the Ca Tam area. The authors present an ANN model to predict ROP from real data of three wells in a research oil field with more than 1220 datasets that include significant parameters like RPM, WOB, standpipe pressure (SPP), flow rate (FR), and torque (TQ) (Table 2).

Data preprocessing Outlier detection and removal

Abnormal data might be regarded as noise as they can harm the ANN model and limit model generalization. The Z-score outlier identification technique examines the dataset of three wells for aberrant results [17]. The supplied data was stripped of any outlier data points. The participant is awarded a score based on their performance, which is known as the *Z*-score:

$$z = \frac{X_i - X_{mean}}{SD}$$

 $z = \frac{X_i - X_{mean}}{SD},$ where X_{mean} is the mean value of the data; SD is the standard deviation of the data.

The following agreements were made as z<2 imply the outcome is satisfactory in order to make the interpretation of the z-scores simpler. 2<z<3 implies that the outcome is uncertain. z>3 denotes an undesirable outcome.

The input data was further examined and smoothed using the Butterworth filter in order to decrease volatility and eliminate statistical noise [18].

Table 2. Well-log data

Таблица 2. Данные по скважинам

Dame or atom		Well/Скважина				
Parameters	s/Параметры	A	В	С		
Number of core,	201	520	499			
TVD (m)	Тор/Кровля	1594.1	1595.04	1595.77		
Вертикальная глубина забоя (м)	Bottom/Подошва	1833.5	1933.23	1882.33		
DOD (/l)	Min/Минимум	78.47	73.84	83.26		
ROP (m/hr)	Мах/Максимум	14.29	15.12	22.41		
Механическая скорость бурения	Mean/Среднее	35.52	53.25	65.15		
(M/Y)	Stdev/Стандартное отклонение	11.91	10.57	10.65		
	Min/Минимум	8.4	5.9	9.99		
WOB (ton)	Мах/Максимум	0.2	0.2	1.01		
Нагрузка на долото (т)	Mean/Среднее	2.2	2.66	7.85		
	Stdev/Стандартное отклонение	1.9	1.05	1.86		
	Min/Минимум	130	130	193		
RPM (revs/mn)	Мах/Максимум	60	79	49		
Обороты в минуту (об/мин.)	Mean/Среднее	115.25	116.02	139.89		
	Stdev/Стандартное отклонение	17.57	11.45	16.94		
	Min/Минимум	2782.56	3474.12	4074.78		
TQ (kg/m)	Мах/Максимум	2014.5	2554.08	3057.02		
Крутящий момент (кг/м)	Меап/Среднее	2329.67	2969.34	3635.3		
	Stdev/Стандартное отклонение	118.87	230.02	252.43		
	Min/Минимум	57.07	58.83	60.31		
FR (l/s)	Мах/Максимум	46.79	44.33	23.12		
Дебит (1/с)	Mean/Среднее	56.3	58.32	57.86		
	Stdev/Стандартное отклонение	2.26	1.29	4.11		
	Min/Минимум	110.1	112.92	180.1		
SPP (atm)	Мах/Максимум	72.31	75.04	61.2		
Давление в стояке (атм)	Mean/Среднее	98.69	102.42	158.6		
	Stdev/Стандартное отклонение	7.04	6.71	18.48		

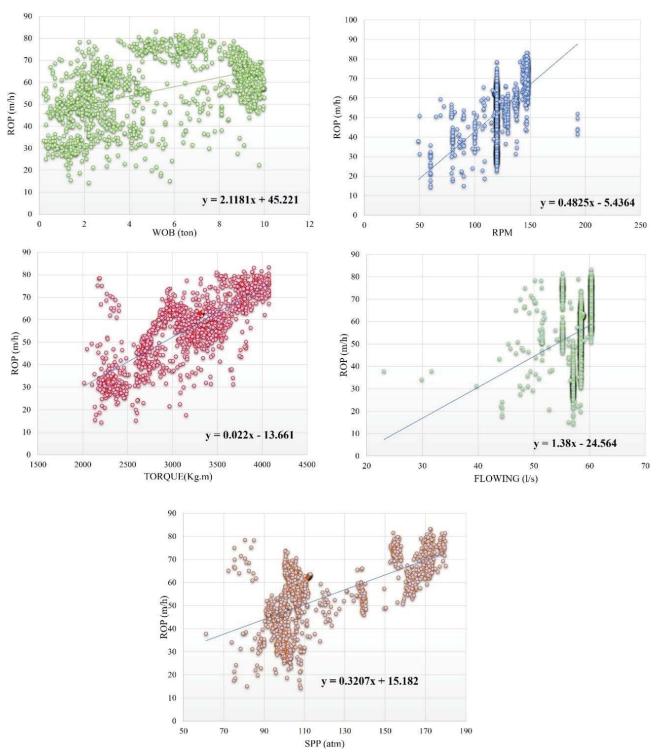
Data selection

The accuracy of the ANN model is largely dependent on the input parameters chosen for the training phase. The inter-relationships between parameters were looked into in order to choose, which parameter should be used as input data (Fig. 3). A regression coefficient that is closer to 1 indicates a positive correlation between parameters, whereas one that is closer to –1 indicates a negative correlation. Fig. 3 demonstrates that all drilling parameters are appropriate and can be kept when creating an ANN model.

Data normalization

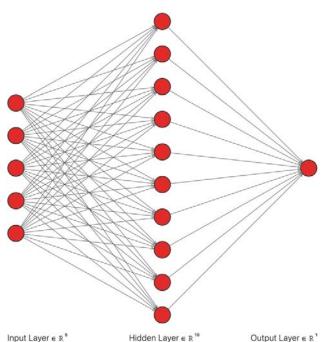
The scales used for various drilling parameters vary greatly, which can have a significant impact on the model accuracy. It is necessary as normalization eliminates geometrical biases against specific data vector dimensions. Every piece of data is handled fairly in this way. As a result, writers normalize the input data using the following equation:

$$X_{normalize} = \frac{(X - X_{\min})}{X_{\max} - X_{\min}},$$


where $X_{normalize}$ is the normalized value; X is the input data; X_{\min} is the minimum value of raw variable; X_{\max} is the maximum value of raw variable.

Model development

In this paper, to forecast ROP from drilling parameters, the authors suggest an ANN using a back-propagation training approach (BPNN) and a log-sigmoid activation function [19]. In the Ca Tam oil field, a training data set of 1220 samples from three wells is divided into three sets: 70% of the samples are used to train the network, 15% are used for testing, and 15% are used for validation. The ANN model output value is the ROP value, and its five parameters –WOB, RPM, TQ, FR and SPP – are taken into consideration as input data (Fig. 4).


To identify the mistake, the calculated output from the ANN after a cycle (or iteration) is contrasted with the real output provided in the sample dataset (actual ROP). In order for output neurons and hidden neurons to modify their weights, this error is communicated back to them. The mistake is propagated in both directions repeatedly, either until it falls below a predefined minimum or until the number of loops hits a predetermined threshold (Fig. 5). The RMS difference between the ANN model projected ROP and the actual ROP is a measure of the model accuracy:

$$RMS_{error} = \sqrt{\sum \frac{(ROP_{predict} - ROP_{actual})^2}{n}}.$$

Fig. 3. Cross-plot between drilling parameters from database **Puc. 3.** Кросс-плот между параметрами бурения из базы данных

Output Layer ∈ R

ANN model to predict ROP Fig. 4.

Модель ИНС для прогнозирования механической Puc. 4. скорости бурения

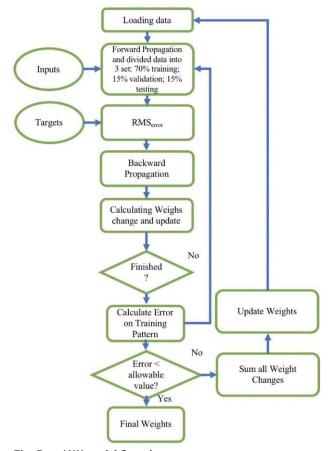


Fig. 5. ANN model flow chart Блок-схема модели ИНС Puc. 5.

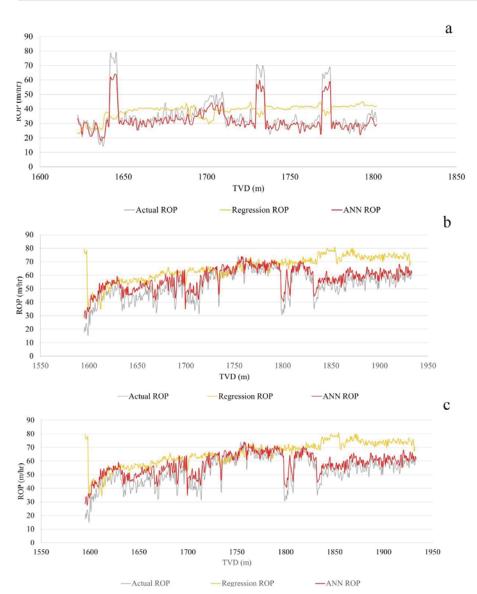
There is no set formula for calculating the number of neurons in the hidden layer, making it a difficult stage in model construction. In this work, various scenarios with varying numbers of neurons in the hidden layer were run along with tests for their impact on the final prediction in order to establish the ideal number of hidden neurons (Table 3). It is crucial to remember that the hidden layer neuron count should be carefully set because too many neurons there can cause overfitting, which reduces the network generalization.

Table 3. Result of using different number of neurons in hidden layer

Таблица 3. Результат использования разного количества нейронов в скрытом слое

Number of neural in hidden layer Количество нейро-	Обучение		Data validation Проверки данных		Data test Тестирование	
нов в скрытом слое	R ²	RMSE	R ²	RMSE	R ²	RMSE
5	0.965	0.0026	0.969	0.0024	0.928	0.0041
6	0.957	0.0034	0.949	0.0032	0.922	0.0039
7	0.961	0.0029	0.959	0.0028	0.963	0.0029
8	0.972	0.003	0.962	0.0025	0.961	0.0031
9	0.923	0.0042	0.89	0.0042	0.898	0.0045
10	0.983	0.0017	0.975	0.0021	0.972	0.0026
11	0.981	0.0018	0.9715	0.0023	0.967	0.0027
12	0.98	0.0018	0.962	0.0026	0.972	0.0025
13	0.979	0.0016	0.962	0.0027	0.958	0.0031
14	0.981	0.0018	0.973	0.0021	0.969	0.0028
15	0.976	0.0016	0.966	0.0026	0.944	0.0036

The authors found that a model with 10 neurons in the hidden layer is best for predicting ROP of the investigated wells by comparing the correlation coefficient (R²) and RMSE between these models (Table 3).


Results and discussions

In order to prove the efficacy of the proposed ANN model, the authors used Multivariate regression method to generate equations to predict ROP from drilling parameters then compare the results of two models (Fig. 6).

 $ROP = a_1WOB + a_2RPM + a_3TQ + a_4FR + a_5SPP + b$,

where a_1 , a_2 , a_3 , a_4 , a_5 and b are the empirical parameters, which values are respectively: $a_1 = -$ 1.15743; a_2 =0.178066; a_3 =0.019056; a_4 =0.351704; $a_5=0.064732$; b=-50.1241.

When comparing accuracy of two models – ANN and Multivariate Regression, it is observed from Fig. 6 that ROP prediction from the ANN model has better match and follows the changing trend of actual ROP in three wells. Therefore, the authors generated a new equation to determine ROP from the proposed ANN model with biases and weights of each neural (Table 4).

Fig. 6. Comparing ROP prediction by ANN, multivariate regression and actual ROP in well: a) A; b) B; c) C **Puc. 6.** Сравнение прогноза механической скорости бурения с помощью ИНС, многомерной регрессии и фактической механической скорости бурения в скважине: a) A; b) B; c) C

$$ROP = A_{2} \left(\frac{2}{1 + \exp^{\left(-2(A_{1}X + b_{1})\right)}} - 1 \right) + b_{2};$$

$$ROP =$$

$$= \left[\sum_{i=1}^{5} W_{2,i} \left(\frac{2}{1 + \exp^{\left(-2\left(\frac{WOB.W_{1,1} + RPM.W_{1i,2} +}{1 + Q.W_{1i,3} + FR.W_{1i,4} + SPP.W_{1i,5}}\right)} - 1 \right) \right] + b_{2}.$$

where $A_1(w_1, i)$ is the vector of weight link the input neurons and the hidden neurons; $A_2(w_2, i)$ is the vector of weight link the hidden neurons to the output neurons; b_1 is the bias vector for input layer; b_2 is the bias vector for output layer; X is the input data.

Determination of WOB optimal value

In this section, the WOB is optimized to achieve the best ROP for a particular formation with the aid of neural network model and brute force algorithm. As an example, the optimization is achieved by splitting formation in database, which spans from 1595 to 1933 m into 7 sections of each 50 m. The minimum and the maximum of WOB for every division is determined and used as reference limits. The brute force algorithm evaluates all the possible value of WOB between the limits (from 1 to 10 tons) and the ROP in each scenario is then projected using the suggested ANN model. The optimal WOB is determined based on two criteria: the mean value and standard deviation of the predicted ROP because the objective of this study is not only to find the optimal value of WOB to achieve ROP max, but also to maintain a stable ROP value throughout the drilling interval (Fig. 7).

 Table 4.
 ANN weights and layers bias

Таблица 4. Веса ИНС и смещение слоев

Hidden layer neuron Нейрон скрытого слоя	weight hor	n the input ne одных нейро		Bias of hidden layer (b ₁) Смещение скрытого слоя (b ₁)	Bias of outputlayer (b ₂) Смещение выходного слоя (b ₂)		
1	0.716160	-0.086680	1.011533	-0.137673	-2.989703	-0.805459	
2	1.391110	0.549202	0.869311	-0.857077	-1.981862	-0.212758	
3	0.757028	0.081891	0.549014	2.223974	-0.353078	-0.970811	
4	-0.107131	0.549205	-2.865236	-0.081505	2.628079	-1.009392	
5	0.440916	-1.213588	-0.707841	0.839954	-2.058846	-0.734020	0.638699
6	-0.962696	0.885008	1.359589	-0.459556	0.102182	-0.614032	0.636699
7	3.071694	-1.486080	0.018324	1.449299	-1.835713	2.467094	
8	1.336814	1.212675	-6.615816	-2.594175	0.389015	1.523646	
9	0.528138	-1.219627	1.560386	1.797248	-0.443743	1.319486	
10	0.476239	-1.711590	-3.138083	1.854319	-3.359954	2.284501	

1845-1895 m TVD

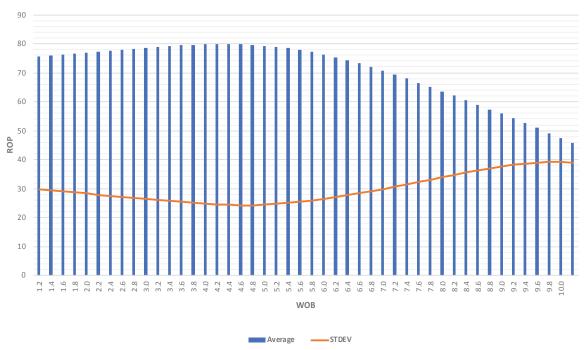


Fig. 7. Example of ROP prediction by ANN when changing WOB value for the interval depth from 1845 to 1895 m
Puc. 7. Пример прогнозирования механической скорости бурения по ИНС при изменении значения нагрузки на долото для интервала глубины с 1845 до 1895 м

It can be seen from Fig. 7 that:

- When WOB increases from 1.2 to 4.4 tons, ROP has an upward trend. Keep increasing WOB, ROP is not only enhanced but also has a decreased trend. It is consistent with the result of previous studies when indentation depth increases, but hole cleaning is not good enough [20–22]. Furthermore, it leads to increasing cost of destruction energy and bit life reduction.
- Furthermore, when applying WOB value of 4.4 tons, the standard deviation was just 24.25 m/hr, which means the predicted ROP, in this case, was relatively stable through interval depth. Comparing to the real data, it is seen that there is also an

increase in the mean value of ROP (24.48%). Therefore, 4.4 tons can be considered as the optimal value of WOB.

Following the same process for other sections, we obtain the following optimal WOB values as it is shown in Table 5.

Table 5 shows that ROP improves significantly (from 14 to 26%) when the optimal WOB is applied to the prediction model. Especially at the two-section depth S6 and S7, the recommended optimal WOB is even smaller than the actual WOB, although predicted ROP rises by 24.48 and 14.54%, respectively. This demonstrates that boosting WOB is not always a good method to increase drilling efficiency.

Table 5. Optimal WOB for drilling intervals **Таблица 5.** Оптимальная нагрузка на долото для интервалов бурения

Drilling interval (TVD) m Интервал бурения (м)	Optimal WOB (tons) Оптимизация нагрузки на долого (т)	Actual WOB (average) (tons) Фактическая нагрузка на долото (сред.) (т)	Predicted ROP when applying optimal WOB (m/hr) Прогнозируемая скорость бурения при оптимизации нагрузки на долого (м/ч)	Actual ROP (m/hr) Фактическая механическая скорость бурения (м/ч)	ROP change Изменение скорости бурения (%)
S1: 1595-1645	4	4.9	52.11	44.55	16.97
S2: 1645-1695	3.8	5.1	60.63	47.98	26.37
S3: 1695-1745	3.6	5.1	66.36	55.1	20.44
S4: 1745-1795	3.6	4.72	71.19	58.29	22.13
S5: 1795-1845	3.4	4.73	75.12	63.82	17.71
S6: 1845-1895	4.4	4.22	79.78	64.09	24.48
S7: 1895-1933	4	3.69	66.47	58.03	14.54

Conclusions

This paper demonstrates the practical use of ANN to predict ROP from drilling parameters of wells in Ca Tam oil field, Vietnam. The ANN model using back-propagation training algorithm with 10 neurons in hidden layer shows the ability to predict ROP accurately.

The optimal value of WOB, when drilling through Miocene stratigraphy for three study wells in Ca Tam oil field, is from 3.6 to 4.4 tons (Table 5). This result could be applied to other wells in the research region.

Furthermore, this method can be applied similarly for the optimization of other drilling parameters such as RPM, FR, MW, etc.

Recommendation for future work is to update data from new wells, collect data on other drilling parameters and integrate the geomechanical properties into the ANN model to increase the accuracy.

REFERENCES

- 1. Zakariya R., Zein A., Diab E., Lotfy A., Marland C., Obaidli Y.Y.A., Braik H.A.A., Amin M.S., Attalah M. A case study of real-time drilling optimization to improve well delivery through enhancing drilling rates and identifying invisible lost time to improve performance. SPE North Africa Technical Conference and Exhibition. Cairo, Egypt, September 2015. SPE-175748-MS.
- 2. Maurer W.C. The "perfect-cleaning" theory of rotary drilling. J Petrol Technol, 1962, vol. 14 (11), pp. 1270–1274.
- 3. Galle E.M., Woods H.B. Best constant weight and rotary speed for rotary rock bits. *API Drilling and Production Practice*, 1963, API-63-048.
- 4. Bingham M.G. A new approach to interpreting rock drillability. USA, The Petroleum Publishing Co., 1965. 93 p.
- 5. Bourgoyne Jr. A.T., Young Jr. F.S. A multiple regression approach to optimal drilling and abnormal pressure detection. *Society of Petroleum Engineers Journal*, 1974, vol. 14 (04), pp. 371–384.
- 6. Warren T.M. Penetration-rate performance of roller cone bits. SPE Drill. Eng., 1987, vol. 2 (01), pp. 9–18.
- 7. Emad A. Al-Betairi, Mohamed M. Moussa, Saud Al-Otaibi. Multiple regression approach to optimize drilling operations in the Arabian Gulf Area. *SPE Drilling Engineering*, 1988, vol. 3 (1), SPE-13694-PA.
- 8. Liu H., Jin Y., Song X., Pei Z. Rate of penetration prediction method for ultra-deep wells based on LSTM-FNN. *Applied Sciences*, 2022, vol. 12 (15), 7731.
- 9. Zhang C., Song X., Su Y., Li G. Real time prediction of rate of penetration by combining attention-based gated recurrent unit network and fully connected neural networks. *Journal of Petroleum Science and Engineering*, 2022, vol. 213, 110396.
- 10. Tu B., Bai K., Zhan C. Real-time prediction of ROP based on GRU-Informer. Scientific reports, 2024, vol. 14, 2133.
- 11. Ji H., Lou Y., Cheng S., Xie Z., Zhu L. An advanced long short-term memory (LSTM) neural network method for predicting rate of penetration (ROP). *ACS Omega*, 2023, vol. 8, pp. 932–945.
- 12. Al-Abdul Jabbar A., Mahmoud A.A., Elkatatny S. Artificial neural network model for real-time prediction of the rate of penetration while horizontally drilling natural gas-bearing sandstone formations. *Arabian Journal of Geosciences*, 2021, vol. 14 (117).
- 13. Mahdi D.S. Predicting drilling rate of penetration using artificial neural networks. *IOP Conf. Ser.: Mater. Sci. Eng.*, 2021, vol. 1067 (1), 012150.
- 14. Ren C., Huang W., Deli G. Predicting rate of penetration of horizontal drilling by combining physical model with machine learning method in the China Jimusar oil field. *SPE Journal*, 2023, vol. 8, pp. 2713–2736.
- 15. Chandrasekaran S., Kumar G. S. Drilling efficiency improvement and rate of penetration optimization by machine learning and data analytics. *International Journal of Mathematical, Engineering and Management Sciences*, 2020, vol. 5, no. 3, pp. 381–394.
- 16. Adetifa O., Iyalla I., Amadi K. Comparative Evaluation of Artificial Intelligence Models for Drilling Rate of Penetration Prediction. SPE Nigeria Annual International Conference and Exhibition, 2021, SPE-208451-MS.
- 17. Tripathy S.S., Saxena R.K., Gupta P.K. Comparison of statistical methods for outlier detection in proficiency testing data on analysis of lead in aqueous solution. *Journal of Theoretical and Applied Statistics*, 2013, vol. 2, Iss. 6, pp. 233–242.
- Selesnick I.W., Burrus C.S. Generalized digital butterworth filter design. Transactions on Signal Processing, 1998, vol. 46, pp. 1688–1694.
- 19. Mohaghegh S. Part 1 Artificial neural networks, virtual-intelligence applications in petroleum engineering. *Journal of Petroleum Technology*, 2000, vol. 52 (9), pp. 64–73.
- 20. Neskoromnykh V.V. *Destruction of rocks during geological exploration*. Krasnoyarsk, Siberian Federal University Publ., 2015. 396 p. (In Russ.)
- 21. Neskoromnykh V.V. Destruction of rocks during well drilling. Krasnoyarsk, Siberian Federal University Publ., 2017. 336 p. (In Russ.)
- 22. Baron L.I., Beron A.I., Alekhova Z.N. Destruction of rocks by mechanical methods when drilling wells. Moscow, Nauka Publ., 1966. 244 p. (In Russ.)

Information about the authors

Vu Hong Duong, MSc., Lecturer, Hanoi University of Mining and Geology, 18, Vien street, Duc Thang Ward, Bac Tu Liem District, Hanoi, Vietnam. vuhongduong@humg.edu.vn

Nguyen Minh Hoa, Cand. Sc., Lecturer, Hanoi University of Mining and Geology, 18, Vien street, Duc Thang Ward, Bac Tu Liem District, Hanoi, Vietnam. nguyenminhhoa@humg.edu.vn

Nguyen Tien Hung, Cand. Sc., Lecturer, Hanoi University of Mining and Geology, 18, Vien street, Duc Thang Ward, Bac Tu Liem District, Hanoi, Vietnam. nguyentienhung.dk@humg.edu.vn

Nguyen The Vinh, PhD, Associate Professor, Lecturer, Hanoi University of Mining and Geology, 18 Vien street, Duc Thang Ward, Bac Tu Liem District, Hanoi, Vietnam. nguyenthevinh@humg.edu.vn

Received: 05.09.2023 Revised: 18.09.2023 Accepted: 21.02.2024

СПИСОК ЛИТЕРАТУРЫ

- 1. A case study of real-time drilling optimization to improve well delivery through enhancing drilling rates and identifying invisible lost time to improve performance / R. Zakariya, A. Zein, E. Diab, A. Lotfy, C. Marland, Y.Y.A. Obaidli, H.A.A. Braik, M.S. Amin, M. Attalah // SPE North Africa Technical Conference and Exhibition. Cairo, Egypt, September 2015. SPE-175748-MS.
- 2. Maurer W.C. The "perfect-cleaning" theory of rotary drilling // J Petrol Technol. 1962. № 14 (11). P. 1270–1274.
- 3. Galle E.M., Woods H.B. Best constant weight and rotary speed for rotary rock bits // API Drilling and Production Practice. 1963. API-63-048.
- 4. Bingham M.G. A new approach to interpreting rock drillability. USA: The Petroleum Publishing Co., 1965. 93 p.
- 5. Bourgoyne Jr. A.T., Young Jr. F.S. A multiple regression approach to optimal drilling and abnormal pressure detection // Society of Petroleum Engineers Journal. − 1974. № 14 (04). P. 371–384.
- 6. Warren T.M. Penetration-rate performance of roller cone bits // SPE Drill. Eng. 1987. № 2 (01). P. 9–18.
- 7. Emad A. Al-Betairi, Mohamed M. Moussa, Saud Al-Otaibi. Multiple regression approach to optimize drilling operations in the Arabian Gulf Area // SPE Drilling Engineering. 1988. № 3 (1). SPE-13694-PA.
- 8. Rate of Penetration Prediction Method for Ultra-Deep Wells Based on LSTM-FNN / H. Liu, Y. Jin, X. Song, Z. Pei // Applied Sciences. 2022. № 12 (15). 7731.
- 9. Real time prediction of rate of penetration by combining attention-based gated recurrent unit network and fully connected neural networks / C. Zhang, X. Song, Y. Su, G. Li // Journal of Petroleum Science and Engineering. − 2022. − № 213. − 110396.
- 10. Real-time prediction of ROP based on GRU-Informer / B. Tu, K. Bai, C. Zhan et al. // Scientific reports. 2024. № 14. 2133.
- 11. An advanced long short-term memory (LSTM) neural network method for predicting rate of penetration (ROP) / H. Ji, Y. Lou, S. Cheng, Z. Xie, L. Zhu // ACS Omega. − 2023. − № 8. − P. 932–945.
- 12. Al-AbdulJabbar A., Mahmoud A.A., Elkatatny S. Artificial neural network model for real-time prediction of the rate of penetration while horizontally drilling natural gas-bearing sandstone formations // Arabian Journal of Geosciences. − 2021. − № 14 (117).
- 13. Mahdi D.S. Predicting drilling rate of penetration using artificial neural networks // IOP Conf. Ser.: Mater. Sci. Eng. − 2021. − № 1067 (1). − 012150.
- 14. Ren C., Huang W., Deli G. Predicting rate of penetration of horizontal drilling by combining physical model with machine learning method in the China Jimusar oil field // SPE Journal. − 2023. − № 8. − P. 2713–2736.
- 15. Chandrasekaran S., Kumar G.S. Drilling efficiency improvement and rate of penetration optimization by machine learning and data analytics // International Journal of Mathematical, Engineering and Management Sciences. − 2020. − № 5 (3). − P. 381–394.
- 16. Adetifa O., Iyalla I., Amadi K. Comparative evaluation of artificial intelligence models for drilling rate of penetration prediction // SPE Nigeria Annual International Conference and Exhibition. 2021. SPE-208451-MS.
- 17. Tripathy S.S., Saxena R.K., Gupta P.K. Comparison of statistical methods for outlier detection in proficiency testing data on analysis of lead in aqueous solution // Journal of Theoretical and Applied Statistics. − 2013. − № 2 (6). − P. 233–242.
- Selesnick I.W., Burrus C.S. Generalized digital butterworth filter design // Transactions on Signal Processing. 1998. № 46. P. 1688–1694.
- 19. Mohaghegh S. Part 1 Artificial Neural Networks, Virtual-Intelligence Applications in Petroleum Engineering // Journal of Petroleum Technology. 2000. № 52 (9). P. 64–73.
- 20. Нескоромных В.В. Разрушение горных пород при проведении геолого-разведочных работ. Красноярск: Сибирский федеральный университет, 2015. 396 с.
- 21. Нескоромных В.В. Разрушение горных пород при бурении скважин. Красноярск: Сибирский федеральный университет, 2017. 336 с.
- 22. Барон Л.И., Берон А.И., Алехова З.Н. Разрушение горных пород механическими способами при бурении скважин. М.: Наука, 1966. 244 с.

Информация об авторах

Ву Хонг Зыонг, мастер технических наук, преподаватель, Ханойский университет горного дела и геологии, Вьетнам, 11900, г. Ханой, ул. Вьен, 18. vuhongduong@humg.edu.vn

Нгуен Минь Хоа, кандидат геолого-минералогических наук, преподаватель, Ханойский университет горного дела и геологии, Вьетнам, 11900, г. Ханой, ул. Вьен, 18. nguyenminhhoa@humg.edu.vn

Нгуен Тиен Хунг, кандидат технологических наук, преподаватель, Ханойский университет горного дела и геологии, Вьетнам, 11900, г. Ханой, ул. Вьен, 18. nguyentienhung.dk@humg.edu.vn **Нгуен Тхе Винь**, PhD, доцент, преподаватель, Ханойский университет горного дела и геологии, Вьетнам, 11900, г. Ханой, ул. Вьен, 18. nguyenthevinh@humg.edu.vn

Поступила в редакцию: 05.09.2023

Поступила после рецензирования: 18.09.2023

Принята к публикации: 21.02.2024

УДК 66.09

DOI: 10.18799/24131830/2024/3/4481 Шифр специальности ВАК: 2.6.12; 2.6.13

Прогнозирование содержания сернистых соединений и общей серы в продуктах каталитического крекинга при переработке гидроочищенного и негидроочищенного нефтяного сырья

Г.Ю. Назарова⊠, Е.Н. Ивашкина, А.А. Орешина, В.В. Мальцев

Национальный исследовательский Томский политехнический университет, Россия, г. Томск [™]silko@tpu.ru

Аннотация. Актуальность исследования обусловлена отсутствием надежной математической модели, пригодной для прогнозирования выхода и качества продуктов установок каталитического крекинга с оценкой экологических показателей топливных фракций при изменении углеводородного состава и распределения сернистых соединений в сырье процесса, а также возможности вовлечения высокосернистых нефтяных потоков в переработку на действующих установках каталитического крекинга. Цель: разработка и применение математической модели процесса каталитического крекинга для прогнозирования содержания сернистых соединений и общей серы в продуктах при переработке гидроочищенного и негидроочищенного нефтяного сырья. Методы: комплекс экспериментальных методов, включая жидкостную и газовую хроматографию для определения состава сырья и распределения сернистых соединений в сырье и продуктах каталитического крекинга, методы квантово-химического моделирования реакций с участием сернистых соединений, а также численные методы обработки и решения систем дифференциальных уравнений; методы квантово-химического моделирования для изучения термодинамических параметров реакций каталитического крекинга серусодержащих соединений. Результаты. Разработана и программнореализована математическая модель каталитического крекинга с участием углеводородов С1-С40+ и сернистых соединений (тиофены C_0-C_4 , алкилбензотиофены C_0-C_6 , C_0-C_3 дибензотиофены и C_4 -дибензотиофеныбензонафтотиофены) с целью прогнозирования выхода и состава продуктов процесса, а также экологических показателей моторных топлив. Установлены термодинамические и кинетические параметры реакций каталитического крекинга с использованием методов квантово-химического моделирования и решением обратной кинетической задачи.

Ключевые слова: каталитический крекинг, сернистые соединения, термодинамика, константа скорости, математическое моделирование

Благодарности: Исследование выполнено при поддержке Российского научного фонда № 19-71-10015-П, https://rscf.ru/project/19-71-10015/

Для цитирования: Прогнозирование содержания сернистых соединений и общей серы в продуктах каталитического крекинга при переработке гидроочищенного и негидроочищенного нефтяного сырья / Г.Ю. Назарова, Е.Н. Ивашкина, А.А. Орешина, В.В. Мальцев // Известия Томского политехнического университета. Инжиниринг георесурсов. − 2024. − Т. 335. − № 3. − C. 204−215. DOI: 10.18799/24131830/2024/3/4481

UDC 66.09

DOI: 10.18799/24131830/2024/3/4481

Prediction of sulfur compounds and total sulfur contents in catalytic cracking products of hydrotreated and non-hydrotreated feeds

G.Yu. Nazarova[™], E.N. Ivashkina, A.A. Oreshina, V.V. Maltsev

National Research Tomsk Polytechnic University, Tomsk, Russian Federation

[™]silko@tpu.ru

Abstract. Relevance. The lack of a reliable mathematical model suitable for predicting the yield and quality of products in catalytic cracking units, with an assessment of the environmental indicators of fuel fractions when changing the hydrocarbon composition and distribution of sulfur compounds in the process feedstock, as well as the possibility of involving highly sulfur-containing oil streams in processing on existing catalytic cracking units. Aim. To develop and apply a mathematical model of the catalytic cracking to predict the content of sulfur compounds and total sulfur in the products during the processing of hydrotreated and non-hydrotreated petroleum feedstocks. *Methods*. A complex of experimental methods, including liquid and gas chromatography to determine the composition of the feedstock and the distribution of sulfur compounds in the feedstock and catalytic cracking products, methods of quantum chemical modeling of reactions involving sulfur compounds, as well as numerical methods for processing and solving systems of differential equations. Quantum chemical modeling methods were used to study the thermodynamic parameters of catalytic cracking reactions involving sulfur-containing compounds. Results. The authors have developed and implemented in software a mathematical model of catalytic cracking involving hydrocarbons C_1-C_{40+} and sulfur compounds (thiophenes C_0-C_4 , alkylbenzothiophenes C_0-C_6 , C_0-C_6 , C_0-C_6). C₃ dibenzothiophenes, and C₄-dibenzothiophene-benzonaphthothiophenes). The model aims to predict the yield and composition of process products, as well as the environmental indicators of motor fuels. Thermodynamic and kinetic parameters of catalytic cracking reactions were determined using quantum chemical modeling methods and solving the inverse kinetic problem.

Keywords: catalytic cracking, sulfur compounds, thermodynamics, rate constant, mathematical modeling

Acknowledgements: The research was supported by the Russian Science foundation no. 19-71-10015- Π , https://rscf.ru/project/19-71-10015/

For citation: Nazarova G.Yu., Ivashkina E.N., Oreshina A.A., Maltsev V.V. Prediction of sulfur compounds and total sulfur contents in catalytic cracking products of hydrotreated and non-hydrotreated feeds. *Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering*, 2024, vol. 335, no. 3, pp. 204–215. DOI: 10.18799/24131830/2024/3/4481

Введение

Одним из процессов глубокой переработки нефтяного сырья в компоненты моторных топлив является технология каталитического крекинга, в качестве сырья которой используются гидроочищенные и негидроочищенные нефтяные фракции, такие как вакуумный газойль или композиционное сырье с добавками остатков масляного производства и прочих низкомаржинальных потоков. При переработке гидроочищенного сырья полученная бензиновая фракция направляется на установку компаундирования товарного бензина. Вместе с тем при переработке негидроочищенного сырья продукты с высоким содержанием серуорганических соединений направляются на предварительное гидрооблагораживание до стадии компаундирования товарного топлива.

Учитывая строгие экологические требования, предъявляемые к моторным топливам, связанные с ограничением содержания сернистых соединений в товарном бензине, качество продуктов каталитического крекинга определяется качеством сырья, технологическими условиями, организованными как в реакторах каталитического крекинга, так и на стадиях подготовки сырья. Это могут быть процессы деасфальтизации для предотвращения чрезмерного коксообразования на поверхности катализатора; деметаллизации с целью удаления никеля, ванадия и железа для предотвращения необратимой дезактивации катализатора; гидроочистки или мягкого гидрокрекинга для предотвращения дезактивации катализатора и достижения требуемых экологических показателей получаемых компонентов моторных топлив в процессе каталитического крекинга.

Анализ производственных данных показал, что содержание сернистых соединений в потоке гидроочищенного сырья может изменяться от 0,083 до 0,620 мас. % вследствие, например, дефицита водорода на НПЗ, остановки блока гидроочистки или нарушения его технологического режима работы, что вызывает рост содержания серы в бензиновой фракции каталитического крекинга. Содержание общей серы в бензине при переработке гидроочищенного вакуумного газойля может достигать 0,0118 мас. %, ограничивая тем самым долю бензина крекинга в товарном продукте [1–5]. Стоит отметить, что около 80–85 % серы поступает в товарный бензин с потоком бензина каталитического крекинга.

Другой актуальной задачей на НПЗ является утилизация избытка высокосернистого нефтяного сырья и оценка возможности его вовлечения в переработку гидроочищенного потока на действующих установках каталитического крекинга без существенного изменения режимов работы установки.

Таким образом, требуется инструмент для прогнозирования выхода и качества продуктов каталитического крекинга при изменении состава сырья и содержания серы в крекируемых потоках, что является более важным для установок, перерабатывающих гидроочищенное нефтяное сырье (без гидроочистки продуктов каталитического крекинга). При этом математическая модель должна быть адаптирована к действующему объекту и учитывать физико-химические закономерности превращений сернистых соединений в процессе каталитического крекинга.

Целью исследования является разработка и применение математической модели процесса каталитического крекинга для прогнозирования содержания сернистых соединений и общей серы в продуктах при переработке гидроочищенного и негидроочищенного нефтяного сырья.

Методы исследования

Для проведения экспериментальных исследований по установлению физико-химических показателей сырья и продуктов процесса каталитического крекинга был использован ряд стандартных методов. Например, метод определения плотности сырья и продуктов процесса каталитического крекинга осуществлялся в соответствии с ГОСТ 3900-85 «Нефть и нефтепродукты. Методы определения плотности». Этот метод позволяет получить результаты, которые необходимы для дальнейшего анализа и оценки физико-химических свойств сырья и продуктов процесса крекинга.

Кроме того, для определения содержания серы в сырье и продуктах процесса каталитического крекинга использовался метод энергодисперсионной рентгенофлуоресцентной спектрометрии, определение серы посредством которого осуществлялось согласно ГОСТ Р 51947-2002 «Нефть и нефтепродукты. Определение серы методом энергодисперсионной рентгенофлуоресцентной спектрометрии».

Для определения молекулярной массы сырья и продуктов процесса каталитического крекинга применялся криоскопический метод. Этот метод позволяет получить информацию о молекулярной массе, что также имеет важное значение при анализе и оценке продуктов крекинга.

Для проведения исследований по установлению состава и распределения сернистых соединений в продуктах каталитического крекинга использовались методы жидкостно-адсорбционной хроматографии с градиентным вытеснением и детектированием по теплопроводности. В качестве неподвижной фазы применялся силикагель марки АСКГ с размером зерен менее 100 мкм. В реакторе поддерживались температура 923 К и давление 0,5 атм.

Также использовался метод газожидкостной хроматографии с использованием хроматографа «Кристалл-2000М», пламенно-фотометрическим детектором и капиллярной колонкой с длиной и внутренним диаметром 30 м и 0,25 мм, соответственно. Неподвижная фаза CR-5 толщиной 2,5 мкм наносилась на колонку. Использовался режим линейного программирования температуры от 323 до 563 К со скоростью нагрева 4 град/мин. Этот метод позволяет определить состав и распределение сернистых соединений в продуктах процесса каталитического крекинга.

Для изучения термодинамических параметров реакций каталитического крекинга, а именно метод теории функционала плотности (Density Functional Theory – DFT), функционала wb97xd, базиса 6-31G, который обеспечил высокую сходимость результатов со справочными данными [6].

Результаты и обсуждение Экспериментальные исследования

В табл. 1 представлены результаты по определению физико-химических свойств и состава гидроочищенного вакуумного газойля и негидроочищенного смесевого сырья процесса, которые являются сырьем установок каталитического крекинга.

Таблица 1. Результаты экспериментальных исследований по определению состава и свойств сырья процесса каталитического крекинга

Table 1. Results of experimental studies on determining the composition and properties of feedstock for catalytic cracking

catalytic cracking						
Свойство	ГВГ-1	ГВГ-2	ГВГ-3	ГВГ-4	ГВГ-5	НГС
Property	HVG-1	HVG-2	HVG-3	HVG-4	HVG-5	NGR
Насыщенные						
углеводороды	64,4	68,5	74,2	69,2	67,0	64,3
Saturated hydrocarbons						
Легкие ароматические						
углеводороды	14,8	16,4	12,9	16,7	19,0	10,8
Light aromatic	14,0	10,1	12,7	10,7	17,0	10,0
hydrocarbons						
Средние ароматические						
углеводороды	4,0	4,9	4,4	3,9	4,5	6,7
Medium aromatic	1,0	1,5	1,1	3,5	1,5	0,7
hydrocarbons						
Тяжелые ароматиче-						
ские углеводороды	15,3	8,6	6,8	8	7,2	14,4
Heavy aromatic	10,0	0,0	0,0	O	7,2	11,1
hydrocarbons						
Смолы 1/Resins 1	0,4	0,8	1,2	0,9	1,0	1,5
Смолы 2/Resins 2	1,1	0,8	0,5	1,3	1,3	2,4
Плотность при 20°C,						
кг/м ³	890,3	888,4	887,8	889,4	891,3	891,7
Density at 20 °C, kg/m ³						
Содержание серы, мас. %	0,126	0,1243	0,125	0,121	0,121	0,912
Sulfur content, wt %	0,120	0,1243	0,123	0,121	0,121	0,712
Молекулярная масса,						
кг/кмоль	345	331	353	401	333	383,5
Molecular weight,	313	331	333	101	333	303,3
kg/kmol						

 $\Gamma B\Gamma$ — гидроочищенный вакуумный газойль; $H\Gamma C$ — негидроочищенное сырье; Cмолы 1 — бензольные смолы; Cмолы 2 — cnupmoбензольные смолы/HVG — hydrotreated vacuum gas oil; NGR — non-hydrotreated raw materials; $Resins\ 1$ — benzene resin; $Resins\ 2$ — alcohol-benzene resins.

Согласно полученным результатам, содержание насыщенных углеводородов в гидроочищенном вакуумном газойле изменяется в диапазоне от 64,4 до 74,2 мас. %, содержание этих компонентов в негидроочищенном потоке близко составило 64,3 мас. % Наибольшее содержание легких арома-

тических углеводородов, преимущественно моноароматических углеводородов, характерно для гидроочищенного вакуумного газойля (12,9–19 мас. %). Вместе с тем наибольшее общее содержание средних и тяжелых ароматических углеводородов, преимущественно ди- и полиароматических углеводородов, характерно для негидроочищенного смесевого сырья процесса и составляет 21,1 мас. %, высокое содержание этих компонентов наблюдается для сырья ГВГ-1 (19,1 мас. %). Содержание серы в сырье существенно различается и составляет 0,121–0,126 и 0,912 мас. % для гидроочищенного вакуумного газойля и негидроочищенного сырья.

По результатам исследований, проведенных в работе [7], при каталитическом крекинге около 40 % серы, содержащейся в сырье, превращается в сероводород. Примерно 3–4 % серы сосредоточивается в бензиновой фракции, а 20–28 % концентрируется в легком газойле. Остаток серы будет присутствовать в тяжелом газойле и коксе. Эти данные позволяют оценить распределение серы в различных фракциях продуктов каталитического крекинга и указывают на важность контроля и оптимизации процесса с точки зрения уменьшения содержания серы в более тяжелых фракциях.

Согласно [8] равное количество серы (5 %) распределяется в кокс и бензин, 15 % серы — в легкий каталитический газойль и 35 % серы концентрируется в тяжелом газойле, 40 % распределяется в газах крекинга. Вместе с этим важно выявить различия в качественном и количественном составе сернистых соединений в сырье и продуктах каталитического крекинга. Результаты анализа состава сернистых соединений с использованием газожидкостной хроматографии представлены в табл. 2, 3.

Согласно полученным результатам, наибольшая доля серосодержащих компонентов в гидроочищенном и негидроочищенном вакуумном газойле представлена конденсированными ароматическими серусодержащими компонентами, включая дибензотиофен и его производные, что связано с их низкой реакционной способностью в процессе гидрооблагораживания. Реакционная способность 1-3кольцевых соединений серы уменьшается в следующем порядке: тиофен>бензотиофен> дибензотиофен [9]. В гидроочищенном вакуумном газойле (ГВГ-3) и негидроочищенном сырье (НГС) процесса отсутствуют тиофены и бензотиофены. Различия присутствуют в содержании высокомолекулярных сернистых соединений, а именно дибензотиофенов. Согласно полученным результатам, в гидроочищенном сырье отсутствуют высокомолекулярные сернистые соединения С₄-дибензотиофенбензонафтотиофены, при этом содержании их в негидроочищенном потоке составляет 2,0063 мас. %

Таблица 2. Результаты газожидкостной хроматографии по определению содержания сернистых соединений в сырье каталитического крекинга

Table 2. Results of gas-liquid chromatography for determining the content of sulfur compounds in catalytic cracking feedstock

	Содержание, мас. % Content, wt %		
Соединение/Compound	ГВГ-3	НГС	
	HVG-3	NGR	
Дибензотиофены/Dibenzothiophenes	0,004	0,044	
c ₁ -дибензотиофен/c ₁ -dibenzothiophene	0,062	0,314	
c ₂ -дибензотиофен/c ₂ -dibenzothiophene	0,270	1,428	
c ₃ -дибензотиофен/c ₃ -dibenzothiophene	0,489	1,934	
c ₄ -дибензотиофен-бензонафтотиофены c ₄ -dibenzothiophene- benzonaphthothiophenes	0,000	2,006	
Общее содержание дибензотиофенов, мас. % Total content of dibenzothiophenes, wt %	0,825	5,727	

Количество недентифицированной серы составило 3,96 и 10,64 % от общего содержания серы в потоках. Учитывая распределение серы в негидро-очищенном потоке, а именно увеличение содержания высокомолекулярных серусодержащих соединений, предположительно, неидентифицированные сернистые соединения имеют более высокомолекулярную структуру и содержатся в смолистых компонентах фракции, неидентифицируемых методом газовой хроматографии.

Согласно полученным результатам в легком каталитическом газойле отсутствуют тиофены, при этом установлено наличие бензо- и дибензотиофенов, соотношение которых составляет 0,123 ед. Бензотиофены представлены алкилбензотиофенами с числом атомов углерода в алкильном заместителе от 1 до 6, максимум распределение приходится на этилбензотиофены (0,079 мас. %). Дибензотиофены легкого газойля представлены дибенхзотиофеном и его гомологами С₁-С₃. Максимальное содержание сернистых соединений в легком каталитическом газойле соответствует C_1 -дибензотиофенам (0,819 мас. %). В легком газойле все сернистые соединения идентифицированы. Бензиновая фракция характеризуется наличием тиофенов (0,012 мас. %) следовыми количествами бензотиофенов (0,006 мас. %), при этом количество недентифицированной серы составило 53 % от общего содержания серы, что может указывать на более 50 % сульфидов и меркаптанов в составе фракции.

Результаты экспериментального исследования сырья и продуктов процесса использованы с целью совершенствования уравнений материального и теплового балансов лифт-реактора каталитического крекинга [10].

Таблица 3. Результаты газожидкостной хроматографии по определению содержания сернистых соединений в продуктах каталитического крекинга

Table 3. Results of gas-liquid chromatography for determining the content of sulfur compounds in catalytic cracking products

		Содержание, мас. %		
Соединение/Compound	Content, wt %			
	ЛКГ/LCG	НБ/NВ		
Тиофены/Thiophenes	0,000	0,000		
c ₂ -тиофен/c ₂ -thiophene	0,000	0,005		
с ₃ -тиофен/с ₃ -thiophene	0,000	0,004		
с ₄ -тиофен/с ₄ -thiophene	0,000	0,001		
Общее содержание тиофенов, мас. % Total content of thiophenes, wt %	0,000	0,012		
Бензотиофены/Benzothiophenes	0,000	0,004		
c ₁ -бензотиофен/c ₁ -benzothiophene	0,027	0,002		
c ₂ -бензотиофен/c ₂ -benzothiophene	0,079	0,000		
c ₃ -бензотиофен/c ₃ -benzothiophene	0,034	0,000		
с ₄ -бензотиофен/с ₄ -benzothiophene	0,0090	0,000		
с5-с6-бензотиофены/с5-с6-benzothiophene	0,002	0,000		
Общее содержание бензотиофенов, мас. % Total content of benzothiophenes, wt %	0,150	0,006		
Дибензотиофены/Dibenzothiophenes	0,301	0,000		
c ₁ -дибензотиофен/c ₁ -dibenzothiophene	0,819	0,000		
c ₂ -дибензотиофен/c ₂ -dibenzothiophene	0,100	0,000		
c ₃ -дибензотиофен/c ₃ -dibenzothiophene	0,000	0,000		
с4-дибензотиофен-бензонафтотиофены	0,000	0,000		
c4-dibenzothiophene-benzonaphthothiophenes	0,000	0,000		
Общее содержание дибензотиофенов, мас. % Total content of dibenzothiophenes, wt %	1,221	0,000		

ЛКГ – легкий каталитический газойль; НБ – нестабильный бензин/LCG – light catalytic gas oil; NB – unstable gasoline.

Моделирование и реакционная схема

На основании результатов газовой хроматографии гидроочищенного и негидроочищенного сырья процесса каталитического крекинга, механизма превращений сернистых соединений на цеолитных катализаторах в условиях каталитического крекинга математическая модель процесса каталитического крекинга [10] дополнена реакциями с участием серусодержащих соединений сырья и продуктов процесса, а также с учетом изменения объема реакционной смеси по высоте лифт-реактора.

Согласно механизму процесса [11–16] сернистые соединения сырья превращаются в тиофены, алкилтиофены, бензотифены, алкилбензотиофены, при этом основными направлениями их превращения являются измеризация, деалкилирование, алкилирование, циклизация, конденсация, крекинг. Основные направления превращения серосодержащих соединений существенно зависят от [Н]-донорной активности углеводородов сырья [17]. Поэтому преимущественным вариантом снижения содержания серы в бензине является увеличение селективности реакции переноса водорода, что позволяет увеличить образование сероводорода и кокса, что можно достичь путем изменения состава катализатора крекинга.

Новая реакционная схема (рис. 1) учитывает основные серусодержащие соединения сырья и продуктов процесса с учетом механизма превращений в зависимости от их структуры.

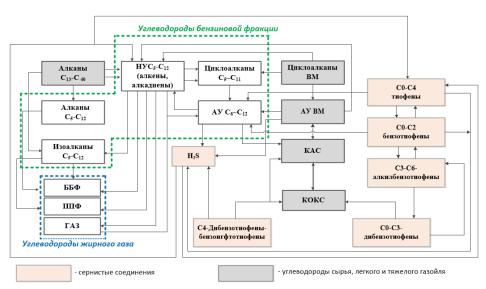


Рис. 1. Реакционная схема углеводородов и серусодержащих соединений в процессе каталитического крекинга: Цикло-алканы ВМ – моно- и бициклические нафтены с длинными заместителями C₁-C₂5 (среднее число нафтеновых колец – 2,1-2,3 ед.), АУ ВМ – ароматические углеводороды (моно- и полиструктуры с длинными заместителями (среднее число ароматических колец – 2,3-2,8 ед., среднее число нафтеновых колец 1,3-1,4 ед.), КАС – смолы, С-С – длина углеводородной цепи или алкильного заместителя в циклических структурах

Fig. 1. Reaction scheme of hydrocarbons and sulfur-containing compounds in the catalytic cracking process: Cyclic alkanes VM – mono- and bicyclic naphthenes with long substituents C_1 – C_{25} (average number of naphthene rings – 2.1–2.3 units), AUVM – aromatic hydrocarbons (mono- and polystructures with long substituents (average number of aromatic rings – 2.3–2.8 units, average number of naphthene rings – 1.3–1.4 units), CAS – resins, C–C – length of hydrocarbon chain or alkyl substituent in cyclic structures

Сернистые соединения сырья процесса каталитического крекинга, подвергшегося гидроочистке, представлены в основном алкилдибензотиофенами C_1 – C_3 . Негидроочищенное сырье, наряду с алкилдибензотиофенами, содержит в основном более конденсированные сернистые соединения — C_4 -дибензотиофены/бензонафтотиофены. Эти компоненты участвуют в реакциях переноса водорода с образованием сероводорода и ароматических углеводородов из бензонафтотиофенов и алкилбензотиофенов из дибензотиофенов, а также в реакциях конденсации с образованием серусодержащего кокса.

Группа бензотиофенов С₀–С₆ разделена на группы алкилбензотиофенов C_4 – C_7 и бензотиофенов C_0 – C_3 , поскольку, в соответствии с [8], в алкилзамещенных тиофеновых соединениях с числом атомов углерода в аликильном заместителе более С3 вероятны реакции циклизации/дегидрирования, в связи с чем алкилтиофены с длинной цепью легче удалить из бензиновых фракций в дизельные фракции, чем алкилтиофены с короткой цепью. Поэтому схема предусматривает реакции деалкилирования алкилбензотиофенов С₄-С₆, их прямой циклизации с образованием дибензотиофенов, а также циклизации сероводорода с олефинами с образованием тиофенов. Деалкилирование алкилбензотиофеновых соединений С₃-С₆ в значительной степени увеличивает содержание серы в бензине, что приводит к образованию низкомолекулярных бензотиофенов и алкилбензотиофенов.

Хотя низкомолекулярные бензотиофены С₀–С₃ трудно крекируются в ходе технологического процесса, схема учитывает реакции переноса водорода с образованием алкилтиофенов, сероводорода и алкилбензотиофенов. В работе [18] более вероятным направлением реакции бензотиофенов при наличии донора водорода являются реакции с образованием сероводорода при насыщении тиофенового кольца с последующим образованием сероводорода, так как окомплекс в случае атаки тиофенового цикла является более устойчивым. Далее для основных реакций крекинга с участием серусодержащих соединений были определены термодинамические параметры при технологических условиях процесса каталитического крекинга. Данный этап необходим для выбора принципиально осуществимых реакций и обоснования схемы превращений сернистых соединений, положенной в математическую модель процесса.

Процесс превращения тиофенов включает реакции переноса водорода, в результате которых образуется сероводород и олефины, а также реакции конденсации тиофенов с олефинами, в ходе которых образуются бензотиофены. В работе [18] было показано, что при наличии углеводородов, таких как декалин, тетралин или другие нафтеновые соединения, при превращении 2-метилтиофена превалирующим направлением является образование ди- и тетрагид-

ротиофенов, которые в ходе процесса подвергаются превращению в сероводород и олефины.

Математическая модель представляет собой систему обыкновенных дифференциальных уравнений, которые описывают изменение концентраций компонентов и температурных условий процесса. При этом учитывается изменение объема реакционной смеси и активность катализатора (1):

$$\begin{cases} q \frac{dC_i}{dl} + C_i \frac{dq}{dl} = A_t \sum_{j=1}^n (\pm \psi \cdot r_j) \\ q \rho C_p \frac{dT}{dl} = A_t \sum_{j=1}^n (\pm \psi \cdot (\Delta_r H_T^{\circ}) \cdot r_j) \end{cases}$$
(1)

начальные условия $T_0 = T_{\text{н.р.}}, C_i = C_0$,

где C_i — концентрации i-й группы углеводородов, моль/м³; τ — время контакта, c; j — порядковый номер; ψ — параметр дезактивации катализатор; T — температура потока, K; ρ — плотность потока, $\kappa \Gamma M^3$, $\kappa \Pi K$; $(\Delta r H)_j$, $(\Delta r H)_j$ — тепловой эффект реакции в прямом и обратном направлениях, $\kappa \Pi K$, моль; $T_{\text{н.р.}}$ — температура теплового равновесия сырья и катализатора, K.

Математическая модель включает 20 компонентов и 31 реакцию, из которых 11 с участием C_1 – C_4 дибензотиофенов, С4-дибензотиофенов бензонатотиофенов, C_4 – C_6 алкилбензотиофенов, C_0 – C_3 беннзотиофенов, С₁-С₄ алкилтиофенов и сероводорода, что обеспечивает чувствительность модели к различным типам сернистых соединений и углеводородному составу сырья. Программная реализация выполнена на языке Python по модульному принципу и может использовать в качестве входных параметров хроматографические данные по содержанию сернистых соединений в потоках сырья и осуществлять расчет их содержания в зависимости от общей серы в потоках сырья и продуктов, обеспечивая учет в модели превращений сернистых соединений, прогнозирование распределения сернистых соединений и общей серы в продуктах каталитического крекинга.

Термодинамические и кинетические параметры реакций процесса представлены в табл. 4.

Установлено, что наибольшими скоростями при превращении сернистых соединений характеризуются реакции деаликилрования алкилбензотиофенов C_4 – C_6 (0,9 c^{-1}), переноса водорода с образованием сероводорода из тиофенов и бензотиофенов $(6,5 \text{ и } 1,42 \text{ м}^3/\text{моль} \cdot \text{c})$, причем перенос водорода с образованием сероводорода из тиофена протекает значительно более интенсивнее $(6.5 \text{ м}^3\text{моль}^{-1}\text{c}^{-1})$, чем упомянутая реакция с участием бензотиофенов $(1,42 \text{ м}^3\text{моль}^{-1}\text{c}^{-1})$. Скорость реакции образования тиофенов из бензотиофенов (0,5 м³/моль с) ниже относительно скорости их превращения в сероводород (1,42 м³/моль с), при этом скорость переноса водорода в реакциях с участием более высокомолекулярных соединений – дибензотиофенов – ниже и составляет 0,21 м³/моль с. Среди реакций циклизации и конденсации наибольшей скоростью характеризуется реакция циклизации алкилбензотиофенов C_4 – C_6 с образованием высокомолекулярных серусодержащих структур (0,32 м³моль $^{-1}$ с $^{-1}$). Так, в работе [19] авторы установили кинетические закономерности каталитического крекинга алкилтиофенов. Молекулы алкилтиофенов реагируют в условиях крекинга посредством реакций десульфурации, деалкилирования, алкилирования и изомеризации. Интенсивность протекания упомянутых реакций сильно зависит от свойств катализатора и химической структуры реактантов. Авторами [20] установлено, что наибольшей скоростью характеризуются реакции деалкилирования тиофенов, кре-

кинга с образованием сероводорода и серусодержащего кокса из тиофенов и алкилтиофенов.

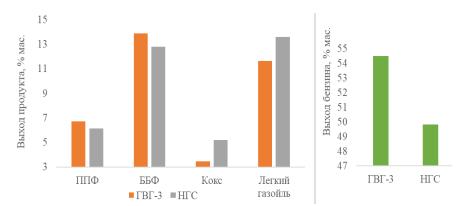
Сравнение расчетных и экспериментальных данных показало, что абсолютная погрешность расчета по составу потока на выходе из реакционного аппарата составила не более 0,6 мас. % Абсолютная погрешность по выходу бензина составила не более 0,5 мас. %, по выходу кокса, газа, ББФ и ППФ – не более 0,1, 0,1, 0,2 и 0,3 мас. %, соответственно. Кроме того, абсолютная погрешность по содержанию сероводорода, тиофенов, бензотиофенов, алкилбензотиофенов и дибензотиофенов не превышает $4.7 \cdot 10^{-3}$, $5.0 \cdot 10^{-4}$, $3.0 \cdot 10^{-4}$; $1.0 \cdot 10^{-4}$ и $1.3 \cdot 10^{-2}$ соответственно.

Таблица 4. Термодинамические и кинетические параметры реакций с участием сернистых соединений при температурах 768–848 К

Table 4. Thermodynamic and kinetic parameters of reactions involving sulfur compounds at 768–848 K

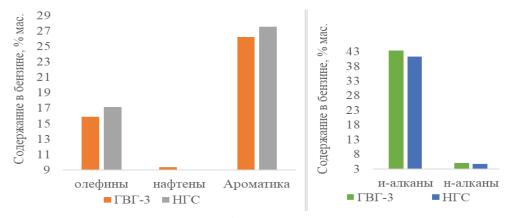
Реакция Reaction	Δ _r H ₇₆₈₋₈₄₈ , кДж/моль (kJ/mol)	Δ _r G ₇₆₈₋₈₄₈ , кДж/моль (kJ/mol)	Константа скорости, с ⁻¹ , м³/моль·с (T=801 K) Rate constant, s ⁻¹ , m³/mol·s
Реакции переноса водорода с образованием сероводорода и ароматических углеводородов из бензонафтотиофенов Hydrogen transfer reactions with the formation of hydrogen sulfide and aromatic hydrocarbons from benzonaphthothiophenes	131,20-129,92	-(143,14-171,5)	0,05
Реакции переноса водорода с образованием алкилбензотиофенов из дибензотиофенов Hydrogen transfer reactions with the formation of alkylbenzothiophenes from dibenzothiophenes	166,74-166,11	- (8,07-26,25)	0,21
Реакции конденсации с бензонафтотиофенов с образованием серусодержащего кокса Condensation reactions with benzonaphthothiophenes to form sulfur-containing coke	- (138,6-151,4)	- (277,5-210,7)	0,09
Реакции конденсации с дибензотиофенов с образованием серусодержащего кокса Condensation reactions with dibenzothiophenes to form sulfur-containing coke	167,9-142,3	- (192,7-68,0)	0,07
Деалкилирование алкилбензотиофенов Dealkylation of alkylbenzothiophenes	120,33-119,44	-(11,64-25,34)	0,90
Реакция циклизации алкилбензотиофенов с образованием дибензотиофенов Cyclization reaction of alkylbenzothiophenes to form dibenzothiophenes	84,8-72,2	-(95,3-32,9)	0,32
Реакции переноса водорода с образованием сероводорода из бензотиофенов Hydrogen transfer reactions with the formation of hydrogen sulfide from benzothiophenes	34,17-33,61	-(123,73-140,15)	1,42
Реакции переноса водорода с образованием тиофенов из бензотиофенов Hydrogen transfer reactions with the formation of thiophenes from benzothiophenes	166,90-166,32	-(92,58-20,20)	0,50
Реакции переноса водорода с образованием сероводорода и олефинов из тиофенов Hydrogen transfer reactions producing hydrogen sulfide and olefins from thiophenes	71,83-71,31	- (78,50-94,13)	6,50
Реакция циклизации тиофенов с олефинами с образованием бензотиофенов Cyclization reaction of thiophenes with olefins to form benzothiophenes	75,53-62,89	- (114,04-52,63)	0,0025
Реакция алкилирования бензотиофенов с олефинами с образованием алкилбензотиофенов Alkylation reaction of benzothiophenes with olefins to form alkylbenzothiophenes	-(120,33-119,44)	11,64-25,34	0,0025
Циклизация сероводорода и олефинов Cyclization of hydrogen sulfide and olefins	54,23-45,87	-(32,07-13,04)	0,025

Применение математической модели. Прогнозирование сернистых соединений в продуктах каталитического крекинга


Прогнозные расчеты по модели выполнены для двух типов сырья, существенно различающихся по составу и распределению сернистых соединений во фракции, а именно гидроочищенного потока ГВГ-3 и негидроочищенного потока НГС. Сырье ГВГ-3 характеризуется более низкой температурой начала кипения фракции и высоким содержанием парафинонафтеновых компонентов (74,2 мас %). Общее содержание ароматических углеводородов в негидроочищенном сырье выше на 7,8 мас. %, причем наибольшие различия наблюдаются в содержании полициклических ароматических углеводородов. Содержание смол в таком сырье значительно выше (3,9 мас. %), чем в гидроочищенном потоке (3,9 мас. %).

Сернистые соединения НГС представлены более высокомолекулярными компонентами, содержание дибензотиофена, С1-дибензотиофена, С2-

дибензотиофена и С3-дибензотиофена в 10,93; 5,08; 5,3 и 3,95 раз превышает их содержание в гидроочищенном потоке. Общее содержание дибензотиофенов в негидроочищенном сырье выше в 6,94 раза.


Результаты прогнозных расчетов выхода продуктов и состава бензиновой фракции установки каталитического крекинга при переработке различного вида сырья представлены на рис. 3, 4. Количественная оценка содержания серы в продуктах крекинга, согласно результатам расчета, представлена на рис. 2.

При переработке высокоароматизированного негидрочищенного сырья наблюдается значительное увеличение выхода кокса (на 1,8 мас. %), вследствие чего выход целевых продуктов значительно снижается. Суммарный выход ППФ и ББФ, а также бензиновой фракции при переработке негидроочищенного смесевого сырья ниже на 1,7 и 4,7 мас. %, соответственно.

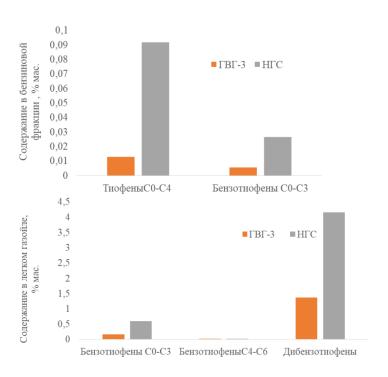

Рис. 2. Зависимость выхода продуктов процесса каталитического крекинга при переработке сырья различного состава при прочих равных условиях (расчеты по модели)

Fig. 2. Dependence of the yield of the catalytic cracking products on the processing of feedstock with different compositions under other equal conditions

Рис. 3. Зависимость состава бензиновой фракции процесса каталитического крекинга при переработке сырья различного состава при прочих равных условиях (расчеты по модели)

Fig. 3. Dependence of the gasoline fraction composition in the catalytic cracking on the processing of feedstock with different compositions under other equal conditions (model calculations)

Рис. 4. Зависимость содержания сернистых соединений в продуктах каталитического крекинга (расчеты по модели)

Fig. 4. Dependence of the content of sulfur compounds in catalytic cracking products (model calculations)

Прогнозные расчеты показали, что бензин каталитического крекинга, полученный из смесевого сырья, характеризуется высоким содержанием олефиновых (17,2 мас. %) и ароматических углеводородов (27,6 мас. %), что связано с характеристиками перерабатываемого сырья. Так, олефиновые углеводороды образуются в ходе реакций крекинга парафиновых и деалкилирования ароматических углеводородов и нафтенов сырья. При большем содержании парафиновых углеводородов в сырье процесса (сырье ГВГ-3) бензины крекинга характеризуются большим содержанием парафиновых углеводородов, как нормального, так и изостроения (5,06 и 43,4 мас. %).

Установлено, что входящие в состав сернистые компоненты, представленные в основном соединениями дибензотиофенового ряда, в процессе каталитического крекинга преимущественно перераспределяются в газ в виде сероводорода $(0,1594-0,0059 \ \text{мас.} \ \%)$ и в среднедистиллятные фракции в виде дибензотиофенов (1,3704-4,1573 мас. %), бензотиофенов короткими алкильными заместителями C_0 – C_3 (0,1628–0,5913 мас. %) и алкилбензотиофенов C_4 – C_6 (0,0175–0,0230 мас. %). Содержание тиофенов и бензотиофенов в бензине при переработке гидроочищенного потока составило 0,0185 и 0,1182 мас. % при переработке негидроочищенного сырья, содержание полиароматических сернистых соединений в которых составляло 3,934 и 5,727 мас. %

Содержание бензотиофенов C_0 — C_3 и C_4 — C_6 в легком газойле составило 0,0175 и 0,0230 мас. % и 0,1628 и 0,5913 мас. % соответственно. В основном сернистые соединения легкого газойля представлены дибензотиофенами (1,370 и 4,153 мас. %). Со-

держание сероводорода в газах в 3,9 раз выше при переработке высокоароматического негидрочищенного сырья.

На рис. 5 показано изменение содержания общей серы в продуктах каталитического крекинга при увеличении содержания серы в сырье процесса с 0,017 до 0,617 мас. % при температуре крекинга 795 К.

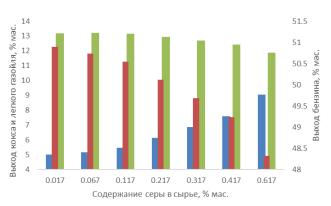


Рис. 5. Зависимость содержания серы в продуктах крекинга от содержания серы в сырье процесса (расчеты по модели)

Fig. 5. Dependence of sulfur content in cracking products on sulfur content in the feedstock (model calculations)

Прогнозные расчеты показали, что при увеличении содержания серы в сырье процесса на 0,60 мас. % содержание серы в бензине и легком газойле увеличивается на 0,0026 и 0,0832 мас. % соответственно. Содержание сероводорода в газах крекинга возрастает более существенно — на 0,1586

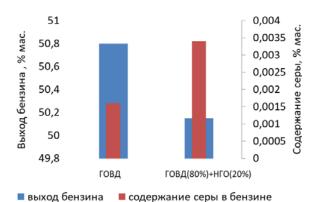

мас. % При этом выход кокса возрастает на 4,0 мас. %, а выход бензина и легкого газойля снижается на 2,57 и 1,29 мас. % (рис. 6), что может быть связано с дезактивацией катализатора крекинга вследствие протекания реакций конденсации ароматических и сернистых соединений.

Рис. 6. Зависимость выхода продуктов крекинга от содержания серы в сырье процесса (расчеты по модели)

Fig. 6. Dependence of cracking product yield on sulfur content in the feedstock (model calculations)

На рис. 7 показаны результаты прогнозных расчетов выхода целевого продукта крекинга — бензина — и содержания в нем серы при вовлечении в переработку 20 % негидроочищенного потока.

Рис. 7. Зависимость выхода целевого продукта крекинга и содержания общей серы в нем от состава сырья (расчеты по модели)

Fig. 7. Dependence of target cracking product yield and total sulfur content in it on feedstock composition changes (model calculations)

Прогнозные расчеты показали, что выход бензина снижается на 0,65 мас. %, при этом содержа-

ние серы в нем возрастает на 0,002 мас. %, вместе с тем значительно возрастает содержание сероводорода в газах крекинга (на 0,0989 мас. %). При приготовлении топлива класса К5 полученный продукт рекомендуется подвергать гидрооблагораживанию на установках гидроочистки бензинов каталитического крекинга. Таким образом, при приготовлении топлива К5 необходимо либо снизить содержание негидроочищенного потока, либо произвести оптимизацию технологического режима.

Заключение

В результате выполненных экспериментальных и численных исследований разработана схема превращений углеводородов в процессе каталитического крекинга, учитывающая реакции с участием сернистых соединений. Изменения, внесенные в реакционную схему, позволили усовершенствовать разработанную ранее математическую модель процесса каталитического крекинга. Выполненная программная реализация уравнений материального и теплового балансов лифт-реактора обеспечила создание надежного цифрового инструмента для прогнозирования выхода и состава продуктов крекинга с учетом важнейших экологических показателей, таких как содержание серы в бензиновой фракции, жирном газе и прочих продуктовых потоках промышленных установок каталитического крекинга.

С применением комплекса экспериментальных и численных методов, включая методы газовой хроматографии для установления содержания в сырье и продуктах процесса каталитического крекинга сернистых соединений, методы квантово-химического моделирования, установлены различия в составе гидроочищенного и негидроочищенного потоков вакуумного газойля и смесевого сырья процесса каталитического крекинга. Так, показано наличие в смесевом сырье более высокомолекулярных серусодержащих соединений С₄-дибензотиофены/бензонафтотиофенов (2,006 мас. %). Согласно нормам по содержанию серы в товарном бензине (не более 10 и 50 для классов К5 и К4 соответственно), высокое содержание серы в бензинах крекинга может вызывать ограничения по его вовлечению в процесс компаундирования. Поэтому при высоком содержании серы в сырье крекинга полученную бензиновую фракцию необходимо направлять на установку гидроочистки бензинов для удаления серусодержащих соединений и получения продукта, соответствующего нормам и требованиям экологической безопасности, оптимизировать технологический режим или снизить содержание негидроочищенного потока.

СПИСОК ЛИТЕРАТУРЫ

- 1. Образцов И.Н., Тарасов А.Л., Гуренков А.А. Каталитический крекинг. М.: Недра, 1990. 352 с.
- 2. Строев Ю.А., Бушманов В.С., Смирнов С.В. Каталитический крекинг. М.: Изд-во МГУ, 2010. 199 с.
- 3. Rahimpour M.R., Ghiasi M., Aroon M.A. Sulfur removal from cracked naphtha using catalytic distillation: a new approach // Ind. Eng. Chem. Res. 2013. Vol. 52. P. 2342–2352. DOI: 10.1021/ie301835m.
- 4. Simulation of sulfur removal from gasoline by selective adsorption process / M. Latifi, Sh. Niknam, A.A. Hamidi, E. Mosayebi // Chem. Eng. Res. Des. 2015. Vol. 104. P. 82–91. DOI: 10.1016/j.cherd.2015.08.012.
- 5. Modeling, simulation, and optimization for producing ultra-low sulfur and high-octane number gasoline by separation and conversion of fluid catalytic cracking naphtha / Z. Yuhao, L. Mengmeng, Z. Liang, L. Suxin, G. Jinsen, X. Chunming, M. Mingzhi, M. Qingfei // Fuel. 2021. Vol. 299. P. 120740. DOI: 10.1016/j.fuel.2021.120740.
- 6. Безруких П.Д., Орешина А.А. Моделирование процесса каталитического крекинга с учетом превращений сернистых соединений // Химия и химическая технология в XXI веке: XXIV Международная конференция. Томск: ТПУ, 2023. Т. 2. С. 38–30.
- 7. Wormsbecher R. Catalytic reduction of sulfur in fluid catalytic cracking. P. 1–47. URL: https://pire-ecci.ucsb.edu/pire-ecci.old/summerschool/papers/Wormsbecher.pdf (дата обращения 15.11.2023).
- 8. On the mechanism of sulfur removal during catalytic cracking / A. Corma, C. Martinez, G. Ketley, G. Blair // Applied Catalysis A: General. 2001. Vol. 208. P. 135–152. DOI: 10.1016/S0926-860X(00)00693-1.
- 9. Al-Bogami I., Saad A. Catalytic conversion of benzothiophene over a H-ZSM5 catalyst, reactivity and a kinetic model // Electronic Thesis and Dissertation Repository. 2013. P. 1146.
- 10. A predictive model of catalytic cracking: feedstock-induced changes in gasoline and gas composition / G. Nazarova, E. Ivashkina, E. Ivanchina, A. Oreshina, E. Vymyatnin // Fuel Processing Technology. 2021. Vol. 217. 106720, 14 p.
- 11. Characterization of nitrogen compounds in coker heavy gas oil and its subfractions by liquid chromatographic separation followed by Fourier transform ion cyclotron resonance mass spectrometry / X. Zhu, Q. Shi, Y. Zhang, N. Pan, C. Xu, K.H. Chung // Energy & Fuels. 2010. Vol. 25 (1). P. 281–287. DOI: 10.1021/ef101328n.
- 12. Reaction network and molecular distribution of sulfides in gasoline and diesel of FCC process / X. Qin, L. Ye, A. Murad, J. Liu, Q. Ying, J. Long, W. Yu, J. Xie, L. Hou, X. Pu, X. Han, J. Zhao, H. Sun, H. Ling // Fuel. 2022. Vol. 319. P. 123567. DOI: 10.1016/j.fuel.2022.123567.
- 13. Choi K.H., Sano Y., Korai Y. An approach to the deep hydrodesulfurization of light cycle oil // Appl. Catal. B: Environ. 2004. Vol. 53. P. 275–283. DOI: 10.1016/j.apcatb.2004.05.013.
- 14. Kaufmann T.G., Kaldor A., Stuntz G.F. Catalysis science and technology for cleaner transportation fuels // Catal. Today. 2000. Vol. 62. P. 77–90. DOI: 10.1016/S0920-5861(00)00410-7.
- 15. The removal of sulfur in fluid catalytic cracking gasoline by selective adsorption: effect of process parameters on sulfur removal / C. Sun, X. Wang, J. Zhang, X. Zhang, L. Ding, W. Wang // Fuel. 2018. Vol. 233. P. 329–336. DOI: 10.1016/j.fuel.2018.06.024.
- 16. Simultaneous removal of sulfur and nitrogen compounds from diesel fuel using Fe-based catalyst under mild conditions / F. Gao, T. Liu, Z. Zhang, X. Cui, T. Wang, J. Deng // Fuel. 2019. Vol. 251. P. 568–575. DOI: 10.1016/j.fuel.2019.04.066.
- 17. Потапенко О.В. Термические и каталитические превращения сераорганических соединений в процессе крекинга нефтяного сырья: дисс. ... канд. хим. наук. Омск, 2012. 140 с.
- 18. Потапенко О.В., Доронин В.П., Сорокина Т.П. Влияние [Н]-донорной активности углеводородов на превращения тиофеновых соединений в условиях каталитического крекинга // Нефтехимия. 2012. № 1. С. 60–65.
- 19. Feed and process effects on the in situ reduction of sulfur in FCC gasoline / J.A. Valla, A.A. Lappas, I.A. Vasalos, C.W. Kuehler, N.J. Gudde // Applied Catalysis A: General. 2004. Vol. 276. P. 75–87. DOI: 10.1016/j.apcata.2004.07.042.
- 20. Иовик Ю.А., Гончаров А.В., Кривцов Е.Б., Головко А.К. Кинетические закономерности образования производных тиофена в процессе крекинга вакуумного газойля и гудрона // Перспективные материалы с иерархической структурой для новых технологий и надежных конструкций: Сборник тезисов докладов международной конференции. Томск, 2019. С. 787.

Информация об авторах

Галина Юрьевна Назарова, кандидат технических наук, доцент отделения химической инженерии Инженерной школой природных ресурсов, Национальный исследовательский томский политехнический университет, Россия, 634050, г. Томск, пр. Ленина, 30. silko@tpu.ru; http://orcid.org/0000-0002-0159-300X Елена Николаевна Ивашкина, доктор технических наук, профессор отделения химической инженерии Инженерной школой природных ресурсов, Национальный исследовательский Томский политехнический университет, Россия, 634050, г. Томск, пр. Ленина, 30. ivashkinaen@tpu.ru; http://orcid.org/0000-0003-3984-1352

Александра Александровна Орешина, аспирант отделение химической инженерии Инженерной школы природных ресурсов, Национальный исследовательский Томский политехнический университет, Россия, 634050, г. Томск, пр. Ленина, 30. sasha.oreshina.94@mail.ru

Владислав Вячеславович Мальцев, студент отделения химической инженерии Инженерной школы природных ресурсов, Национальный исследовательский томский политехнический университет, Россия, 634050, г. Томск, пр. Ленина, 30. vvm63@tpu.ru

Известия Томского политехнического университета. Инжиниринг георесурсов. 2024. Т. 335. № 3. С. 204–215 Назарова Г.Ю. и др. Прогнозирование содержания сернистых соединений и общей серы в продуктах каталитического ...

Поступила в редакцию: 29.11.2023

Поступила после рецензирования: 01.12.2023

Принята к публикации: 21.02.2024

REFERENCES

- 1. Obraztsov I.N., Tarasov A.L., Gurenkov A.A. Catalytic Cracking. Moscow, Nedra Publ., 1990. 352 p. (In Russ.)
- 2. Stroev Yu.A., Bushmanov V.S., Smirnov S.V. Catalytic Cracking. Moscow, Moscow State University Publ. House, 2010. 199 p. (In Russ.)
- 3. Rahimpour M.R., Ghiasi M., Aroon M.A. Sulfur removal from cracked naphtha using catalytic distillation: a new approach. *Ind. Eng. Chem. Res*, 2013, vol. 52, pp. 2342–2352. DOI: 10.1021/ie301835m.
- 4. Latifi M., Niknam Sh., Hamidi A.A., Mosayebi E. Simulation of sulfur removal from gasoline by selective adsorption process. *Chem. Eng. Res. Des.*, 2015, vol. 104, pp. 82–91. DOI: 10.1016/j.cherd.2015.08.012.
- 5. Yuhao Z., Mengmeng L., Liang Z., Suxin L., Jinsen G., Chunming X., Mingzhi M., Qingfei M. Modeling, simulation, and optimization for producing ultra-low sulfur and high-octane number gasoline by separation and conversion of fluid catalytic cracking naphtha. *Fuel*, 2021, vol. 299, 120740 p. DOI: 10.1016/j.fuel.2021.120740.
- 6. Bezrukikh P.D., Oreshina A.A. Modeling of the catalytic cracking process taking into account the transformation of sulfur compounds. *XXIV International Conference. Chemistry and Chemical Technologies in the XXI Century*. Tomsk, 2023. Tomsk, TPU Publ. house, 2023. Vol. 2, pp. 38–30. (In Russ.)
- 7. Wormsbecher R. Catalytic reduction of sulfur in fluid catalytic cracking. Available at: https://pire-ecci.ucsb.edu/pire-ecci.old/summerschool/papers/Wormsbecher.pdf (accessed 15 November 2023).
- 8. Corma A., Martinez C., Ketley G., Blair G. On the mechanism of sulfur removal during catalytic cracking. *Applied Catalysis A: General*, 2001, 208, pp. 135–152. DOI: 10.1016/S0926-860X(00)00693-1.
- 9. Al-Bogami I., Saad A. Catalytic conversion of benzothiophene over a H-ZSM5 catalyst, reactivity and a kinetic model. *Electronic Thesis and Dissertation Repository*, 2013. pp. 1146.
- Nazarova G., Ivashkina E., Ivanchina E., Oreshina A., Vymyatnin E. A predictive model of catalytic cracking: Feedstockinduced changes in gasoline and gas composition. Fuel Processing Technology, 2021, vol. 217, 106720, 14 p.
- 11. Zhu X., Shi Q., Zhang Y., Pan N., Xu C., Chung K.H. Characterization of nitrogen compounds in coker heavy gas oil and its subfractions by liquid chromatographic separation followed by Fourier transform ion cyclotron resonance mass spectrometry. *Energy & Fuels*, 2010, vol. 25 (1), pp. 281–287. DOI: 10.1021/ef101328n.
- 12. Qin X., Ye L., Murad A., Liu J., Ying Q., Long J., Yu W., Xie J., Hou L., Pu X., Han X., Zhao J., Sun H., Ling H. Reaction network and molecular distribution of sulfides in gasoline and diesel of FCC process. *Fuel*, 2022, 319, pp. 123567. DOI: 10.1016/j.fuel.2022.123567.
- 13. Choi K.H., Sano Y., Korai Y. An approach to the deep hydrodesulfurization of light cycle oil. *Appl. Catal. B: Environ*, 2004, vol. 53, pp. 275–283.
- 14. Kaufmann T.G., Kaldor A., Stuntz G.F. Catalysis science and technology for cleaner transportation fuels. *Catal. Today*, 2000, vol. 62, pp. 77–90.
- 15. Sun C., Wang X., Zhang J., Zhang X., Ding L., Wang W. The removal of sulfur in fluid catalytic cracking gasoline by selective adsorption: effect of process parameters on sulfur removal. *Fuel*, 2018, vol. 233, pp. 329–336. DOI: 10.1016/j.fuel.2018.06.024.
- 16. Gao F., Liu T., Zhang Z., Cui X., Wang T., Deng J. Simultaneous removal of sulfur and nitrogen compounds from diesel fuel using Fe-based catalyst under mild conditions. *Fuel*, 2019, vol. 251, pp. 568–575. DOI: 10.1016/j.fuel.2019.04.066.
- 17. Potapenko O.V. Thermal and catalytic transformations of organosulfur compounds in the process of petroleum cracking. Cand. Dis. Omsk, 2012. 140 p. (In Russ.)
- 18. Potapenko O.V., Doronin V.P., Sorokina T.P. Influence of [H]-donor activity of hydrocarbons on the transformation of thiophene compounds under catalytic cracking conditions. *Petrochemistry*, 2012, no. 1, pp. 60–65. (In Russ.)
- 19. Valla J.A., Lappas A.A., Vasalos I.A., Kuehler C.W., Gudde N.J. Feed and process effects on the in situ reduction of sulfur in FCC gasoline. *Applied Catalysis A: General*, 2004, vol. 276, pp. 75–87. DOI: 10.1016/j.apcata.2004.07.042.
- 20. Iovik Yu.A., Goncharov A.V., Krivtsov E.B., Golovko A.K. Kinetic patterns of the formation of thiophene derivatives in the process of crack vacuuming of gas oil and tar. *Collection of abstracts of the international conference. Advanced materials with a hierarchical structure for new technologies and reliable designs.* Tomsk, 2019. pp. 787. (In Russ.)

Information about the authors

Galina Y. Nazarova, Cand. Sc., Associate Professor, National Research Tomsk Polytechnic University, 30, Lenin avenue, Tomsk, 634050, Russian Federation; silko@tpu.ru; http://orcid.org/0000-0002-0159-300X

Elena N. Ivashkina, Dr. Sc., Professor, National Research Tomsk Polytechnic University, 30, Lenin avenue, Tomsk, 634050, Russian Federation; ivashkinaen@tpu.ru; http://orcid.org/0000-0003-3984-1352

Alexandra A. Oreshina, Postgraduate Student, National Research Tomsk Polytechnic University, 30, Lenin avenue, Tomsk, 634050, Russian Federation; sasha.oreshina.94@mail.ru

Vladimir V. Maltsev, Student, National Research Tomsk Polytechnic University, 30, Lenin avenue, Tomsk, 634050, Russian Federation; vvm@tpu.ru

Received: 29.11.2023 Revised: 01.12.2023 Accepted: 21.02.2024 УДК 519.635.8

DOI: 10.18799/24131830/2024/3/4505 Шифр специальности ВАК 1.2.2; 1.1.8

Математическое моделирование функционально-градиентных пористых геометрически нелинейных микро/наноцилиндрических панелей

А.В. Крысько $^{1\boxtimes}$, Л.А. Калуцкий 2 , А.А. Захарова 3 , В.А. Крысько 2,4

- ¹ Московский государственный технологический университет «Станкин», Россия, г. Москва ² Институт гидродинамики им. М.А. Лаврентьева Сибирского отделения Российской академии наук, Россия, г. Новосибирск
- ³ Институт проблем управления им. В.А. Трапезникова Российской академии наук, Россия, г. Москва ⁴ Институт проблем точной механики и управления Российской академии наук, Россия, г. Саратов

[™]anton.krysko@gmail.com

Аннотация. Актуальность. Изучается проблема напряженно-деформированного состояния и устойчивости пористых функционально-градиентных размерно-зависимых цилиндрических панелей. Состав и свойства сплавов могут различаться и существенно влиять на эксплуатационные характеристики изделий, поэтому исследование свойств материалов актуально и способствует созданию новых видов продукции, востребованной нефтегазодобывающей промышленностью. *Цель*: разработка новой модели и создание точных методов анализа напряженно-деформированного состояния пористых функционально-градиентных размерно-зависимых микро/наноцилиндрических панелей с учетом геометрической нелинейности. Методы. Для анализа напряженно-деформированного состояния цилиндрических панелей разработан метод вариационных итераций - расширенный метод Канторовича. Достоверность результатов обеспечивается сопоставлением решений, полученных методом вариационных итераций в первом и втором приближении, с решениями, полученными авторами методом Бубнова-Галеркина в высших приближениях, конечных разностей второго порядка точности, для которых исследуется их сходимость в зависимости от количества разбиений области интегрирования в методе конечных разностей и количества членов ряда в разложении основных функций в методе Бубнова-Галеркина. Полученные результаты с помощью указанных методов сопоставляются с решениями, полученными другими авторами. Следует отметить, что решения, полученные методом вариационных итераций для гибких функционально-градиентных цилиндрических панелей при действии поперечной равномерно-распределенной нагрузки, можно считать точными. *Результаты и выводы.* Построена модель пористых функционально-градиентных размерно-зависимых цилиндрических панелей, применение которых позволит осуществлять исследование свойств сплавов для производства бурильных труб. Проведен анализ влияния типа пористости материала, показателя пористости, функционально-градиентного индекса, граничных условий, размернозависимого параметра, параметров кривизны на напряжено-деформированное состояние цилиндрических панелей с помощью разработанного метода вариационных итераций.

Ключевые слова: пористость, функционально-градиентный, микро/наноцилиндрические панели, метод вариационных итераций, модифицированная моментная теория упругости, свойства легкосплавных бурильных труб

Благодарности. Исследования Антона Вадимовича Крысько поддержаны Министерством науки и высшего образования РФ, проект № 0707-2020-0034, исследования Леонида Александровича Калуцкого и Вадима Анатольевича Крысько поддержаны грантом Российского научного фонда № 22-11-00160, https://rscf.ru/project/22-11-00160.

Для цитирования: Математическое моделирование функционально-градиентных пористых геометрически нелинейных микро/наноцилиндрических панелей / А.В. Крысько, Л.А. Калуцкий, А.А. Захарова, В.А. Крысько // Известия Томского политехнического университета. Инжиниринг георесурсов. − 2024. − Т. 335. − № 3. − С. 216–229. DOI: 10.18799/24131830/2024/3/4505

UDC 519.635.8

DOI: 10.18799/24131830/2024/3/4505

Mathematical modeling of functionally graded porous geometrically nonlinear micro/nano cylindrical panels

A.V. Krysko^{1⊠}, L.A. Kalutsky², A.A. Zakharova³, V.A. Krysko^{2,4}

⁴ Institute for Precision Mechanics and Control Problems of the Russian Academy of Sciences, Saratov, Russian Federation

[™]anton.krysko@gmail.com

Abstract. Relevance. The study investigates the problem of stress-strain state and stability of porous functional-gradient size-dependent cylindrical panels. The composition and properties of alloys can differ and significantly affect the performance characteristics of products. Therefore, the research of material properties is relevant and contributes to the creation of new types of products demanded by the oil and gas industry. Aim. Development of a new model and creation of accurate methods for analyzing the stress-strain state of porous functional-gradient size-dependent micro/nano cylindrical panels taking into account geometrical nonlinearity. Methods. The method of variational iterations - the extended Kantorovich method is used to analyze the stress-strain state of cylindrical panels. The validity of the results is ensured by comparing the solutions obtained by the method of variational iterations in the first and second approximations with the solutions obtained by the authors, by the Bubnov-Galerkin method in higher approximations, by the finite difference method of the second order of accuracy, for which their convergence is investigated depending on a number of partitions of the integration area in the finite difference method and the number of series terms in the expansion of the basic functions in the Bubnov-Galerkin method. The results obtained by these methods are compared with the solutions obtained by other authors. It should be noted that the solutions obtained by the method of variational iterations for bending of functionally graded cylindrical panels under the action of transverse uniformly distributed load can be considered accurate. Results and conclusions. The authors have constructed the model of porous functional-gradient size-dependent cylindrical panels. Its use will allow studying the properties of alloys for producing drill pipes. The influence of material porosity type, porosity index, functional-gradient index, boundary conditions, size-dependent parameter, curvature parameters on the stress-strain state of cylindrical panels was analyzed using the developed method of variational iterations.

Keywords: porosity, functional-gradient, micro/nano cylindrical panels, variational iteration method, modified moment theory of elasticity, light alloy drill pipe properties

Acknowledgements: Research by Anton V. Krysko was supported by the Ministry of Science and Higher Education of the Russian Federation, project no. 0707-2020-0034, research by Leonid A. Kalutsky and Vadim A. Krysko was supported by the Russian Science Foundation grant no. 22-11-00160, https://rscf.ru/project/22-11-00160

For citation: Krysko A.V., Kalutsky L.A., Zakharova A.A., Krysko V.A. Mathematical modeling of functionally graded porous geometrically nonlinear micro/nano cylindrical panels. *Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering*, 2024, vol. 335, no. 3, pp. 216–229. DOI: 10.18799/24131830/2024/3/4505

Введение

Ресурсозатратным при разведке и разработке нефтегазовых месторождений является процесс бурения скважин. Важной составной частью бурильной колонны являются бурильные трубы, которые обеспечивают механическую и гидравлическую связь между работающим на забое режущим инструментом и поверхностным бурильным оборудованием.

Бурильные трубы используются для транспортировки породоразрушающего инструмента по

скважине, образования нужного вращения и крутящего момента с одновременной передачей осевой нагрузки, создания гидравлической энергии при использовании забойных устройств и выполнении других технологических операций. Для нефтегазодобычи в настоящее время преимущественно осуществляется глубокое бурение в экстремальных условиях (температура, давление, агрессивная среда), скважин с большим отклонением и горизонтальным окончанием, что предъявляет высокие

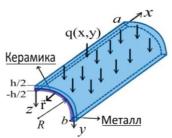
требования к надежности изделий, их способности выдерживать напряженно-деформированное состояние (НДС) и преодолевать силы сопротивления в процессе проводки ствола скважины [1–3].

Одним из путей преодоления указанных проблем является использование бурильных труб, изготовленных из специальных алюминиевых сплавов. Физико-механические свойства таких изделий отличаются от свойств стальных изделий низким удельным весом, высокой удельной прочностью, коррозионной стойкостью, виброподавляющими и немагнитными свойствами [3–5].

Перспективным направлением развития бурильных труб является создание функциональноградиентных ($\Phi\Gamma$) материалов, механические свойства и химический состав которых изменяется по толщине. В работе рассматривается конструкция, материал которой состоит из керамики и алюминия. Он превосходит свойства алюминия по прочности и вибропоглощению [2, 4].

Пористые и функционально-градиентные материалы благодаря своим физическим свойствам: хорошему поглощению энергии и звука, теплообмену, инфильтрационным свойствам и низкой плотности, находят широкое применение в различных отраслях техники и промышленности: нефтегазодобыче, металлургии, медицине, авиапромышленности, машиностроении и др. В данном обзоре рассматриваются работы, посвященные исследованию геометрически нелинейных ФГ цилиндрических панелей и оболочек с учётом нелинейности фон Кармана—Доннела.

Метод Бунова-Галеркина (Bubnov-Galerkin method - BGM) в первом приближении является одним из наиболее широко используемых методов для анализа ФГ цилиндрических панелей и оболочек. Данный метод использовался при анализе ФГ цилиндрической панели при осевом сжатии [6], при исследовании ФГ двоякоизогнутых несовершенных неглубоких оболочек из композита, армированного углеродными нанотрубками [7], при анализе тонких оболочек в задачах динамики с учетом демпфирования под действием механических нагрузок [8]. Данный метод также применялся в работе [9] при анализе нелинейного отклика ФГ цилиндрических панелей при равномерном боковом давлении с учетом температурных эффектов и в работе [10] для исследования нелинейных динамических характеристик и свободных колебаний ФГ пористой усечено-конической панели. Аналитические выражения с применением процедуры BGM для получения явных выражений и соотношений между нагрузкой и прогибом для ФГ плоских и цилиндрических панелей, подверженных термомеханическим нагрузкам, опирающихся на упругие основания, представлены в [11, 12]. Отметим, что в указанных работах ВGM использовался в первом приближении, что является приближенным решением и содержит большие погрешности. Данный метод также использовался при изучении влияния косых ребер жесткости на нелинейное статическое и динамическое поведение цилиндрических панелей [13] и при анализе характеристики свободных колебаний и нелинейных откликов цилиндрических панелей [14].


Анализ изгибания ФГ цилиндрической панели конечной длины, подверженной боковому давлению в тепловой среде, проведен в работе [15]. Для определения нагрузок смятия используется метод возмущений.

Термомеханический анализ разрушения цилиндрических панелей, изготовленных из ФГ материалов с термоупругими свойствами, представлен в [16]. Полуаналитический метод на основе дифференциальных квадратур (Differential Quadratures – DQ) используется для прогнозирования критической нагрузки смятия. Анализируется влияние зависящих от температуры свойств материала, осевой нагрузки, геометрических параметров и граничных условий на термомеханическое поведение панели.

Анализ вышеприведённых исследований позволяет сделать ряд выводов: расчёты выполнены для ФГ цилиндрических и сферических квадратных панелей в плане оболочек, описываемых уравнениями Кармана-Донелла на основе кинематических моделей Киргофа-Лява. В качестве метода расчёта в большинстве работ используется BGM в первом приближении для одного типа краевых условий. Применение метода Бубнова-Галеркина позволяет получить аналитическое решение, но это решение приближенное. Для получения достоверных результатов при проведении анализа нелинейного поведения пористых функционально-градиентных материалов (Porous Functional-Gradient Materials – PFGM) цилиндрических панелей следует проводить в высших приближениях, добиваясь сходимости метода (совпадения не только основных функции, но их производных, хотя бы до второго порядка включительно в зависимости от номера приближения). В настоящей работе решения получены для уравнений фон Кармана-Донелла, описывающих гибкие замкнутые цилиндрические оболочки (цилиндры), а также их фрагменты – цилиндрические панели, изготовленные из PFGM для различных параметров кривизны, пористости, граничных условий, наноэффектов. Основные результаты получены методом вариационных итераций - расширенным методом Канторовича (Variational Iteration Method – VIM). Эти решения сопоставляются с реполученными методом шениями, Галеркина (BGM) в высших приближениях и методом конечных разностей (Finite Difference Method – FDM), а также с результатами, полученными другими авторами [9, 17]. Точность и эффективность метода вариационных итераций показана в работах [18–23]. Доказательство сходимости метода VIM опубликовано в работах [19]. Показано, что метод вариационных итераций обладает высокой скоростью и сходимостью.

Постановка задачи: математическая модель геометрически нелинейных функционально градиентных пористых микро/наноцилиндрических панелей

Рассмотрим цилиндрическую панель — фрагмент замкнутой цилиндрической оболочки, как трёхмерное тело $V \in \{0 \le x \le a, 0 \le y \le b, -h/2 \le z \le h/2\}$ постоянной толщины h, со сторонами a, b в плоскости x, y (рис. 1).

Puc. 1. Расчетная схема цилиндрической панели – фрагмента замкнутой цилиндрической оболочки

Fig. 1. Calculation diagram of a cylindrical panel – fragment of a closed cylindrical shell

Срединную поверхность при z=0 обозначим как $R=\{x,y/(x,y)\in[0,a]\times[0,b]\}$. $\Omega(x,y)$ — область изменения переменных x и y.

Для получения исходных уравнений приняты следующие гипотезы:

- 1. Гипотеза Кирхгофа-Лява.
- 2. Геометрическая нелинейность по теории Теодора фон Кармана.
- 3. Наноэффекты введены согласно модифицированной моментной теории упругости [24], которая учитывает моменты высших порядков. Данная теория имеет то преимущество, что в ней используется только один параметр длины материала, что делает ее удобной для численной реализации.
- Материал панели упругий, и его механические свойства зависят от координаты z: E(z), v(z) согласно функционально-градиентной теории [25, 26]: I. U-PFGM

$$E(z) = \left(E_c - E_m\right) \left(\frac{1}{2} + \frac{z}{h}\right)^p + E_m - \left(E_c + E_m\right) \frac{\Gamma}{2},$$

$$v(z) = \left(v_c - v_m\right) \left(\frac{1}{2} + \frac{z}{h}\right)^p + v_m - \left(v_c + v_m\right) \frac{\Gamma}{2}.$$
 (1)

II. X-PFGM

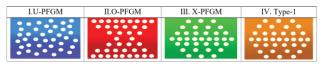
$$E(z) = \left(E_c - E_m\right) \left(\frac{1}{2} + \frac{z}{h}\right)^p + E_m - \left(E_c - E_m\right) \left(\frac{1}{2} + \frac{|z|}{h}\right) \Gamma,$$

$$v(z) = \left(v_c - v_m\right) \left(\frac{1}{2} + \frac{z}{h}\right)^p + v_m - \left(v_c - v_m\right) \left(\frac{1}{2} + \frac{|z|}{h}\right) \Gamma. \quad (2)$$

III. O-PFGM

$$E(z) = \left(E_c - E_m\right) \left(\frac{1}{2} + \frac{z}{h}\right)^p + E_m - \left(E_c + E_m\right) \frac{|z|\Gamma}{h},$$

$$v(z) = \left(v_c - v_m\right) \left(\frac{1}{2} + \frac{z}{h}\right)^p + v_m - \left(v_c + v_m\right) \frac{|z|\Gamma}{h}.$$
 (3)


IV. type 1

$$E(z) = \left[E_m + \left(E_c - E_m \right) \left(\frac{1}{2} + \frac{z}{h} \right)^p \right] \left[1 - \Gamma \cos \left(\frac{\pi z}{h} \right) \right],$$

$$v(z) = \left[v_m + \left(v_c - v_m \right) \left(\frac{1}{2} + \frac{z}{h} \right)^p \right] \left[1 - \Gamma \cos \left(\frac{\pi z}{h} \right) \right], \quad (4)$$

где E_c , E_m , v_c , v_m — модули Юнга и коэффициенты Пуассона керамической и металлической фаз функционально-градиентного материала; p — функционально-градиентный материальный индекс. Коэффициент p определяет соотношения объёмных долей керамики и металла в материале. $\Gamma \in [0;0,4]$ — показатель пористости.

Пористость и градиентность материала панели определены с помощью степенных функций [25]: равномерная пористость (U-PFGM (I)), повышенная пористость от верхней и нижней поверхностей к центру (O-PFGM (II)), уменьшенная пористость от верхней и нижней поверхностей к центру (X-PFGM (III)) и тот же самый тип распределения пористости, в котором пористость и градиентность определены с помощью тригонометрических функций [26] (type 1 (IV)). Иллюстрация типов пористости маетриала приведена на рис. 2.

Puc. 2. Схемы пористого материала **Fig. 2.** Schematics of porous material

Выражение упругой энергии имеет вид (5)

$$U = \frac{1}{2} \int_{\Omega} \left(\sigma_{xx} \varepsilon_{xx} + \sigma_{yy} \varepsilon_{yy} + \sigma_{xy} \varepsilon_{xy} + \left(+ m_{xx} \chi_{xx} + m_{yy} \chi_{yy} + m_{xy} \chi_{xy} \right) d\Omega, \right)$$
 (5)

первые три слагаемые – это классическая теория, а подчёркнутые слагаемые – компоненты симмет-

ричного тензора градиента кривизны, определяются по модифицированной моментной теории упругости [24], внешняя работа распределенных сил q(x,y) принимает вид (6)

$$W = \iint_{S} q(x, y) w(x, y) dS, \qquad (6)$$

кинетическая энергия имеет вид (7)

$$K = \frac{1}{2} \int_{R-h/2}^{h/2} \rho(x, y, z) \left(\frac{\partial w}{\partial t}\right)^2 dz dR. \tag{7}$$

где, $\rho(x, y, z)$ – плотность материала панели.

Деформации произвольной точки панели, согласно гипотезе Кирхгофа–Лява и соотношениям фон Кармана, вычисляется по формулам (8):

$$\varepsilon_{xx} = -z \frac{\partial^2 w}{\partial x^2} + \frac{\partial u}{\partial x} + \frac{1}{2} \left(\frac{\partial w}{\partial x} \right)^2 \left(x \leftrightarrow y \right),$$

$$\varepsilon_{xy} = -2z \frac{\partial^2 w}{\partial x \partial y} + \frac{\partial u}{\partial y} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial x} \frac{\partial w}{\partial y}.$$
(8)

Напряжения, входящие в выражение для упругой энергии, вызванные кинематическими параметрами, определены следующими уравнениями состояния (9):

$$\sigma_{xx} = \frac{E(z)(\varepsilon_{xx} - v(z)\varepsilon_{yy})}{1 - v(z)^{2}} \quad (x \leftrightarrow y) ,$$

$$\sigma_{xy} = \frac{E(z)}{1 + v(z)}\varepsilon_{xy}, \quad m_{xy} = \frac{-E(z)}{(1 + v(z))}l^{2}\chi_{xy},$$

$$m_{xx} = \frac{E(z)}{(1 + v(z))}l^{2}\chi_{xx} \quad (x \leftrightarrow y) ,$$

$$\chi_{xx} = \frac{\partial^{2}w}{\partial x \partial y} (x \leftrightarrow y), \quad \chi_{xy} = \frac{1}{2} \left(\frac{\partial^{2}w}{\partial y^{2}} - \frac{\partial^{2}w}{\partial x^{2}}\right), \quad (9)$$

здесь σ_{xx} , σ_{yy} , σ_{xy} – компоненты классического тензора напряжений; m_{xx} , m_{yy} , m_{xy} – моменты высшего порядка девиаторной части симметричного тензора; χ_{xx} , χ_{yy} , χ_{xy} – компоненты симметричного тензора кривизны.

Согласно принципу Остроградского-Гамильтона (10)

$$\int_{t_0}^{t_1} S(-U + W + K) dt = 0, \tag{10}$$

получим систему вариационных и дифференциальных нелинейных уравнений в частных производных с учетом гипотез, изложенных выше, для пористых функционально-градиентных размернозависимых цилиндрических панелей в смешанной форме относительно функций прогиба w(x,y) и функции напряжений F(x,y). Для статики нелинейные дифференциальные уравнения фон Кармана—Донелла в безразмерном виде имеют вид (11)

$$\begin{split} D\Delta\Delta w - & \left(\frac{\partial^2 w}{\partial x^2} \frac{\partial^2 F}{\partial y^2} + \frac{\partial^2 w}{\partial y^2} \frac{\partial^2 F}{\partial x^2} - 2 \frac{\partial^2 w}{\partial x \partial y} \frac{\partial^2 F}{\partial x \partial y} \right) - \\ & - k_y \frac{\partial^2 F}{\partial x^2} - k_x \frac{\partial^2 F}{\partial y^2} = q, \\ & \Delta\Delta F + \frac{\partial^2 w}{\partial x^2} \frac{\partial^2 w}{\partial y^2} - \left(\frac{\partial^2 w}{\partial x \partial y} \right)^2 + \\ & + \frac{\partial^2 w}{\partial y^2} + k_y \frac{\partial^2 w}{\partial x^2} + k_x \frac{\partial^2 w}{\partial y^2} = 0. \end{split} \tag{11}$$

Уравнения (11) приведены к безразмерным параметрам согласно (12)

$$\overline{w} = \frac{w}{h}, \overline{x} = \frac{x}{a}, \overline{y} = \frac{y}{b}, \overline{q} = \frac{a^2b^2}{Eh^4}q, \lambda = \frac{a}{b},$$

$$\overline{E} = \frac{E}{E_{-}}, \overline{k_x} = \frac{k_x a^2}{h}, \overline{k_y} = \frac{k_y b^2}{h}, \overline{l} = \frac{l}{h}, \quad (12)$$

где E(z) — модуль упругости; v(z) — коэффициент Пуассона функционально градиентного материала, определяемого соотношениями (1)–(4); q(x,y) — поперечная нагрузка на цилиндрическую панель;

$$D = \int_{-1/2}^{1/2} \left(\frac{\overline{E}(z)z^3}{1 - \nu(z)} + \frac{\overline{l}^2}{1 + \nu(z)} \right) dz - \text{цилиндрическая}$$

жёсткость панели с учетом размерно-зависимого параметра \overline{l} . При $\overline{l} \in (0;1]$ модифицированная моментная теория упругости позволяет учитывать масштабные микро/наноэффекты. Нанопанелью является панель, толщина которой находится в нанодиапазоне h < 1000 нм. В работе [27] и в настоящей работе величина размерно зависимого нанопараметра принята l = 2,9 нм, значение параметра $\overline{l} = 0$ позволяет учитывать полноразмерные структуры. В уравнениях (11) и далее в работе черточки над безразмерными параметрами для простоты опущены.

Граничные условия:

I. Шарнирное опирание по контуру на гибкие несжимаемые (нерастяжимые) в касательной плоскости ребра

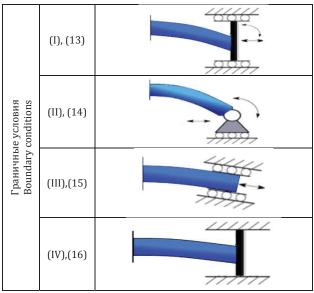
$$w(x,y)|_{r=0} = F(x,y)|_{r=0} = \frac{\partial^2 w}{\partial r^2} = \frac{\partial^2 F}{\partial r^2} = 0.$$
 (13)

II. Свободное опирание по контору

$$w = 0, \frac{\partial^2 w}{\partial x^2} = 0, \frac{\partial^2 F}{\partial y^2} = 0, \frac{\partial^2 F}{\partial x \partial y} = 0 \text{ для } x = 0;1,$$

$$w = 0, \frac{\partial^2 w}{\partial x^2} = 0, \frac{\partial^2 F}{\partial x^2} = 0, \frac{\partial^2 F}{\partial x \partial y} = 0 \text{ для } y = 0;1.$$
(14)

III. Защемление по контуру


$$w(x,y)|_{\overline{r}=0} = F(x,y)|_{\overline{r}=0} = \frac{\partial w}{\partial \overline{r}} = \frac{\partial F}{\partial \overline{r}} = 0.$$
 (15)

IV. Защемление по контуру на гибкие нерастяжимые (несжимаемы) касательные в плоскости ребра

$$w(x,y)|_{\overline{r}=0} = F(x,y)|_{\overline{r}=0} = \frac{\partial w}{\partial \overline{r}} = \frac{\partial^2 F}{\partial \overline{r}^2} = 0, \quad (16)$$

где \overline{r} — нормаль к серединной поверхности. Визуализация граничных условий приведена в табл. 1.

Таблица 1. Визуализация граничных условий **Table 1.** Visualization of boundary conditions

Методы анализа геометрически нелинейных функционально градиентных пористых микро/нанопанелей

Первоначально следует доказать, что решения, полученные с помощью метода вариационных итераций для анализа НДС пористых функциональноградиентных цилиндрических панелей, обладают высокой точностью. С этой целью в исследовании разработаны альтернативные методы — это BGM в высших приближениях и FDM, для которых исследуется сходимость методов.

Метод вариационных итераций основан на идее Фурье разделения переменных. Представляем функции w, F в виде суммы произведений функций (17)

$$w(x, y) = \sum_{i=1}^{n} \tilde{x}_{i}(x)\tilde{y}_{i}(y), \quad F(x, y) = \sum_{i=1}^{n} X_{i}(x)Y_{i}(y). \quad (17)$$

Задаем функции $\tilde{x}(x), X(x)$ произвольным образом (даже не удовлетворяя краевым условиям), функции $\tilde{y}(y), Y(y)$ являются искомыми. Применяя процедуру ВGM для полноразмерной структуры по координате x, получим по координате y систему 2N обыкновенных нелинейных дифференциальных уравнений (ОДУ). Решая систему ОДУ методом конечных разностей

второго порядка точности с соответствующими граничными условиями, находим функции $\tilde{y}(y), Y(y)$. Первая итерация VIM является методом Канторовича—Власова (Kantorovich—Vlasov Method – KVM).

Полученные таким образом функции $\tilde{y}(y), Y(y)$ на втором шаге считаем аппроксимирующими, а функции $\tilde{x}(x), X(x)$ – искомыми. Далее, применяя процедуру Бубнова—Галеркина, получили по другой координате y систему обыкновенных 2N уравнений по другой координате x. Продолжаем данный итерационный процесс до тех пор, пока решения на двух последовательных итерациях не совпадут в пределах принятой точности вычислений

$$\left|\frac{w_i-w_{i-1}}{w_i}\right| \mathcal{E},$$

где w_i =w(0,5;0,5) – решение, полученное на i-й итерации. Доказательство сходимости метода вариационных итераций дано в работе [20].

Замечание: при решении KVM и BGM функции задаются исходя из удовлетворения краевым условиям, в то время как в методе вариационных итераций (VIM) этого не требуется, можно задавать функции, не удовлетворяя краевым условиям.

Метод Бубнова–Галеркина также основан на идее Фурье о разделении переменных. Представим функции w(x,y), F(x,y) в следующем виде:

$$w(x, y) = \sum_{i=1}^{N} \sum_{j=1}^{N} A_{i,j} \varphi_i(x) \psi_j(y),$$

$$F(x, y) = \sum_{i=1}^{N} \sum_{j=1}^{N} B_{ij} \alpha_i(x) \beta_j(y),$$
(18)

причём каждая из выбранных функций $\varphi_i(x)$, $\psi_j(y)$, $\alpha_i(x)$, $\beta_j(y)$ в (18) должна точно удовлетворять соответствующим граничным условиям. При решении уравнения (11) для граничных условий (13) функции представляются в виде (19)

$$w(x, y) = \sum_{i=1}^{N} \sum_{j=1}^{N} A_{i,j} \sin(i\pi x) \sin(j\pi x),$$

$$F(x, y) = \sum_{i=1}^{N} \sum_{j=1}^{N} B_{i,j} \sin(i\pi x) \sin(j\pi x).$$
 (19)

Применив BGM, получим систему $2N^2$ нелинейных алгебраических уравнений относительно неизвестных коэффициентов $A_{i,j}$, $B_{i,j}$. Полученную систему решаем методом Ньютона—Рафсона.

К системе нелинейных уравнений в частных производных фон Кармана–Донела (11), описывающих устойчивость гибких наноцилиндрических панелей по пространственным координатам $\Omega(x,y)$, применим метод конечных разностей второго порядка точности (FDM), заменив производные разностными соотношениями значений функции при

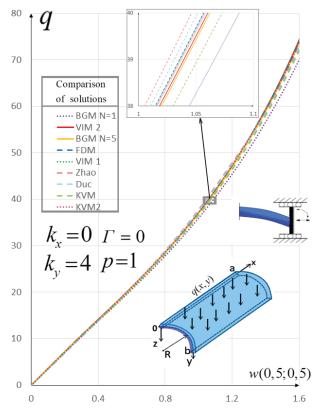
делении области на n^2 отрезков, получим систему $2N^2$ нелинейных алгебраических выражений. Полученную систему решаем методом Ньютона—Рафсона. Деление области $\Omega(x,y)$ на конечные разности проводилось до совпадения решения не только основных функций w(x,y),F(x,y), но и их производных, до второго порядка включительно.

Достоверность получаемых результатов

Для получения достоверных результатов сопоставим решения q[w(0,5;0,5)], полученные методами вариационных итераций в первом и втором приближении (VIM 1, VIM 2), Бубнова–Галеркина в высших приближениях N=7 (BGM), конечных разностей второго порядка точности (FDM) (область Ω разбита на $35\cdot35$ отрезков), Канторовича–Власова в первом и втором приближении (KVM 1, KVM 2), которые сравниваются с решениями D. Duc [9], полученными методом Бубнова–Галеркина в форме П.Ф. Папковича в первом приближении при следующих значениях параметров: λ =1, l=0, p=1, Γ =0,4, k_x =0, k_y =4 для Φ Γ полноразмерной цилиндрической панели из диоксида циркония E_c =151 Γ Π a, v_c =0,3 Π a алюминия Π

В табл. 2 указаны значения функций w(0,5;0,5), $\partial^2 w(0,5;0,5)/\partial x^2$ и погрешность относительно метода VIM 2. Погрешность определяется следующими соотношениями

$$R_{1} = \left| w_{vim2} - w_{k} \right| / w_{vim2},$$


$$R_{2} = \frac{\left(\partial^{2} w_{vim2} / \partial x^{2} - \partial^{2} w_{k} / \partial x^{2} \right)}{\partial^{2} w_{vim2} / \partial x^{2}},$$

где w_{vim2} – решение w(0,5;0,5), полученное методом VIM 2, w_k – решение, полученное для соответствующего метода в табл. 2.

Таблица 2. Сопоставление решения системы (11), полученной методами (BGM, VIM 1, VIM 2, FDM), и решений X. Zhao [17] и D. Duc [9] при q=40

Table 2. Comparison of the solution of system (11) obtained by the methods (BGM, VIM 1, VIM 2, FDM) and the solutions X. Zhao [17] and D. Duc [9] at q=40

$q=40, \lambda=1, l=0, k_x=0, k_y=4, p=1, \Gamma=0$										
Методы Methods	w(0,5;0,5)	R ₁ , %	$\frac{\partial^2 w(0,5;0,5)}{\partial y^2}$	R ₂ , %	Время расчёта, с Calculation time, s					
Zhao	1,095	3,50	-	-	_					
Duc	1,092	3,21	-	-	_					
BGM N=1	1,088	2,84	-10,736	-17,46	0,35					
BGM N=5	1,062	0,38	-9,626	-5,32	62,5					
FDM (n·n=35·35)	1,057	0,09	-9,287	-1,61	1003					
KVM 1 (n=49)	1,073	1,42	-9,321	-1,98	0,45					
VIM 1 (n=49)	1,057	0,09	-9,237	-1,06	1,20					
KVM 2 (n=49)	1,058	0,01	-9,307	-1,83	4,22					
VIM 2 (n=49)	1,058	0,00	-9,14	0,00	8,21					

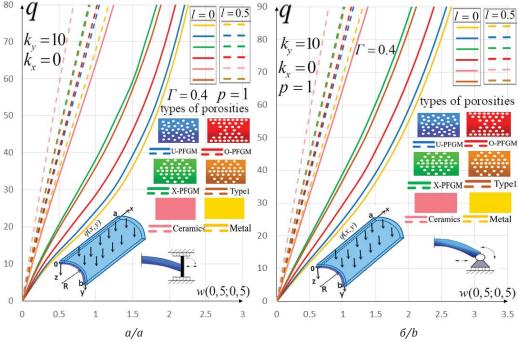
Рис. 3. Зависимость q[w(0,5;0,5)] для λ=1, l=0, Γ=0, граничных условий (13), полученная методами (ВGM, VIM 1, VIM 2, FDM), X. Zhao [17] и D. Duc [9]

Fig. 3. Dependence q[w(0,5;0,5)] for boundary conditions (13) obtained by methods (MBG, MVI 1, MVI 2, MKR) and X. Zhao [17] and D. Duc [9] for the λ =1, l=0, Γ =0

Результаты, полученные методами (BGM N=7, VIM 1, VIM 2, FDM), хорошо согласуются между собой, максимальное различие в прогибах не превышает 1 %, а также близки к решениям работ [9, 17]. Отметим, что решение, полученное в работе Duc [9] методом Бубнова–Галеркина в форме П.Ф. Папковича в первом приближении, является неточным и имеет большую погрешность для вторых производных функций прогиба $\partial^2 w/\partial x^2$. В связи с этим для получения достоверного решения методом BGM необходимо использовать высшие приближения.

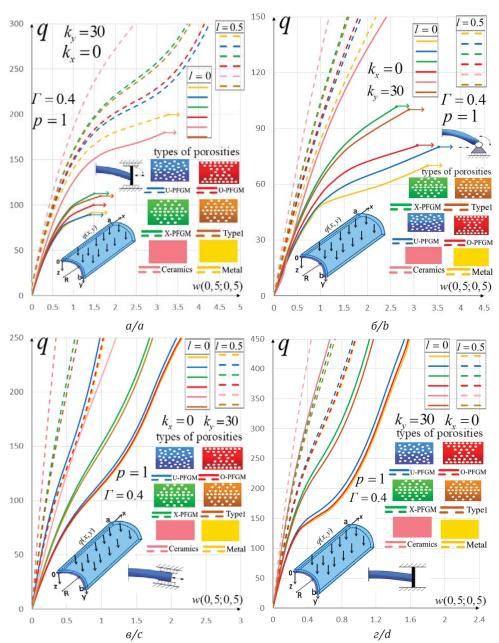
Решения, приведённые на рис. 3 и в табл. 2, показывают, что разработанный метод VIM является наиболее эффективным, так как не требует построения системы аппроксимирующих функций, как в методе Бубнова—Галеркина. И результаты, полученные методом вариационных итераций во втором приближении VIM 2, можно считать точными, так как для этого метода имеется доказательство его сходимости [20] и решение удовлетворяет искомым дифференциальным уравнениям.

Затраты машинного времени для этого метода на шаге нагружения являются минимальными, для


получения достоверного решения методом VIM 1 необходимо 3,6 секунды, VIM 2 - 16,2 секунды, а для метода конечных разностей FDM - более 1000 с. Расчёты проводились на компьютере с частотой процессора 2 $\Gamma\Gamma$ ц.

Исследование напряжённо-деформированного состояния пористых функциональноградиентных цилиндрических панелей

В данной работе проведён анализ влияния типов пористости материалов, показателя пористости Γ и функционально-градиентного материального индекса p для различных граничных условий для полноразмерной (l=0) и нанопанели (l=0,5) на НДС пористых $\Phi\Gamma$ цилиндрических панелей. В данном разделе расчеты проводились для $\Phi\Gamma$ из алюминия E_m =70 $\Gamma\Pi$ a, v_m =0,33, ρ =2700 кг/м³ [25] и керамики диоксида циркония E_c =70 $\Gamma\Pi$ a, v_c =0,33, ρ =2400 кг/м³ [25].


Исследуем НДС пористых $\Phi\Gamma$ размернозависимых квадратных в плане λ =1 цилиндрических панелей, описываемых системой нелинейных дифференциальных уравнений (11), при действии равномерно распределённой поперечной нагрузки q(x,y)=q, для четырех типов распределений пористости (type 1, U-PFGM, X-PFGM, O-PFGM), а также для сплошного металла и керамики. Сплошные линии решения получены для полноразмерных цилиндрических панелей l=0, пунктирные — для нанопанелей при l=0,5. Решения q[w(0,5;0,5)], приведенные на рис. 4, 5, получены методом вариационных итераций VIM 2. Отметим, что для полноразмерных цилиндрических панелей при k_y =30 наблюдается потеря устойчивости, т. е. критические нагрузки $q_{\rm kp}$, стрелками на рис. 5 показаны направления перехода на устойчивую ветвь равновесия. Для наноструктур при l=0,5 при тех же параметрах k_x , k_y потеря устойчивости не наблюдается.

Результаты, представленные на рис. 4, 5, показывают, что увеличение показателя кривизны k_{ν} приводит к качественному изменению характера изгибания цилиндрических панелей. При этом для малых значений параметров кривизны $k_v \le 10$ график нагрузка-прогиб q[w(0,5,0,5)] близка к зависимости q[w(0,5;0,5)] для пластин. При увеличении параметра k_v при k_v =30 для полноразмерных пористых ФГ панелей наблюдется явление потери устойчивости для граничных условий (13), (14), в то время как для нанопанелей при l=0,5 данного явления не наблюдается. Кривые для цилиндрических панелей из PFGM занимают промежуточные положения на графиках q[w(0,5;0,5)] – между цилиндрическими панелями из металла и керамики без пористости. Таким образом, даже при наличии пористости при Г=0,4 добавление керамики в сплав позволяет увеличить несущую способность структур по сравнению с металлом без пористости. Учет размерно-зависимого параметра l=0,5 приводи к увеличению несущей способности цилиндрических панелей для всех рассматриваемых типов материала и граничных условий.

Рис. 4. Зависимость q[w(0.5;0.5)] при p=1, $\Gamma=0.4$, $k_x=0$, $k_y=10$, $\lambda=1$ для (U-PFGM, X-PFGM, O-PFGM, type1, металл, керами-ка). Граничные условия: a) (13); б) (14)

Fig. 4. Dependence q[w(0.5;0.5)] at p=1, $\Gamma=0.4$, $k_x=0$, $k_y=10$, $\lambda=1$ for (U-PFGM, X-PFGM, O-PFGM, type1, metal, ceramic). Boundary conditions: a) (13); b) (14)

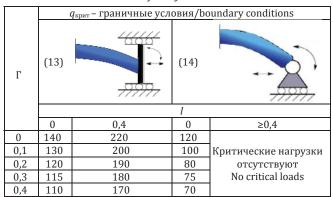
Рис. 5. Зависимость q[w(0,5;0,5)] при p=1, $\Gamma=0$, $k_x=0$, $k_y=30$, $\lambda=1$ для (U-PFGM, X-PFGM, O-PFGM, type1, металл, керами-ка). Граничные условия: a) (13); b) (14); в) (15); г) (16)

Fig. 5. Dependence q[w(0,5;0,5)] at p=1, $\Gamma=0$, $k_x=0$, $k_y=30$, $\lambda=1$ for (U-PFGM, X-PFGM, O-PFGM, type1, metal, ceramic). Boundary conditions: a) (13); b) (14); c) (15); d) (16)

Из четырех рассмотренных типов пористости материалов наибольшей несущей способностью, как для полноразмерной, так и для наноцилиндрической панели, обладают type1 и X-PFGM. Данные типы пористости являются аппроксимацией случая, когда максимальный объём пор распределён в центре панели. Различия в прогибах между данными типами пор составляют менее 3 %. Из рассматриваемых типов пористости наименьшей несущей способностью обладают панели с распределением пор U-PFGM.

Проведём анализ влияния показателя пористости Γ на изгибание пористой $\Phi\Gamma$ размернозависимой панели U-PFGM при действии равномерной нагрузки. Зависимости q[w(0,5;0,5)] для различных значений показателя пористости Γ приведены на рис. 6 для граничных условий (13). Расчёты для $\Phi\Gamma$ материала из алюминия E_m =70, v_m =0,33 и керамики E_c =210, v_m =0,3 для следующих параметров p=1, λ =1. Стрелками показаны критические нагрузки, в которых происходит потеря устойчивости. В табл. 3 показаны величины крити-

ческой нагрузки панели k_x =0, k_y =30 при действии поперечной равномерно-распределенной нагрузки.


Анализ результатов, представленных на рис. 6 и в табл. 3, показывает, что величина показателя пористости Γ существенно влияет на несущую способность пористых полноразмерных и наноцилиндрических панелей. Увеличение показателя пористости Γ от 0 до 0,4 приводит к уменьшению функции прогиба как для полноразмерных (l=0), так и для наноцилиндрических (l=0,4) панелей. Учет параметра l для наноцилиндрических панелей существенно увеличивает несущую способность, практически в два раза, по сравнению с полноразмерными структурами.

Увеличение параметра кривизны приводит к качественному изменению зависимости q[w(0,5;0,5)] и при k_y =30 для цилиндрических панелей происходит потеря устойчивости. При этом при увеличении размерно-зависимого параметра до l=0,6 потери устойчивости не наблюдается. Увеличение показателя пористости Γ и размерно-зависимого параметра l приводит к возрастанию величины критической нагрузки при потере устойчивости.

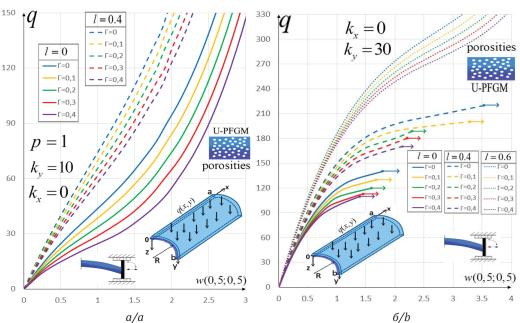
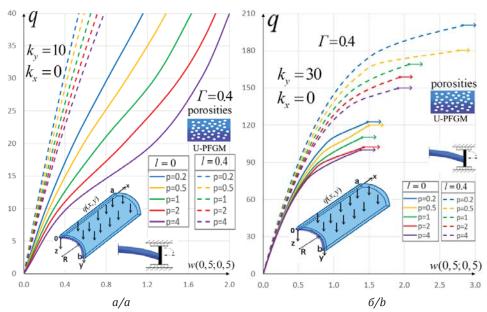

Проведем анализ влияния функциональноградиентного индекса p на НДС пористой ФГ размерно-зависимой панели U-PFGM при действии равномерной нагрузки. На рис. 7 приведены зависимости q[w(0,5;0,5)] для граничных условий (13) при k_y =10 (рис. 7, a) и k_y =30 (рис. 7, a) для Γ =0,4, λ =1 в зависимости от параметра p. Критические нагрузки, в которых происходит потеря устойчивости, показаны стрелками на рис. 7.

Таблица 3. Критические нагрузки для цилиндрической панели k_x =0, k_y =30 с пористостью U-PFGM, p=1


Table 3. Critical loads for a cylindrical panel k_x =0, k_y =30 with U-PFGM porosity, when subjected to a transverse uniformly distributed load

Функционально-градиентный индекс p отвечает за соотношение алюминия и керамики диоксида циркония [25] в панели. Изменение параметра p от 0,25 до 4 увеличивает объёмную долю металла в композите и приводит к уменьшению несущей способности как для полноразмерных, так и наноцилиндрических панелей. При увеличении параметра k_y при $k_y \ge 30$ происходит потеря устойчивости панели. При этом при увеличении функционально градиентного индекса p величина критической нагрузки уменьшается.

Рис. 6. Зависимость q[w(0,5;0,5)] для U-PFGM при p=1, $\lambda=1$ для граничных условий (13) для a) $k_x=0$, $k_y=10$; б) $k_x=0$, $k_y=30$ **Fig. 6.** Dependence q[w(0,5;0,5)] for U-PFGM under p=1, $\lambda=1$, boundary conditions (13) for a) $k_x=0$, $k_y=10$; b) $k_x=0$, $k_y=30$

Рис. 7. Зависимость q[w(0,5;0,5)] для U-PFGM при Γ =0,4, λ =1 для граничных условий (13) для: a) k_x =0, k_y =10; б) k_x =0, k_y =30 **Fig. 7.** Dependence q[w(0,5;0,5)] for U-PFGM under Γ =0,4, λ =1 boundary conditions (13) for: a) k_x =0, k_y =10; b) k_x =0, k_y =30

Таким образом, использование функциональноградиентных материалов позволяет увеличить прочность изготавливаемых конструкций. Легкосплавные бурильные трубы изготавливаются методом горячего прессования из дюралюминия Д16Т [28]. В результате термообработки полученный сплав имеет следующие механические свойства: модуль Юнга E=72,1 ГПа, плотность $\rho=2781$ кг/м³. Полученный в данной работе функционально-градиентный материал обладает большей прочностью (модуль Юнга $112 \le E \le 140$) и меньшей плотностью $2035 \le \rho \le 2545$ кг/м³ (что позволяет уменьшить вес конструкции) для пористого материала X-PFGM $0 \le \Gamma \le 0,4$ при p=1.

Заключение

- 1. В работе проведено математическое моделирование конструкции из функционально-градиентных материалов в виде цилиндрических панелей, которые применяются для производства бурильных труб. Исследованы параметры, определяющие свойства указанных материалов, что позволяет выполнять анализ напряженно-деформированного состояния лекгосплавной трубы.
- 2. На напряжённо-деформированное состояние при исследовании гибких пористых функционально-градиентных нано- и полноразмерных цилиндрических панелей существенное влияние оказывают следующие физико-геометрические параметры: показатель пористости Γ , функционально-градиентный индекс p, размернозависимый параметр l, геометрический параметр k_y , тип пористости материала. При увеличении параметра $0 \le k_y < 30$ явления потери устойчивости не наблюдается, а при $k_y \ge 30$ происходит по-

теря устойчивости панелей при шарнирном опирании по контуру. Из рассмотренных четырёх типов пористости панели с типами распределения пор type 1 и X-PFGM имеют наибольшую несущую способность. Изменение нанопараметра l от 0 до 0,4 приводит к повышению несущей способности пористых цилиндрических панелей и уменьшает прогиб w(0,5;0,5) панели на 40 % при k_y =10. Увеличение показателя пористости Γ приводит к уменьшению несущей способности цилиндрических панелей. При изменении показателя Γ от 0 до 0,4 при k_y =10 прогиб панели w(0,5;0,5) увеличивается на 30 %. Изменение параметра p от 0,2 до 4 приводит к увеличению величины w(0,5;0,5) более чем на 50 %.

- 3. Построенные математические модели панелей из PFGM дают обоснование для широкого использования этого типа материалов при изготовлении бурильных труб в нефтегазодобывающей отрасли. Такого типа трубы обладают малым весом, высокой удельной прочностью, коррозионной стойкостью, виброподавляющими и немагнитные свойствами.
- 4. Метод вариационных итераций во втором приближении (VIM 2) является наиболее эффективным методом исследования устойчивости и анализа НДС размерно-зависимых и наноцилиндрических панелей из PFGM по сравнению с методом Бубнова—Галекркина в высших приближениях (BGM) и конечных разностей второго порядка точности FDM, как по точности, так и по времени расчета. Для VIM доказана его сходимость [20], что является необходимым условием получения достоверных результатов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Перспективы развития технологии и техники горизонтальнонаправленного бурения пилотных скважин для бестраншейной прокладки трубопроводах / Саруев Л.А., Шадрина А.В., Саруев А.Л., Васенин С.С., Пахарев И.О. // Известия Томского политехнического университета. Инжиниринг георесурсов. − 2019. − Т. 330. − № 4. − С. 89–97. DOI: 10.18799/24131830/2019/4/232.
- Сапунжи В.В. Экспресс-опрос // Без хорошей трубы нефтянке труба // Бурение и нефть. 2020. № 5. С. 20–31. URL: https://burneft.ru/archive/issues/2020-05/20 (дата обращения 17.12.2023).
- 3. Сапунжи В.В. Эффективность применения алюминиевых бурильных труб при бурении скважин на нефть и газ // Бурение и нефть. -2012. -№ 6-7. C. 48-52.
- Мухаметов Ф.Х., Левинсон Л.М. Применение стальных и легкосплавных бурильных труб в составе комбинированной бурильной колонны при бурении горизонтальных скважин большой протяженности // Нефтегазовое дело. – 2020. – Т. 18. – № 1. – С. 22–31. DOI: 10.17122/ngdelo-2020-1-22-31.
- 5. К вопросу о разрушении легкосплавных бурильных труб / Сафрайдер А.И., Исмаков Р.А., Аглиуллин А.Х., Ценева С.Н., Ценев Н.К. // Нефтегазовое дело. 2019. Т. 17. № 2. С. 42–49. DOI: 10.17122/ngdelo-2019-2-42-49.
- 6. Duc N.D., Van Tung H. Nonlinear analysis of stability for functionally graded cylindrical panels under axial compression // Computational Materials Science. 2010. Vol. 49. № 4. P. 313–316. DOI: https://doi.org/10.1016/j.commatsci.2009.12.030.
- 7. Shahmohammadi M.A., Abdollahi P., Salehipour H. Geometrically nonlinear analysis of doubly curved imperfect shallow shells made of functionally graded carbon nanotube reinforced composite (FG_CNTRC) // Mechanics Based Design of Structures and Machines. − 2022. − Vol. 50. − № 11. − P. 3796–3820. DOI: https://doi.org/10.1080/15397734.2020.1822182.
- 8. Bich D. H., Van Dung D., Nam V. H. Nonlinear dynamic analysis of eccentrically stiffened imperfect functionally graded doubly curved thin shallow shells. Composite Structures. 2013. Vol. 96. P. 384–395. DOI: https://doi.org/10.1016/j.compstruct.2012.10.009
- 9. Duc N.D., Van Tung H. Nonlinear response of pressure-loaded functionally graded cylindrical panels with temperature effects // Composite Structures. 2010. Vol. 92. № 7. P. 1664–1672. DOI: https://doi.org/10.1016/j.compstruct.2009.11.033.
- 10. Van Thanh N., Khoa N.D., Duc N.D. Nonlinear dynamic analysis of piezoelectric functionally graded porous truncated conical panel in thermal environments // Thin-Walled Structures. 2020. Vol. 154. P. 106–137. DOI: https://doi.org/10.1016/j.tws.2020.106837.
- 11. Van Tung H. Postbuckling behavior of functionally graded cylindrical panels with tangential edge constraints and resting on elastic foundations // Composite Structures. 2013. Vol. 100. P. 532–541. DOI: https://doi.org/10.1016/j.compstruct.2012.12.051.
- 12. Quan T.Q., Kim S.E., Duc N.D. Nonlinear dynamic response and vibration of shear deformable piezoelectric functionally graded truncated conical panel in thermal environments // European Journal of Mechanics-A/Solids. 2019. Vol. 77. P. 103–115. DOI: https://doi.org/10.1016/j.euromechsol.2019.103795.
- 13. Effect of eccentrically oblique stiffeners and temperature on the nonlinear static and dynamic response of S-FGM cylindrical panels / N.D. Duc, S.E. Kim, D.T. Manh, P.D. Nguyen // Thin-Walled Structures. 2020. Vol. 146. P. 106438. DOI: https://doi.org/10.1016/j.tws.2019.106438.
- 14. Bich D.H., Van Dung D., Nam V.H. Nonlinear dynamical analysis of eccentrically stiffened functionally graded cylindrical panels // Composite Structures. 2012. Vol. 94. № 8. P. 2465–2473. DOI: https://doi.org/10.1016/j.compstruct.2012.03.012.
- 15. Shen H.S., Leung A.Y. Postbuckling of pressure-loaded functionally graded cylindrical panels in thermal environments // Journal of Engineering Mechanics. 2003. Vol. 129. № 4. P. 414–425. DOI: https://doi.org/10.1061/(ASCE)0733-9399(2003)129:4(414).
- Thermo-mechanical post-buckling of FGM cylindrical panels with temperature-dependent properties / J. Yang, K.M. Liew, Y.F. Wu, S. Kitipornchai // International Journal of Solids and Structures. 2006. Vol. 43 (2). P. 307–324. DOI: https://doi.org/10.1016/j.ijsolstr.2005.04.001.
- 17. Zhao X., Liew K.M. Geometrically nonlinear analysis of functionally graded shells // International Journal of Mechanical Sciences. −2009. − Vol. 51. − № 2. − P. 131–144. DOI: https://doi.org/10.1016/j.ijmecsci.2008.12.004.
- 18. Computing static behavior of flexible rectangular von Karman plates in fast and reliable way / Awrejcewicz J., Krysko V.A. Jr, Kalutsky L.A., Krysko V.A. // International Journal of Non-Linear Mechanics. 2022. Vol. 146. P. 104–162. DOI: https://doi.org/10.1016/j.ijnonlinmec.2022.104162.
- Quantification of various reduced order modelling computational methods to study deflection of size-dependent plates / V.A. Krysko Jr, J. Awrejcewicz, L.A. Kalutsky, V.A. Krysko // Computers & Mathematics with Applications. 2023. Vol. 133. P. 61–84. DOI: https://doi.org/10.1016/j.camwa.2023.01.004.
- 20. Review of the methods of transition from partial to ordinary differential equations: From macro-to nano-structural dynamics / Awrejcewicz J., Krysko V.A. Jr, Kalutsky L.A., Zhigalov M.V., Krysko V.A. // Archives of Computational Methods in Engineering. 2021. Vol. 28. P. 1–33. DOI: https://doi.org/10.1016/j.camwa.2023.01.004.
- 21. Application of variational iterations method for studying physically and geometrically nonlinear Kirchhoff nanoplates: a mathematical justification / A.D. Tebyakin, L.A. Kalutsky, T.V. Yakovleva, A.V. Krysko // Axioms. − 2023. − Vol. 12. − № 4. − P. 1–21. DOI: https://doi.org/10.3390/axioms12040355.
- 22. Mathematical modeling and methods of analysis of generalized functionally gradient porous nanobeams and nanoplates subjected to temperature field / J. Awrejcewicz, Krysko A.V., Smirnov A., Kalutsky L.A., Zhigalov M.V., Krysko V.A. // Meccanica. − 2022. − Vol. 57. − № 7. − P. 1–26. DOI: https://doi.org/10.1007/s11012-022-01515-7.
- 23. Математическое моделирование пористых геометрически нелинейных металлических нанопластин с учетом влажности / Крысько А.В., Калуцкий Л.А., Захарова А.А., Крысько В.А. // Известия Томского политехнического университета. Инжиниринг георесурсов. -2023. -T. 334. -№ 9. -P. 36–48. DOI: https://doi.org/10.18799/24131830/2023/9/4210.
- 24. Couple stress-based strain gradient theory for elasticity / F., Yang A.C.M. Chong, D.C.C. Lam, P. Tong // Int. J. Solids Struct. 2002. Vol. 39 (10). P. 2731–2743. DOI: https://doi.org/10.1016/S0020-7683(02)00152-X.
- 25. Modified couple stress-based geometrically nonlinear oscillations of porous functionally graded microplates using NURBS-based isogeometric approach / F. Fan, Y. Xu, S. Sahmani, B. Safaei // Computer Methods in Applied Mechanics and Engineering. 2020. Vol. 372. P. 113–140. DOI: https://doi.org/10.1016/j.cma.2020.113400.

- 26. Ghobadi A., Beni Y.T., Żur K.K. Porosity distribution effect on stress, electric field and nonlinear vibration of functionally graded nanostructures with direct and inverse flexoelectric phenomenon // Composite Structures. 2021. Vol. 259. P. 113–220. DOI: https://doi.org/10.1016/j.compstruct.2020.113220.
- 27. Malikan M. Electro-mechanical shear buckling of piezoelectric nanoplate using modified couple stress theory based on simplified first order shear deformation theory // Applied Mathematical Modelling. 2017. Vol. 48. P. 196–207. DOI: https://doi.org/10.1016/j.apm.2017.03.065
- 28. К вопросу о разрушении легкосплавных бурильных труб / А.И. Сафрайдер, Р.А. Исмаков, А.Х. Аглиуллин, С.Н. Ценева, Н.К. Ценев // Нефтегазовое дело. 2019. Т. 17. № 9. Р. 42–49. DOI: 10.17122/ngdelo-2019-2-42-49

Информация об авторах

Антон Вадимович Крысько, доктор физико-математических наук, главный научный сотрудник лаборатории 3D структурного и функционального проектирования, Московский государственный технологический университет «СТАНКИН», Россия, 127055, г. Москва, Вадковский пер., 1. anton.krysko@gmail.com; https://orcid.org/0000-0002-9389-5602

Леонид Александрович Калуцкий, младший научный сотрудник лаборатории моделирования гетерофазных материалов, Институт гидродинамики им. М.А. Лаврентьева Сибирского отделения Российской академии наук, Россия, 630090, г. Новосибирск, пр. Академика Лаврентьева, 15. leon199703@gmail.com; https://orcid.org/0000-0003-3335-4975

Алёна Александровна Захарова, доктор технических наук, главный научный сотрудник лаборатории киберфизических систем, Институт проблем управления им. В.А. Трапезникова Российской академии наук, Россия, 117997, г. Москва, ул. Профсоюзная, 65. zaawmail@gmail.com; https://orcid.org/0000-0003-4221-7710 Вадим Анатольевич Крысько, доктор технических наук, главный научный сотрудник лаборатории моделирования гетерофазных материалов, Институт гидродинамики им. М.А. Лаврентьева Сибирского отделения Российской академии наук, Россия, 630090, г. Новосибирск, пр. Академика Лаврентьева, 15; главный научный сотрудник лаборатории комплексных научных исследований, Институт проблем точной механики и управления Российской академии наук, Россия, 410028, г. Саратов, ул. Рабочая, 24.; tak@san.ru; https://orcid.org/0000-0002-4914-764X

Поступила в редакцию: 18.12.2023

Поступила после рецензирования: 15.01.2024

Принята к публикации: 21.02.2024

REFERENCES

- Saruev L.A., Shadrina A.V., Saruev A.L., Vasenin S.S., Pakharev I.O. Prospects of development of technology and technique of horizontal directional drilling of pilot wells for trenchless pipeline installation. *Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering*, 2019, vol. 330, no. 4, pp. 89–97. (In Russ.) DOI: 10.18799/24131830/2019/4/232.
- 2. Sapunzhi V.V. Express poll. Without a good pipe, the oil industry is a pipe. *Drilling and Oil*, 2020, no. 5, pp. 20–31. (In Russ.) Available at: https://burneft.ru/archive/issues/2020-05/20. (accessed 17 December 2023).
- 3. Sapunzhi V.V. Efficiency of aluminum drill pipe application in drilling for oil and gas. *Drilling and Petroleum*, 2012, no. 6–7, pp. 48–52. (In Russ.)
- 4. Mukhametov F.H., Levinson L.M. Application of steel and light-alloy drill pipes as a part of the combined drill string when drilling horizontal wells of long length. *Oil and Gas Business*, 2020, vol. 18, no. 1, C. 22–31. (In Russ.) DOI: 10.17122/ngdelo-2020-1-22-31.
- 5. Safraider A.I., Ismakov R.A., Agliullin A.H., Tseneva S.N., Tsenev N.K. To the question of fracture of light-alloy drill pipes. *Oil and Gas Business*, 2019, vol. 17, no. 2, pp. 42–49. (In Russ.) DOI: 10.17122/ngdelo-2019-2-42-49.
- 6. Duc N.D., Van Tung H. Nonlinear analysis of stability for functionally graded cylindrical panels under axial compression. *Computational Materials Science*, 2010, vol. 49, no. 4, pp. 313–316. DOI: https://doi.org/10.1016/j.commatsci.2009.12.030.
- 7. Shahmohammadi M.A., Abdollahi P., Salehipour H. Geometrically nonlinear analysis of doubly curved imperfect shallow shells made of functionally graded carbon nanotube reinforced composite (FG_CNTRC). *Mechanics Based Design of Structures and Machines*, 2022, vol. 50, no. 11, pp. 3796–3820. DOI: https://doi.org/10.1080/15397734.2020.1822182.
- 8. Bich D.H., Van Dung D., Nam V.H. Nonlinear dynamic analysis of eccentrically stiffened imperfect functionally graded doubly curved thin shallow shells. *Composite Structures*, 2013, vol. 96, pp. 384–395. DOI: https://doi.org/10.1016/j.compstruct.2012.10.009.
- 9. Duc N.D., Van Tung H. Nonlinear response of pressure-loaded functionally graded cylindrical panels with temperature effects. *Composite Structures*, 2010, vol. 92, no. 7, pp. 1664–1672. DOI: https://doi.org/10.1016/j.compstruct.2009.11.033.
- 10. Van Thanh N., Khoa N.D., Duc N.D. Nonlinear dynamic analysis of piezoelectric functionally graded porous truncated conical panel in thermal environments. *Thin-Walled Structures*, 2020, vol. 154, pp. 106–137. DOI: https://doi.org/10.1016/j.tws.2020.106837.
- 11. Van Tung H. Postbuckling behavior of functionally graded cylindrical panels with tangential edge constraints and resting on elastic foundations. *Composite Structures*, 2013, vol. 100, pp. 532–541. DOI: https://doi.org/10.1016/j.compstruct.2012.12.051.
- 12. Quan T.Q., Kim S.E., Duc N.D. Nonlinear dynamic response and vibration of shear deformable piezoelectric functionally graded truncated conical panel in thermal environments. *European Journal of Mechanics-A/Solids*, 2019, vol. 77, 103795. DOI: https://doi.org/10.1016/j.euromechsol.2019.103795.
- 13. Duc N.D., Kim S.E., Manh D.T., Nguyen P.D. Effect of eccentrically oblique stiffeners and temperature on the nonlinear static and dynamic response of S-FGM cylindrical panels. *Thin-Walled Structures*, 2020, vol. 146, 106438. DOI: https://doi.org/10.1016/j.tws.2019.106438.

- 14. Bich D.H., Van Dung D., Nam V.H. Nonlinear dynamical analysis of eccentrically stiffened functionally graded cylindrical panels. *Composite Structures*, 2012, vol. 94, no. 8, pp. 2465–2473. DOI: https://doi.org/10.1016/j.compstruct.2012.03.012.
- 15. Shen H.S., Leung A.Y. Postbuckling of pressure-loaded functionally graded cylindrical panels in thermal environments. *Journal of Engineering Mechanics*, 2003, vol. 129, no. 4, pp. 414–425. DOI: https://doi.org/10.1061/(ASCE)0733-9399(2003)129:4(414).
- Yang J., Liew K.M., Wu Y.F., Kitipornchai S. Thermo-mechanical post-buckling of FGM cylindrical panels with temperature-dependent properties. *International Journal of Solids and Structures*, 2006, vol. 43 (2), pp. 307–324. DOI: https://doi.org/10.1016/j.ijsolstr.2005.04.001.
- 17. Zhao X., Liew K.M. Geometrically nonlinear analysis of functionally graded shells. *International Journal of Mechanical Sciences*, 2009, vol. 51, no. 2, pp. 131–144. DOI: https://doi.org/10.1016/j.iimecsci.2008.12.004.
- 18. Awrejcewicz J., Krysko Jr V.A., Kalutsky L.A., Krysko V.A. Computing static behavior of flexible rectangular von Karman plates in fast and reliable way. *International Journal of Non-Linear Mechanics*, 2022, vol. 146, pp. 104–162. DOI: https://doi.org/10.1016/j.ijnonlinmec.2022.104162.
- 19. Krysko Jr V.A., Awrejcewicz J., Kalutsky L.A., Krysko V.A. Quantification of various reduced order modelling computational methods to study deflection of size-dependent plates. *Computers & Mathematics with Applications*, 2023, vol. 133, pp. 61–84. DOI: https://doi.org/10.1016/j.camwa.2023.01.004.
- Awrejcewicz J., Krysko Jr V.A., Kalutsky L.A., Zhigalov M.V., Krysko V.A. Review of the methods of transition from partial to ordinary differential equations: from macro to nano-structural dynamics. *Archives of Computational Methods in Engineering*, 2021, vol. 28, pp. 1–33. DOI: https://doi.org/10.1016/j.camwa.2023.01.004
- 21. Tebyakin A.D., Kalutsky L.A., Yakovleva T.V., Krysko A.V. Application of variational iterations method for studying physically and geometrically nonlinear Kirchhoff nanoplates: a mathematical justification. *Axioms*, 2023, vol. 12, no. 4, pp. 1–21. DOI: https://doi.org/10.3390/axioms12040355.
- 22. Awrejcewicz J., Krysko A.V., Smirnov A., Kalutsky L.A., Zhigalov M.V., Krysko V.A. Mathematical modeling and methods of analysis of generalized functionally gradient porous nanobeams and nanoplates subjected to temperature field. *Meccanica*, 2022, vol. 57, no. 7, pp. 1–26. DOI: https://doi.org/10.1007/s11012-022-01515-7.
- 23. Krysko A.V., Kalutsky L.A., Zakharova A.A., Krysko V.A. Mathematical modeling of porous geometrically nonlinear metal nano-plates taking into account moisture. *Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering*, 2023, vol. 334, no. 9, pp. 36–48. (In Russ.) DOI: https://doi.org/10.18799/24131830/2023/9/4210.
- 24. Yang F., Chong A.C.M., Lam D.C.C., Tong P. Couple stress-based strain gradient theory for elasticity, *Int. J. Solids Struct*, 2002, vol. 39, no. 10, pp. 2731–2743. DOI: https://doi.org/10.1016/S0020-7683(02)00152-X.
- 25. Fan F., Xu Y., Sahmani S., Safaei B. Modified couple stress-based geometrically nonlinear oscillations of porous functionally graded microplates using NURBS-based isogeometric approach. *Computer Methods in Applied Mechanics and Engineering*, 2020, vol. 372, pp. 113–140. DOI: https://doi.org/10.1016/j.cma.2020.113400.
- 26. Ghobadi A., Beni Y.T., Zur K.K. Porosity distribution effect on stress, electric field and nonlinear vibration of functionally graded nanostructures with direct and inverse flexoelectric phenomenon. *Composite Structures*, 2021, vol. 259, pp. 113–220. DOI: https://doi.org/10.1016/j.compstruct.2020.113220.
- 27. Malikan M. Electro-mechanical shear buckling of piezoelectric nanoplate using modified couple stress theory based on simplified first order shear deformation theory. *Applied Mathematical Modelling*, 2017, vol. 48, pp. 196–207. DOI: https://doi.org/10.1016/j.apm.2017.03.065
- 28. Safraider A.I., Ismakov R.A., Agliullin A.H., Tseneva S.N., Tsenev N.K. To the issue of fracture of light-alloy drill pipes. *Neftegazovoye delo*, 2019, vol. 17, no. 9, pp. 42–49. (In Russ.) DOI: 10.17122/ngdelo-2019-2-42-49
- 29. ells for trenchless pipeline installation. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering, 2019, vol. 330, no. 4, pp. 89–97. (In Russ.) DOI: 10.18799/24131830/201

Information about the authors

Anton V. Krysko, Dr. Sc., Chief Researcher, Moscow State University of Technology "STANKIN"", 1, Vadkovsky lane, Moscow, 127055, Russian Federation. anton.krysko@gmail.com; https://orcid.org/0000-0002-9389-5602 **Leonid A. Kalutsky**, Junior Researcher, Lavrentiev Institute of Hydrodynamics, Siberian Branch of the Russian Academy of Sciences, 15, Akademik Lavrentiev avenue, Novosibirsk, 630090, Russian Federation. leon199703@gmail.com; https://orcid.org/0000-0003-3335-4975

Alyona A. Zakharova, Dr. Sc., Chief Researcher, Trapeznikov Institute of Control Problems, Siberian Branch of the Russian Academy of Sciences, 65, Profsoyuznaya street, Moscow, 117997, Russian Federation. zaawmail@gmail.com; https://orcid.org/0000-0003-4221-7710;

Vadim A. Krysko, Dr. Sc., Chief Researcher, Lavrentiev Institute of Hydrodynamics, Siberian Branch of the Russian Academy of Sciences, 15, Akademik Lavrentiev avenue, Novosibirsk, 630090, Russian Federation; Chief Researcher, Institute for Precision Mechanics and Control Problems of the Russian Academy of Sciences, 24, Rabochaya street, Saratov, 410028, Russian Federation. tak@san.ru; https://orcid.org/0000-0002-4914-764X

Received: 18.12.2023 Revised: 15.01.2024 Accepted: 21.02.2024 УДК 622.692.4.053

DOI: 10.18799/24131830/2024/3/4222 Шифр специальности ВАК: 2.8.5

Нештатная ситуация при строительстве подводного перехода методом наклонно-направленного бурения

Р.Р. Хасанов, А.Е. Наставшев⊠

Уфимский государственный нефтяной технический университет, Россия, г. Уфа

[™]a.nastavshev1@yandex.ru

Аннотация. Актуальность. Рассматривается проблема строительства подводных переходов магистральных трубопроводов методом наклонно-направленного бурения с использованием труб с бетонным покрытием. Данная проблема является актуальной, так как на сегодняшний день отсутствует нормативно-техническая документация, регламентирующая алгоритм расчёта минимально допустимого радиуса упругого изгиба обетонированного трубопровода в скважине. Известны ситуации, когда проектными организациями были приняты неверные проектные решения, которые привели к застреванию трубной плети, лишним экономическим затратам и задержке в графиках производства работ. Цель: исследовать инцидент, связанный с застреванием трубной плети при строительстве подводного перехода магистрального трубопровода методом наклонно-направленного бурения; определить минимально допустимый радиус упругого изгиба обетонированного трубопровода и фактические параметры пилотной скважины. Объект: подводный переход магистрального трубопровода, сооружаемый методом наклоннонаправленного бурения. Методы: изучение литературы и нормативных документов по строительству подводных переходов магистральных трубопроводов и анализ инцидента, при котором произошло застревание трубопровода, сооружаемого из труб с бетонным покрытием. Результаты. Авторами обоснован расчёт минимально допустимого радиуса упругого изгиба трубопровода с бетонным покрытием исходя из требований отечественной нормативнотехнической документации. Произведен расчёт данной величины аналитическим методом, основываясь на исследованиях изгибной жесткости бетонных конструкций зарубежными учёными, а также расчёт фактических параметров пилотной скважины. Полученные значения исследуемых величин были проанализированы, и дано заключение о причинах инцидента, связанного с застреванием трубной плети.

Ключевые слова: обетонированные трубы, подводный переход, наклонно-направленное бурение, строительство, радиус упругого изгиба

Для цитирования: Хасанов Р.Р., Наставшев А.Е. Нештатная ситуация при строительстве подводного перехода методом наклонно-направленного бурения // Известия Томского политехнического университета. Инжиниринг георесурсов. – 2024. – 1.335

UDC 622.692.4.053

DOI: 10.18799/24131830/2024/3/4222

Incident during construction of an underwater passage by directional drilling

R.R. Khasanov, A.E. Nastavshev[⊠]

Ufa State Petroleum Technical University, Ufa, Russian Federation

[™]a.nastavshev1@yandex.ru

Abstract. *Relevance.* This paper considers the issue of construction of underwater passages of trunk pipelines by the directional drilling method using concrete weight coated pipes. This issue is relevant, since at the present moment there is no standards and technical documentation regulating the calculation procedure of the minimum allowable elastic bend radius of a pipeline with concrete coating in a well. There are situations when design institutes made incorrect design decisions as a

result, the pipe string got stuck during works. Those incidents led to unnecessary economic expenditures and a delay in the work implementation plan. *Aim.* To study the issues which related with the sticking of the pipe string during the construction of the underwater passage of the main pipeline by the method of directional drilling; calculate the minimum allowable elastic bend radius of a pipeline with concrete coating and the actual parameters of the pilot drillhole. *Objects.* An underwater passage of a trunk pipeline constructed by the method of directional drilling. *Methods.* Study of standards and technical documents on the construction of underwater crossings of main pipelines and an analysis of the incident in which a pipeline with concrete weight coating got stuck. *Results.* The authors substantiate the calculation of the minimum allowable elastic bend radius of a pipeline with a concrete coating based on the requirements of domestic standards and technical documentation. The authors have calculated this value by an analytical method, based on studies of the bending stiffness of concrete structures by foreign scientists, as well as actual parameters of the pilot drillhole. The obtained results of the studied values were analyzed and a conclusion was given about the causes of the incident associated with the sticking of the pipe string.

Keywords: concrete weight coated pipes, underwater passage, directional drilling, construction, elastic bend radius

For citation: Khasanov R.R., Nastavshev A.E. Incident during construction of an underwater passage by directional drilling. *Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering*, 2024, vol. 335, no. 3, pp. 230–239. DOI: 10.18799/24131830/2024/3/4222

Введение

В последние десятилетия набирает популярность использование труб с бетонным покрытием для строительства подводных переходов способом наклонно-направленного бурения (ННБ). Трубы с данным покрытием имеют множество преимуществ, но также недостатков, например, трубы с бетонным покрытием характеризуются повышенной изгибной жесткостью поперечного сечения [1].

Задачей данного исследования является разработать методику определения минимально допустимого радиуса упругого изгиба обетонированного трубопровода, сооружаемого методом наклонно направленного бурения. Объектом исследования выступает подводный переход магистрального трубопровода, сооружаемого методом наклонно направленного бурения, с использованием обетонированных труб.

Как отмечается в работе [2], балластировка подводных трубопроводов сплошным бетонным покрытием имеет ряд преимуществ по сравнению с балластировкой отдельными грузами.

Монолитное армированное бетонное покрытие характеризуется низкой стоимостью производства, низкой тепло- и электропроводностью, хорошей устойчивостью к коррозии. Наряду с этим данное покрытие обеспечивает [3]:

- механическую защиту антикоррозионного покрытия [4];
- возможность протаскивания трубопровода по всем известным типам спусковых дорожек и любым грунтам без нарушения изоляционного покрытия;
- значительное снижение тяговых усилий на береговых участках и при протаскивании в воде;
- невозможность смещения бетонного покрытия относительно тела трубы при сооружении подводного перехода методом протаскивания [2].

Помимо строительства трубопроводов в море, трубы с бетонной оболочкой применяются и на суше.

На практике трубопроводного строительства известны негативные случаи, произошедшие при строительстве подводных переходов трубопроводов методом наклонно-направленного бурения. В проектах было предусмотрено использование труб с бетонным покрытием. При выполнении протаскивания трубопровода в скважину из-за большого значения изгибной жесткости трубная плеть застревала, что приводило к экономическим издержкам, а также нарушало график производства работ.

Таким образом, поднимается вопрос об определении фактических геометрических параметров пилотной скважины протаскиваемого трубопровода. Данные проблемы усугубляются отсутствием нормативно-технической документации, учитывающей влияние бетонного покрытия на напряженнодеформированное состояние трубопровода, протаскиваемого в скважину.

В начале данной статьи рассмотрены требования нормативной документации по определению минимального радиуса изгиба обетонированного трубопровода, затем определено фактическое значение для анализируемого участка, после чего проведено сравнение с фактическими значениями, сформулированы рекомендации.

Определение радиуса упругого изгиба обетонированного трубопровода Требования отечественной нормативнотехнической документации

Дальнейшие примеры расчетов определены для следующих исходных параметров: диаметр 1220 мм, бетон марки B60 плотностью 2500 кг/м 3 , сталь класса K55 с временным сопротивлением разрыву 549 МПа.

Радиус изгиба проектируемой скважины должен быть не менее радиуса упругого изгиба трубопровода, укладываемого способом ННБ [5–7].

Минимально допустимые радиусы упругого изгиба $R_{\rm ct}$, обеспечивающие прокладку трубопроводов без опасных напряжений в стенках трубы, должны быть не менее [5]

$$R_{(\text{ct1})} = 1200 \cdot D_{\text{Tp}},$$
 (1)

где $D_{\rm тp}$ – наружный диаметр трубопровода, 1,220 м.

$$R_{(\text{CT1})} = 1200 \cdot 1,22 = 1464 \text{ M}.$$

Согласно [6] радиусы трассировки должны быть не менее допустимого радиуса упругого изгиба стального трубопровода $R_{\rm cr}$, значение которого определяется аналогично выражению (1). Однако данный документ, в зависимости от назначения трубопровода, рекомендует увеличить минимальный радиус трассировки трубопровода для труб диаметром 820 мм и более до $1400 \cdot D_{\rm H}$.

СП 341.1325800.2017 [7], утвержденный Приказом Министерства строительства и жилищно-коммунального хозяйства РФ от 14 ноября 2017 г., однозначно указывает, что по технологическим условиям прокладки для труб диаметром 820 мм и более радиус упругого изгиба трубопровода $R_{\rm (CT)}$ должен быть не менее 1400-Dн. Следует обратить внимание на то, что данное требование не является рекомендательным и носит обязательный характер для принимаемых проектных решений, не зависимо от назначения трубопровода. Следовательно,

$$R_{
m (cr2)} = 1400 \cdot D_{
m Tp},$$
 $R_{
m (cr2)} = 1400 \cdot 1,\!22 = 1708$ м.

Однако факт того, что на стальную трубу нанесено наружное бетонное покрытие «ЗУБ-КОМПОЗИТ» в оцинкованной оболочке, увеличивает изгибную жесткость плети протаскиваемого в скважину трубопровода. Следовательно, увеличивается минимальный радиус упругого изгиба обетонированного трубопровода $R_{\rm (ct+o6)}$.

Должно выполняться условие

$$R_{(\text{ct+o6})} \ge R_{(\text{ct})}.$$

По состоянию на сегодняшний день не существует нормативных документов, которые бы регламентировали порядок расчета минимально допустимого радиуса упругого изгиба $R_{\rm (ct+o6)}$ таких обетонированных трубопроводов [8].

Единственный документ, который косвенно затрагивает вопрос об учете влияния бетонного покрытия на напряженно-деформированное состояние обетонированного трубопровода, это ВСН 005-88 [9].

Так, согласно [9], минимальный радиус упругого изгиба трубопровода (он прямо пропорционален его жесткости) со сплошным бетонным покрытием (без прорезей) определяется по формуле

$$R_{(cr+o6)} = R_{min}(1.03 + 0.0041\delta),$$
 (2)

где R_{\min} — минимальный радиус упругого изгиба необетонированного трубопровода; δ — толщина бетонного покрытия, 25 мм.

Необходимо отметить, что ВСН 005-88 [9] регламентирует порядок укладки обетонированных трубопроводов исключительно в траншею, в том числе подводную. Требования к параметрам упругоизогнутых участков трубопроводов, укладываемых в траншею, являются менее жесткими, чем при их укладке в скважину методом ННБ. Данное требование косвенно подтверждается значением радиуса упругого изгиба трубопровода, которое, согласно [9], должно определяться в соответствии с нормами СП 86.13330.2022 ($R_{\rm min} = 1220~{\rm m}$).

Тогда из выражения (2) следует, что

$$R_{(CT+o6)} = R_{min}(1.03 + 0.0041 \cdot 25) = 1382 \text{ M}.$$

Подчеркивается, что данное значение минимального радиуса упругого изгиба обетонированного трубопровода $R_{\rm (ct+o6)}$ определено для плети, укладываемой исключительно в траншею.

Для предварительного расчета минимального радиуса упругого изгиба обетонированного трубопровода $R_{\rm (CT+o6)}$, протаскиваемого в скважину, также воспользуемся выражением (2). Значение минимального радиуса упругого изгиба $R_{\rm min}$ для данного случая принимается равным:

- 1. $R_{\min 1} = R_{(\text{ст1})} = 1464 \text{ м, согласно [5].}$
- 2. $R_{\min 2} = R_{(cr2)} = 1708$ м, согласно [7]. Соответственно

$$R_{\text{(ct+o6)}} = 1464 \cdot (1,03 + 0,0041 \cdot 25) = 1658 \text{ m},$$

$$R_{(\text{CT+o6})} = 1708 \cdot (1,03 + 0,0041 \cdot 25) = 1934 \text{ M}.$$

Аналитический метод определения радиуса упругого изгиба обетонированного трубопровода

Минимальный радиус упругого изгиба трубопровода из труб с бетонным покрытием определяется из условия прочности бетона при его работе на растяжение и, как следствие, возможного развития трещин в теле бетонного покрытия.

Согласно [10–12] прочность бетона на растяжение σ_{bt} в 10–20 раз меньше прочности бетона на сжатие σ_{h} .

При значениях прочности бетона на сжатие $\sigma_b = 37,5$ МПа (согласно сертификату соответствия на бетонное покрытие труб) прочность бетона на растяжение σ_{bt} будет находится в интервале 1,9-3,8 МПа.

Известно, что радиус упругого изгиба прямо пропорционален продольной жесткости бетонной обертки, работающей на изгиб

$$R_{(\text{ct+o6})} = \frac{E_{\text{o6}} \cdot I_{\text{o6}}}{M_{\text{max}}}$$

 $R_{\rm (cr+o6)} = \frac{E_{\rm o6} \cdot I_{\rm o6}}{M_{\rm max}},$ где $I_{\rm o6}$ – осевой момент инерции бетонной обертки, $I_{
m o6}=1\,894\,300~{
m cm}^4;~M_{
m max}$ — максимальный изгибающий момент; $E_{
m o6}$ — модуль упругости первого рода бетонной обертки. Согласно [13–15]

$$E_{\text{of}} = 4700 \cdot \sqrt{\sigma_b}$$

$$E_{06} = 4700 \cdot \sqrt{37.5} = 28781 \text{ M}\Pi a.$$

Максимальный изгибающий момент

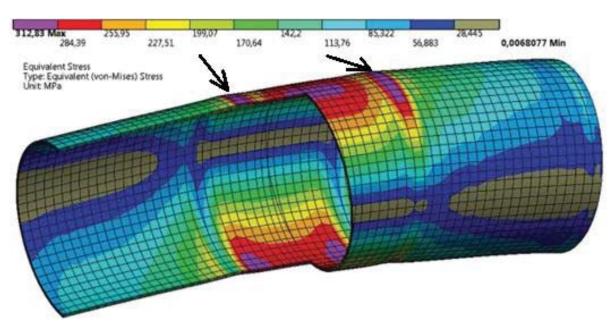
$$M_{\text{max}} = \sigma_{\text{M3F}}^{\text{max}} \cdot W_{\text{of}},$$

где $W_{\rm of}$ – осевой момент сопротивления бетонной обертки, $W_{\rm o6} = 29~831~{\rm cm}^3;~\sigma_{\rm изг}^{\rm max}$ — максимальные растягивающие продольные напряжение в бетонной обертке от изгиба. Принимается равным прочности бетона на растяжение σ_{bt} , $\sigma_{\text{изг}} = 3.8 \text{ M}\Pi \text{a}$.

$$R_{\text{(ст+об)}} = \frac{28781 \cdot 0,018943}{3,8 \cdot 0,029831} = 4\,808,6$$
 м.

На практике все же наблюдается снижение изгибной жесткости бетонного покрытия за счет образования трещин в нём (металлополимерная (оцинкованная) оболочка служит для сохранения бетонной обертки) [13]. Это свидетельствует о том, что минимальный радиус упругого изгиба обетонированного трубопровода $R_{(cr+o6)}$ фактически меньше значения, определенного при расчёте по требованиям отечественной нормативнотехнической документации.

Прежде всего, следует обратить внимание на то, что в незащищенной бетонным покрытием стыковой зоне обетонированного трубопровода при изгибе максимальные значения полей напряжений локализуются на границах этой зоны (границы стыковой зоны обозначены стрелками на изображении конечно-элементной сетки) (рис. 1). Причем максимальные значения напряжений на границах значительно превышают номинальные напряжения в стенке трубы обетонированного трубопровода.


Для уточнения величины $R_{(\mathrm{cr}+\mathrm{o}6)}$ служит условие, при котором максимальные значения продольных изгибных напряжений в стенке трубы необетонированной стыковой зоны (зоны концентрации напряжений (ЗКН)) обетонированного трубопровода были бы равны максимальным значениям продольных изгибных напряжений в стенке трубы без бетонного покрытия. Тогда, если выразить максимальные продольные напряжения в ЗКН через номинальные продольные напряжения в стенке трубы, можно записать [16]

$$\sigma_{max} = \frac{E_{\text{Tp}}D_{\text{Tp}}}{2 \cdot R_{(\text{CT})}} = k \frac{E_{\text{Tp}}D_{\text{Tp}}}{2 \cdot R_{(\text{CT}+06)}},$$
 (3)

где $E_{\rm Tp}$ — модуль упругости первого рода трубной стали, $E_{\rm Tp} = 2.1 \cdot 10^5 \, {\rm M}$ Па; $R_{\rm (cr)}$ — минимальный радиус упругого изгиба аналогичного трубопровода без бетонной обертки; k – коэффициент пропорциональности.

Из выражения (3) следует соотношение

$$R_{(\text{ct+of})} = k \cdot R_{(\text{ct})}. \tag{4}$$

Поля распределения эквивалентных напряжений в обетонированном трубопроводе при чистом изгибе (бетонное покрытие не показано) [16, 17]

Fig. 1. Equivalent stress pattern distribution in pipeline with concrete coating with pure flexure (concrete coating is not shown) [16, 17]

С другой стороны, получая радиус упругого изгиба $R_{\rm (ct+o6)}$ через изгибающий момент M, действующий на обетонированный трубопровод [16, 18],

$$\frac{1}{\rho_{00}} = \frac{M}{\sum_{i=1}^{n} E_i \cdot I_i'}$$
 (5)

где $\sum_{i=1}^{n} E_i \cdot I_i$ — суммарная изгибная жесткость обетонированного трубопровода

$$\sum_{i=1}^{n} E_i \cdot I_i = E_{\text{of}} \cdot I_{\text{of}} + E_{\text{Tp}} \cdot I_{\text{Tp}}, \tag{6}$$

 $I_{\rm rp}$ – осевой момент инерции трубы, $I_{\rm rp} = 0.01862~{\rm M}^4$. С учетом выражений (5), (6) формула (3) пере-

С учетом выражений (5), (6) формула (3) пере пишется в виле

$$\sigma_{\max} = \frac{E_{\text{Tp}}D_{\text{Tp}}}{2 \cdot R_{(\text{CT})}} = k \frac{E_{\text{Tp}}D_{\text{Tp}}}{2 \cdot R_{(\text{CT}+06)}} = k \frac{M \cdot E_{\text{Tp}} \cdot D_{\text{Tp}}}{2 \cdot (E_{06} \cdot I_{06} + E_{\text{Tp}} \cdot I_{\text{Tp}})}.$$
 (7)

После преобразования уравнения (7) следует, что коэффициент пропорциональности k определяется следующим выражением

$$k = 1 + \frac{E_{06} \cdot I_{06}}{E_{\text{Tp}} \cdot I_{\text{Tp}}}.$$

$$k = 1 + \frac{28781 \cdot 0,018943}{2,1 \cdot 10^5 \cdot 0,01862} = 1,14.$$

Из выражения (4) следует, что минимальный радиус упругого изгиба для обетонированного трубопровода $R_{(\text{ст+об})}$ будет равен

$$R_{(\text{CT}+06)3} = k \cdot R_{(\text{CT}1)} = 1,14 \cdot 1464 = 1669$$
 м, $R_{(\text{CT}+06)4} = k \cdot R_{(\text{CT}1)} = 1,14 \cdot 1708 = 1947$ м.

Данные значения хорошо согласуются с величинами, определенными ранее по выражению (4) из ВСН 005-88 [9], и не противоречат нормам, прописанным в указанном документе (п.8.39–8.40).

В исследуемом проекте значение радиуса упругого изгиба трубопровода $R_{\rm проект}$ принимается на 15 % больше расчетного минимального радиуса упругого изгиба $R_{\rm (cr+o6)}$ (запас 1,15), $R_{\rm проект}=2000$ м.

Основным условием беспрепятственной проходки плети обетонированного трубопровода внутри скважины является соотношение принятых и рассчитанных (допускаемых) параметров

$$R_{\text{проект}} \ge R_{(\text{ст+об})}.$$
 (8)

Условие (8) выполняется для всех вариантов рассчитанных значений $R_{(\text{ст+об})}$.

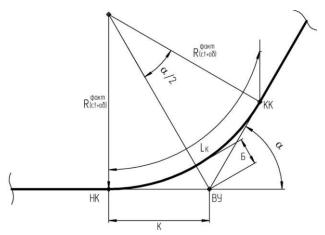
Тем не менее для расчетных случаев $R_{\rm (ст+o6)2}=1934$ м и $R_{\rm (ст+o6)4}=1947$ м запас составляет всего 3,3 и 2,7 % соответственно. При заложенном в проекте среднем запасе в 15 % принятый радиус упругого изгиба для данных двух случаев должен быть не менее 2200 м.

Определение фактических параметров пилотной скважины

Согласно [19, 20] для криволинейного участка трубопровода (участка поворота) характерны следующие тригонометрические зависимости (рис. 2):

• К – катет прямоугольного треугольника

$$K = R_{(ct+o6)}^{\phi_{\text{AKT}}} \cdot tg \frac{a}{2}; \tag{9}$$


 Б – часть биссектрисы кривой (за вычетом радиуса упругого изгиба)

$$\mathbf{E} = R_{(ct+o6)}^{\phi \text{akt}} \cdot \left(\frac{1}{\cos \frac{a}{2}} - 1 \right);$$

• L_K – длина кривой

$$L_{\rm K} = R_{(ct+o6)}^{\phi_{\rm akt}} \cdot \frac{\pi a}{180}$$

где $R_{(ct+o6)}^{\phi \rm akt}$ — фактический радиус изгиба пилотной скважины; a — угол поворота (угол между новым направлением трассы и продолжением старого направления).

Рис. 2. Параметры поворота: НК – начало кривой; КК – конец кривой; ВУ – вершина угла

Fig. 2. Parameter of a bend: HK – beginning of the curve; KK – end of the curve; BY – angle vortex

На рис. 3 представлено фактическое положение пилотной скважины на первом прямолинейном и на первом криволинейном участках. Параметры криволинейного участка скважины приведены согласно горизонтальному и вертикальному масштабу исполнительной схемы.

Для определения фактического радиуса изгиба пилотной скважины используется формула (9). После несложных преобразований получается

$$R_{(ct+o6)}^{\phi_{\mathsf{AKT}}} = \frac{K}{tg(\frac{a}{2})}.$$

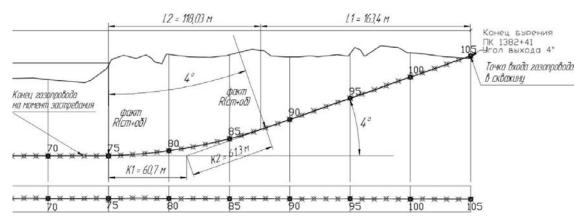


Рис. 3. Продольный профиль пилотной скважины на «проблемном» участке

Fig. 3. Grade line of a pilot drillhole in the «problem» area

Значение угла поворота на месте перехода от первого прямолинейного участка к первому криволинейному составляет четыре градуса ($\alpha = 4^{\circ}$).

Значения K_1 =60,7 м и K_2 =61,3 м (рис. 3)

$$R_{(ct+o6)1}^{\Phi {
m aKT}} = rac{K}{tg\left(rac{a}{2}
ight)} = rac{60,7}{tg2^{\circ}} = 1738 \, {
m M}, \ R_{(ct+o6)2}^{\Phi {
m aKT}} = rac{K}{tg\left(rac{a}{2}
ight)} = rac{61,3}{tg2^{\circ}} = 1756 \, {
m M}.$$

Как следует из расчетов, фактический радиус упругого изгиба пилотной скважины не отвечает принятым проектным решениям

$$R_{(ct+o6)1,2}^{\phi \text{акт}} = 1738; 1756 \text{ м} < R_{\text{проект}} = 2000 \text{ м}.$$

Уточнение радиуса упругого изгиба пилотной скважины на криволинейном участке «74–89»

Дальнейшие расчеты приводятся для криволинейного участка «74–89».

В табл. 1 представлены пространственные координаты точек криволинейного участка в створе перехода.

Вводится местная система координат «X0H» с началом координат в точке «74», с ориентацией

«0Н» по вертикальной оси и «0Х» по горизонтальной оси (рис. 4). Тогда, с учетом фактического положения каждой точки, в новой системе координат данные табл. 1 перепишутся в виде табл. 2.

Ось криволинейного участка пилотной скважины на участке «74–89» является частью окружности – дуги, описываемой функцией

$$X^2 + (H - R)^2 = R^2, (10)$$

где X, H — координаты точек окружности, м; R — радиус окружности, равный радиусу изгиба криволинейного участка пилотной скважины, м. Все точки криволинейного участка должны соответствовать дуге окружности радиусом (R) 2000 м и/или более (условие беспрепятственной проходки трубопроводом криволинейного участка «74—89» или условие вписываемости трубопровода в скважину: $R \ge R_{\text{проект}} = 2000$ м). Указывается, что R = 2017,05 м.

После преобразования уравнения (10) следует, что фактический радиус окружности (изгиба) R, на котором находятся точки позиционирования пилотной скважины, определяется выражением

$$R = \frac{X^2 + H^2}{2 \cdot H}. (11)$$

Таблица 1. Координаты точек криволинейного участка «74–89»

 Table 1.
 Position of points of the curved section «74–89»

Точка, м Point, m	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89
X	696,42	705,84	715,26	724,68	734,10	743,52	752,93	762,35	771,76	781,18	790,59	800,00	809,40	818,81	828,21	837,60
Н	17?99	18,01	18,09	18,20	18,34	18,54	18,80	19,09	19,41	19,79	20,22	20,69	21,18	21,74	22,35	23,00

Таблица 2. Координаты точек криволинейного участка «74–89» в локальной системе координат

Table 2. Position of points of the curved section «74–89» in a local system of reference

Точка, м Point, m	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89
X	0	9,42	18,84	28,26	37,68	47,1	56,51	65,93	75,34	84,76	94,17	103,58	112,98	122,39	131,79	141,18
Н	0	0,02	0,1	0,21	0,35	0,55	0,81	1,1	1,42	1,8	2,23	2,7	3,19	3,75	4,36	5,01

Рис. 4. Криволинейный участок в координатной плоскости «ХОН»

Fig. 4. Curved section in the coordinate plane «X0H»

Точка (74) (0;0) — начало координат.

Уравнение (10) для данной точки на окружности превращается в тождество вида R=R, что свидетельствует о том, что функция, описывающая положение оси пилотной скважины на криволинейной участке, приведена верно.

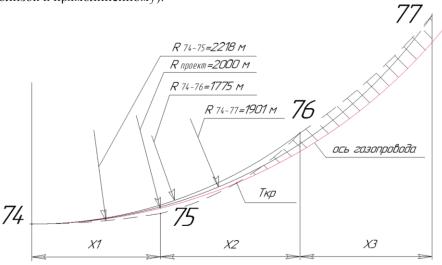
Точка «75» (9,42; 0,02). Из выражения (11) следует

$$R_{74-75} = \frac{9,42^2 + 0,02^2}{2 \cdot 0,02} = 2218 \text{ M}.$$

Радиус изгиба на участке «74–75» составляет 2218 м, что отвечает требованию $R \ge R_{\rm проект}$. Большое значение радиуса изгиба пилотной скважины на данном участке объясняется тем, что высотный перепад между точками позиционирования «74» и «75» составляет всего 2 см при условии, что на прилегающем прямолинейном горизонтальном участке пилотной скважины L3 разность высотных отметок между соседними точками позиционирования в среднем составляет 1 см (участок «74–75» близок к прямолинейному).

Точка «76» (18,84; 0,1)

$$R_{74-76} = \frac{18,84^2 + 0,1^2}{2 \cdot 0.1} = 1775 \text{ M}.$$


Фактическое положение точки «76» соответствует дуге окружности, проходящей через точки «74» и «76», с радиусом изгиба 1775 м, что не отвечает условию $R \ge R_{\rm проект} = 2000$ м.

Точка «77» (28,26; 0,21)

$$R_{74-77} = \frac{28,26^2 + 0,21^2}{2 \cdot 0.21} = 1901 \text{ m}.$$

Фактическое положение точки «77» соответствует дуге окружности, проходящей через точки «74» и «77», с радиусом изгиба 1901 м, что не отвечает условию $R \ge R_{\rm проект} = 2000$ м.

Рис. 5 наглядно поясняет, чем опасно несоблюдение данного условия на примере рассмотренных изгибных участков «74–75», «74–76» и «74–77».

Puc. 5. Сопоставление фактического и проектного положения точек на оси пилотной скважины на криволинейном участке «74–77»

Fig. 5. Comparison of the actual and design position of the points on the axis of the pilot drillhole on the curved section «74–77»

Таблица 3. Радиусы изгиба пилотной скважины R (м) в соответствии с фактическим положением точек позиционирования на участке «74–89»

Table 3. Bend radii of the pilot drillhole R (m) in accordance with the actual location of the positioning points in the section «74–89»

R74-75	R74-76	R74-77	R74-78	R74-79	R74-80	R74-81	R74-82	R74-83	R74-84	R74-85	R74-86	R74-87	R74-88	R74-89
2218	1775	1901	2028	2017	1972	1976	1999	1997	1989	1988	2002	1999	1994	1992

Как следует из рис. 5, точки позиционирования скважины, находящиеся на окружности с радиусом 2000 м и ниже неё, отвечают условию упругого изгиба трубопровода (как следствие, условию вписываемости трубопровода в скважину), $R \ge R_{\text{проект}} = 2000 \text{ м}$), а точки, находящиеся выше, не отвечают данному требованию ($R < R_{\text{проект}}$). Так, точка «75» находится ниже проектного положения, а точки «76» и «77» – выше. На участке «74-77» пунктирной линией показано фактическое положение оси изогнутого участка скважины относительно проектной оси - оси трубопровода, выделенного красной линией. Оси трубопровода и участка скважины пересекаются в некоторой точке «Ткр». Заштрихованный участок теоретически соответствует зоне, на которой трубопровод не вписывается в скважину.

Следовательно, чем больше на криволинейном участке «74–89» точек пересечения фактической оси скважины с проектной осью упругого изгиба трубопровода, а также точек позиционирования, соответствующих дуге окружности, проходящей через эту точку и начало координатной оси — точку начала изгиба «74», с радиусом меньшим R=2000 м, тем больше вероятность застревания трубопровода в нём. В дальнейших расчетах анализируется ситуация на всем криволинейном участке и на основе этого выделяются потенциально опасные зоны.

В табл. 3 приводятся значения R.

Как следует из данных табл. 3, условию $R \ge R_{\text{проект}}$ приблизительно отвечает участок скважины между точками позиционирования «81–89». Значения радиусов изгиба близки к проектной величине $R \approx R_{\text{проект}} = 2000$ м (тем не менее, в большинстве своем, меньше).

В свою очередь, участок «74–81», внутри которого особо стоит выделить зону «74–78», является в этом отношении проблемным.

Участок «74—75». Фактическое положение точки «75» соответствует упругому изгибу трубопровода.

Участок «75–76». Первая зона пересечения осей скважины и трубопровода (рис. 5). Радиусы изгиба между двумя соседними точками позиционирования отличаются на 20 %, что свидетельствует о «крутом» подъеме пилотной скважины на данном участке. Фактическое положение точки «76» соответствует дуге окружности с радиусом 1775 м, который меньше проектного на 11,3 %.

Участок «76–77». Фактическое положение точки «77» соответствует дуге окружности с радиусом

1901 м, который меньше проектного на 5 %. Все точки оси пилотной скважины на данном участке лежат выше оси упругого изгиба трубопровода, что не отвечает требованию вписываемости трубопровода в скважину.

Участок «77–78». Вторая зона пересечения осей скважины и трубопровода. Это указывает на то, что на данном участке ось скважины вновь «нормализуется» (уходит ниже красной линии – оси трубопровода, рис. 5). Радиус изгиба участка после второй точки пересечения отвечает требованию $R \ge R_{\rm проект} = 2000$ м. Фактическое положение точки «78» соответствует упругому изгибу трубопровода.

Участок «78–79». Фактическое положение точки «79» соответствует упругому изгибу трубопровода.

Участок «79–80». Третья зона пересечения осей скважины и трубопровода. Ось скважины вновь заходит за красную линию (ось трубопровода), что соответствует случаю $R < R_{\rm проект} = 2000$ м. Фактическое положение точки «80» не соответствует упругому изгибу трубопровода.

Участок «80–81». Фактическое положение точки «81» не соответствует упругому изгибу трубопровода. Все точки оси пилотной скважины на данном участке лежат выше оси упругого изгиба трубопровода, что не отвечает требованию вписываемости трубопровода в скважину.

Участок «81–89». Фактические положения точек позиционирования соответствует упругому изгибу трубопровода ($R \approx R_{\text{проект}} = 2000 \text{ м}$).

Заключение

Принятый в проекте радиус изгиба скважины
 R_{проект} = 2000 м в целом отвечает требованиям
 упругого изгиба трубопровода из труб с нане сенным наружным бетонным покрытием «ЗУБ КОМПОЗИТ» в оцинкованной оболочке.

Однако запас радиуса изгиба скважины относительно минимального радиуса упругого изгиба трубопровода составляет в среднем всего 3 %. Рекомендуемый радиус изгиба криволинейных участков скважины не менее $R_{\rm проект}=2200$ м.

2. Согласно уточненным расчетам (сопоставлению фактического положения точек позиционирования скважины с осью упруго изогнутого трубопровода) следует, что на криволинейном участке «74—81» условие вписываемости трубопровода в скважину не обеспечивается.

СПИСОК ЛИТЕРАТУРЫ

- 1. Further advances on concrete coating impact on pipeline strength / A. Battistini, L. Catena, A. Mancini, L. Marchionni // ASME 36th International Conference on Ocean, Offshore and Arctic Engineering. 2017. Vol. 5B. URL: http://dx.doi.org/10.1115/OMAE2017-61267 (дата обращения 21.01.2023).
- 2. Бородавкин П.П., Березин В.Л., Шадрин О.Б. Подводные трубопроводы. М.: Изд-во «Недра», 1979. 415 с.
- 3. Abdou M.I., Abuseda H. Upgrading offshore pipelines concrete coated by silica fume additive against aggressive mechanical laying and environmental impact // Egyptian Journal of Petroleum. 2016. Vol. 25. P. 193–199.
- 4. DNVGL-ST-F101 Submarine pipeline systems. URL: https://www.dnv.com/oilgas/download/dnv-st-f101-submarine-pipeline-systems.html (дата обращения 18.01.2023).
- 5. СП 42-101-2003. Общие положения по проектированию и строительству газораспределительных систем из металлических и полиэтиленовых труб. М.: ЗАО «Полимергаз», ГУП ЦПП, 2003. 116 с.
- 6. СТО НОСТРОЙ 2.27.17-2011. «Освоение подземного строительства. Прокладка подземных инженерных коммуникаций методом горизонтального направленного бурения». М.: Национальное объединение строителей, 2012. 145 с.
- 7. СП 341.1325800.2017. «Подземные инженерные коммуникации. Прокладка горизонтальным направленным бурением». М.: Стандартинформ, 2018. 152 с.
- 8. Хасанов Р.Р., Наставшев А.Е. Практика и проблемы применения обетонированных труб при сооружении подводных переходов // Трубопроводный транспорт 2021: тезисы докладов XVI Международной учебно-научно-практической конференции. Уфа: Изд-во УГНТУ, 2021. С. 261–262.
- 9. ВСН 005-88. Строительство промысловых стальных трубопроводов. Технология и организация. М.: ВНИИСТ, 1989. 83 с.
- 10. СП 86.13330.2022. «Магистральные трубопроводы». М.: ФГБУ «РСТ», 2022. 180 с.
- 11. СП 52-101-2003. «Бетонные и железобетонные конструкции без предварительного напряжения арматуры». М.: ГУП «НИИЖБ», Φ ГУП ЦПП, 2004. 58 с.
- 12. Amanda A. Size effect at testing strength properties of concrete // Budownictwo i Architektura. 2021. Vol. 20. P. 37–46.
- 13. Hu H.T., Lin Y.H. Ultimate analysis of PWR prestressed concrete containment subjected to internal pressure // Int. J. Press. Vessels Pip. -2006. $-N_{\text{2}}$ 83. -P. 161-167.
- 14. Hu H.T., Huang C.S., Chen Z.L. Nonlinear analysis of CFT subjected to combined axial compressive force and moment // 13th World Conference on Earthquake Engineering. 2004. Vol. 2. URL: https://doi.org/10.1016/j.jcsr.2005.05.002 (дата обращения 07.02.2023).
- 15. Nonlinear analysis of axially loaded concrete-filled tube columns with confinement effect / H.T. Hu, C.S. Huang, M.H. Wu, Y.M. Wu // Journal of Structural Engineering. 2003. № 129. URL: http://dx.doi.org/10.1061/(ASCE)0733-9445(2003)129:10(1322) (дата обращения 15.02.2023).
- 16. Великоднев В.Я., Котишевский Г.В., Подвойский А.О. Аналитическое решение задачи о допустимом радиусе упругого изгиба трубопровода с бетонным покрытием // Трубопроводный транспорт: теория и практика. 2017. № 3. С. 3–7.
- 17. Снижение напряжения в зоне сварного шва морского трубопровода с бетонным покрытием из серного бетона / Г.С. Шарнина, М.Б. Ханов, Г.А. Голубев, И.Н. Хакимов // Neftegaz.RU. 2021. № 6. С. 100–102.
- 18. Горынин Г.Л., Немировский Ю.В. Пространственные задачи изгиба и кручения слоистых конструкций. Метод асимптотического расщепления. Новосибирск: Наука, 2004. 408 с.
- 19. Типовые расчеты при проектировании, строительстве и ремонте газонефтепроводов / Л.И. Быков, Ф.М. Мустафин, С.К. Рафиков, А.М. Нечваль, А.Е. Лаврентьев. СПб.: Недра, 2011. 748 с.
- 20. Spyros Karamanos. Structural mechanics and design of metal pipes. Amsterdam: Elsevier Science Publ., 2023. URL: https://doi.org/10.1016/C2020-0-02505-3 (дата обращения 20.04.2023).

Информация об авторах

Рустям Рафикович Хасанов, кандидат технических наук, доцент кафедры проектирования и строительства объектов нефтяной и газовой промышленности, заведующий кафедрой промысловых трубопроводных систем, Уфимский государственный нефтяной технический университет, Россия, 450064, г. Уфа, ул. Космонавтов, 1. hasanov25@mail.ru; http://orcid.org/0000-0002-6244-7532

Андрей Евгеньевич Наставшев, магистрант, Уфимский государственный нефтяной технический университет, Россия, 450064, г. Уфа, ул. Космонавтов, 1. a.nastavshev1@yandex.ru

Поступила в редакцию: 08.06.2023

Поступила после рецензирования: 16.11.2023

Принята к публикации: 21.02.2024

REFERENCES

- 1. Further advances on concrete coating impact on pipeline strength. *ASME 36th International Conference on Ocean, Offshore and Arctic Engineering*. 2017, vol. 5B. Available at: http://dx.doi.org/10.1115/OMAE2017-61267 (accessed 21 January 2023).
- 2. Borodavkin P.P., Berezin V.L., Shadrin O.B. Submerged pipelines. Moscow, Nedra Publ., 1979. 415 p. (In Russ.)
- 3. Abdou M.I., Abuseda H. Upgrading offshore pipelines concrete coated by silica fume additive against aggressive mechanical laying and environmental impact. *Egyptian Journal of Petroleum*, 2016, vol. 25, pp. 193–199.
- 4. DNVGL-ST-F101 Submarine pipeline systems. 2021. Available at: https://www.dnv.com/oilgas/download/dnv-st-f101-submarine-pipeline-systems.html (accessed 18 January 2023).

- 5. Set of Rules 41-101-2003. General provisions on the design and construction of gas distribution systems made of metal and polyethylene pipes. Moscow, Polimergaz Publ., GUP CPP Publ., 2003. 116 p. (In Russ.)
- 6. Company Standard National Association of Builders 2.27.17-2011. Development of space. Laying of underground engineering communications by a method of horizontal directed drilling. Moscow, Natsionalnoe obedinenie stroiteley Publ., 2012. 145 p. (In Russ.)
- 7. Set of Rules 341.1325800.2017. Underground utilities. Laying by horizontal directional drilling. Moscow, Standartinform Publ., 2018. 152 p. (In Russ.)
- 8. Hasanov R.R., Nastavshev A.E. Practice and problems of the use of cocrete coated pipes in the construction of underwater crossings. *Pipeline transport 2021. Abstracts of the XVI International Educational, Scientific and Practical Conference*. Ufa, Ufa State Petroleum Technical University Publ., 2021. pp. 261–262. (In Russ.)
- 9. VSN 005-88. Industry-Specific Construction Standards 005-88. Construction of field steel pipelines. Technology and Organization. Moscow, VNIIST Publ., 1989. 83 p. (In Russ.)
- 10. Set of Rules 86.13330.2022. Trunk pipelines. Moscow, FGBU «RST» Publ., 2022. 180 p. (In Russ.)
- 11. Set of Rules 52-101-2003. Concrete and reinforced concrete structures without prestressing the reinforcement. Moscow, GUP «NIIZhB», FGUP CPP Publ., 2004. 58 p. (In Russ.)
- 12. Akram A. Size effect at testing strength properties of concrete. Budownictwo i Architektura, 2021, vol. 20, pp. 37-46.
- 13. Hu H.T., Lin Y.H. Ultimate analysis of PWR prestressed concrete containment subjected to internal pressure. *Int. J. Press. Vessels Pip.*, 2006, no. 83. pp. 161–167.
- 14. Hu H.T., Huang C.S., Chen Z.L. Nonlinear analysis of CFT subjected to combined axial compressive force and moment. 13th World Conference on Earthquake Engineering. 2004, vol. 2. Available at: https://doi.org/10.1016/j.jcsr.2005.05.002 (accessed 7 February 2023).
- 15. Hu H.T., Huang C.S., Wu M.H., Wu Y.M. Nonlinear analysis of axially loaded concrete-filled tube columns with confinement effect. *Journal of Structural Engineering*, 2003, no. 129. Available at: http://dx.doi.org/10.1061/(ASCE)0733-9445(2003)129:10(1322) (accessed 15 February).
- 16. Velikodnev V.Ya., Kotishevskiy G.V., Podvoyskiy A.O. Analytical solution of the problem of the permissible radius of elastic bending of a pipeline with a concrete coating. *Pipeline transport: theory and practice*, 2017, no. 3, pp. 3–7.
- 17. Sharnina G.S., Khanov M.B., Golubev G.A., Khakimov I.N. Stress reduction in the weld area of an offshore pipeline with a concrete coating of sulfur concrete. *Neftegaz.RU*, 2021, no. 6, pp. 100–102.
- 18. Gorynin G.L., Nemirovskiy Yu.V. Spatial problems of bending and torsion of layered structures. Asymptotic splitting method. Novosibirsk, Nauka Publ., 2004. 408 p. (In Russ.)
- 19. Bykov L.I., Mustafin F.M., Rafikov S.K., Nechval A.M., Lavrentev A.E. *Typical calculations in the design, construction and repair of gas and oil pipelines*. St Petersburg, Nedra Publ., 2011. 748 p. (In Russ.)
- 20. Spyros Karamanos. *Structural mechanics and design of metal pipes*. Amsterdam, Elsevier Science Publ., 2023. Available at: https://doi.org/10.1016/C2020-0-02505-3 (accessed 20 April 2023).

Information about the authors

Rustyam R. Khasanov, Cand. Sc., Associate Professor, Head of the Department, Ufa State Petroleum Technical University, 1, Kosmonavtov street, Ufa, 450064, Russian Federation. hasanov25@mail.ru; http://orcid.org/0000-0002-6244-7532

Andrey E. Nastavshev, Master Student, Ufa State Petroleum Technical University, 1, Kosmonavtov street, Ufa, 450064, Russian Federation. a.nastavshev1@vandex.ru

Received: 08.06.2023 Revised: 16.11.2023 Accepted: 21.02.2024 УДК 332.1:001.895:502/504

DOI: 10.18799/24131830/2024/3/4464 Шифр специальности ВАК: 08.00.05

Влияние региональных инноваций на экологический след территорий Российской Федерации: кейс регионов Сибири и Поволжья

В.В. Спицын^{1,3}, А.А. Михальчук¹, Н.О. Чистякова^{1 \boxtimes}, В.В. Татарникова¹, Е.А. Акерман²

- ¹ Национальный исследовательский Томский политехнический университет, г. Томск, Россия
- ² Национальный исследовательский Томский государственный университет, г. Томск, Россия

[⊠]worldperson@mail.ru

Аннотация. Актуальность: обеспечение развития регионов страны на принципах эколого-экономической сбалансированности с учетом национальных целей развития России до 2030 г. В данной работе моделируется взаимосвязь между экономическим развитием и экологическим прогрессом. Исследуется взаимосвязь между инвестициями в инновации и неконтролируемыми выбросами в отдельных регионах России в период с 2010 по 2022 гг. Цель: изучение влияния интенсивности инноваций на экологический след, а также эффективности функционирования экологоинновационной деятельности, в регионах разного типа на примере Сибирского Федерального округа и Приволжского Федерального округа. Методы: панельная регрессия с фиксированными эффектами, корреляционный анализ, метод DEA, кластерный анализ, дисперсионный анализ. Результаты и выводы. На примере 24 российских регионов показано, что рост интенсивности исследований и разработок региональных компаний не везде приводит к увеличению экологического следа и росту интенсивности выбросов. Полученные результаты свидетельствуют о том, что экономические и экологические аспекты устойчивого развития противоречат друг другу и указывают на то, что региональные органы власти должны учитывать негативные экологические экстерналии экономического развития при разработке политики, направленной на содействие региональному росту. Отмечается, что рост вложений в исследования и разработки более развитых регионов снижает степень интенсивности выбросов, в то время как крупные промышленные центры Сибири и регионов Поволжья вложениями в инновации способствуют усилению интенсивности выбросов. Подтверждается гипотеза о высокой степени неоднородности экономического пространства по уровню влияния интенсивности исследований и разработок региональных компаний на степень загрязнения окружающей среды в регионах РФ, и подчеркивается необходимость учитывать региональную специфику промышленной структуры экономики. Выявлена высоко значимая неоднородность эффективности функционирования эколого-инновационной деятельности регионов Сибирского Федерального округа и Приволжского Федерального округа. Причем эффективность эколого-инновационной деятельности регионов незначимо коррелирует с выявленным дисбалансом этой деятельности.

Ключевые слова: экологический след, инвестиции и инновации, устойчивое развитие, загрязнение окружающей среды, регрессионный анализ, DEA, регионы РФ

Благодарности: Исследование выполнено в рамках гранта Российского научного фонда «Глобальная конкурентоспособность и технологическое лидерство регионов: Переосмысление подходов к формированию макрорегионального экономического пространства», соглашение № 22-28-01325.

Для цитирования: Влияние региональных инноваций на экологический след территорий Российской Федерации: кейс регионов Сибири и Поволжья / В.В. Спицын, А.А. Михальчук, Н.О. Чистякова, В.В. Татарникова, Е.А. Акерман // Известия Томского политехнического университета. Инжиниринг георесурсов. − 2024. − Т. 335. − № 3. − С. 240−252. DOI: 10.18799/24131830/2024/3/4464

³ Томский государственный университет систем управления и радиоэлектроники, г. Томск, Россия

UDC 332.1:001.895:502/504

DOI: 10.18799/24131830/2024/3/4464

Regional innovations influence on the ecological footprint of the Russian Federation territories: case of the Siberia and Volga regions

V.V. Spitsyn^{1,3}, A.A. Mikhalchuk¹, N.O. Chistyakova^{1⊠}, V.V. Tatarnikova¹, E.A. Akerman²

¹ National Research Tomsk Polytechnic University, Tomsk, Russian Federation ² National Research Tomsk State University, Tomsk, Russian Federation ³ Tomsk State University of Control Systems and Radioelectronics, Tomsk, Russian Federation

[™]worldperson@mail.ru

Abstract. Relevance. Ensuring the development of the country regions on the principles of environmental and economic balance, taking into account the national development goals of Russia until 2030. This article models the relationship between economic development and environmental progress. The relationship between investment in innovation and uncontrolled emissions in certain regions of Russia in the period from 2010 to 2022 is explored. Aim. To study the intensity of innovation influence on the ecological footprint, as well as the efficiency of functioning of environmental-innovative activities, in regions of different types using the example of the Siberian Federal District and the Volga Federal District. *Methods.* Panel regression with fixed effects, correlation analysis, DEA method, cluster analysis, analysis of variance. Results and conclusions. Using the example of 24 Russian regions, it is shown that the intensity increase of the research and development of regional companies does not always lead to an increase in the environmental footprint and an increase in emissions intensity. The obtained results indicate that the economic and environmental dimensions of sustainable development contradict each other and suggest that regional governments should consider the negative environmental externalities of economic development when designing policies to promote regional growth. It is noted that the growth of investments in the research and development of more developed regions reduce the emissions intensity level. Large industrial centers of Siberia and the Volga regions are investing in innovation to increase the intensity of emissions. The hypothesis about the high degree of the economic space heterogeneity in terms of the influence of the research and development intensity of regional companies on the degree of environmental pollution in the regions of the Russian Federation is confirmed. The necessity is emphasized to take into account the regional specifics of the industrial structure of the economy. A highly significant heterogeneity was revealed in the efficiency of environmental-innovative activities functioning in the regions of the Siberian Federal District and Volga Federal District. Moreover, the effectiveness of environmental-innovative activities of the regions is insignificantly correlated with the identified imbalance of this activity.

Keywords: ecological footprint, investment and innovation, sustainable development, environmental pollution, regression analysis, DEA, Russian Federation regions

Acknowledgements: The study was carried out under the grant from the Russian Science Foundation "Global competitiveness and technological leadership of the regions: rethinking approaches of the macroregional economic space formation", Agreement no. 22-28-01325.

For citation: Spitsyn V.V., Mikhalchuk A.A., Chistyakova N.O., Tatarnikova V.V., Akerman E.A. The regional innovations influence on the ecological footprint of the Russian Federation territories: case of the Siberia and Volga regions. *Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering*, 2024, vol. 335, no. 3, pp. 240–252. DOI: 10.18799/24131830/2024/3/4464

Введение

Эволюция теорий пространственного развития сопровождается изучением дополнительных факторов, влияющих на концентрацию экономической деятельности и усилении агломерационных эффектов [1–3] для разного типа регионов. В результате появляются принципиально иные значимые факторы, влияющие на развитие регионов: качество человеческого капитала и среды обитания, развитие диверсифицированного производства, обмен и переток знаний. Кроме того, современные исследования пространственного развития рассматривают процессы ускорения техно-

логических открытий, глобализацию, рост открытости экономик, а также, учитывая очевидность исчерпанности прежней модели общественного развития, основанной на потреблении благ и экономической конкуренции, — необходимость перехода к модели устойчивого развития. Насколько влияние «триады» экономического роста [4] значимо для снижения пространственного неравенства российских регионов и усиления их технологического лидерства, насколько периферийные регионы способны технологически отвечать целям устойчивого развития — вопросы на текущий момент дискуссионные.

Исследование факторов, связанных с ростом экономики - ВВП, ВВП на душу населения, валового регионального продукта (ВРП), ВРП на душу населения, промышленного производства, уровня урбанизации, динамики доходов населения и инвестиций в основной капитал, которые влияют на изменение динамики загрязнений, проводилось по данным различных стран и регионов [1–3]. В монографии [5] доказывается, что снижение уровня загрязнений связывалось с несколькими факторами, из которых обычно выделяли технологический уровень и структурные сдвиги. Фактор изменения структуры экономики обычно учитывался через долю сельского хозяйства в ВВП, долю добычи полезных ископаемых в ВВП, долю промышленности в ВВП и долю сферы услуг. Исследования [6] выявили, что форма зависимости загрязнений от ВРП может быть разной и определяется особенностями страны, прежде всего технологическим прогрессом, активностью структурных сдвигов и воздействием внешних шоков.

Важно отметить, что российский контекст реализации повестки устойчивого развития уникален. С одной стороны, большая территория, массивы лесных и водных ресурсов, низкая плотность населения и бизнеса снижают первостепенность экологических проблем. С другой стороны, исторически обусловленное преобладание «грязной» добывающей промышленности (нефтегазовая промышленность генерирует карбоновый след) и «грязных», экологически опасных отраслей в обрабатывающей промышленности (металлургия, нефтехимия, атомная промышленность и т. д.) усложняет решение экологических задач. Немаловажно, что для России характерны ярко выраженные различия между территориями (регионами и муниципальными образованиями) по социо-эколого-экономическим характеристикам, что затрудняет разработку универсальных подходов к решению вопросов снижения пространственного неравенства.

Несмотря на многолетние исследования, существует недостаток знаний о том, какое влияние одновременное достижение этих целей может оказать на макроэкономический рост [7]. Вместе с тем влияние инноваций на региональное развитие широко признается в литературе [8]. Сама цель поиска новых комбинаций ресурсов, составляющая суть инновационного развития, заключается в выявлении новых способов делать больше при меньших затратах [9]. Хотя природа инноваций плохо определена [10] и никогда нельзя гарантировать успешный результат любого конкретного проекта исследований и разработок (НИОКР), в целом инновационная деятельность выгодна с точки зрения повышения отдачи от ресурсов [11], и компании ожидают увидеть такие улучшения, принимая участие в различных проектах НИОКР. И если вопросы влияния интенсивности НИОКР и усиления инновационной активности компаний на их экономическую активность и рост территорий изучен достаточно подробно, то влияние данных процессов на экологический след исследовано недостаточно.

На текущий момент экономические агенты руководствуются доктриной Фридмана [12], согласно которой их первоочередной обязанностью является предоставление экономических выгод акционерам, а социальные и экологические соображения рассматриваются как просто ограничения. Растущее понимание необходимости устойчивого развития и выдвижение этой повестки дня на первый план Организацией Объединенных Наций [13] заставили многих ученых предположить, что ключ к достижению тройного результата лежит в инновационном развитии, когда субъекты инновационной деятельности целенаправленно решают экологические задачи, одновременно планируя свои экономические цели [14]. Подобная положительная взаимосвязь между предпринимательством и инновациями, которая считается универсальной, на самом деле наблюдается только в развитых странах [15], положительная взаимосвязь между инновациями и устойчивым развитием, вероятно, будет наблюдаться в узком подмножестве при достаточно уникальных обстоятельствах [16, 17]. Можно ожидать увидеть положительное влияние инноваций на социальные или экологические результаты только в том случае, если они явно требуются основными правилами общества, воплощенными в законе и в этических нормах [12]. В отсутствие такой политики и институционального, этического и подобного давления на «основные правила общества» инвестиции в НИОКР, вероятно, приведут к ухудшению экологических условий. В связи с этим при исследовании эколого-экономических процессов в работе [5] предложено оценивать экологический показатель (выбросы в атмосферу загрязняющих веществ) во взаимосвязи с интенсивностью НИОКР, что позволит выявить корреляцию между экономическими и экологическими целями устойчивого развития в разрезе Сибирских регионов и Поволжья и оценить степень пространственной неоднородности взаимосвязи между интенсивностью НИОКР и интенсивностью выбросов по регионам СФО и ПФО. Таким образом, цель исследования – изучение влияния интенсивности инноваций на экологический след в регионах разного типа на примере СФО и ПФО, что позволяет сделать вывод о неоднородности экономического пространства.

Основная гипотеза, решаемая в рамках данного исследования: высокая степень неоднородности экономического пространства по уровню влияния интенсивности НИОКР региональных компаний на

степень загрязнения окружающей среды в регионах РФ

Поиск новых подходов к региональному развитию обусловливает постановку исследовательских задач.

Материалы и методы

Объектом исследования являются 10 регионов Сибирского федерального округа (СФО) и 14 регионов Приволжского федерального округа (ПФО).

Таблица 1. Регионы СФО и ПФО

Table 1. Regions of the Siberian Federal District (SFD) and the Volga Federal District (VFD)

Код (аббревиатура) Соde (аbbreviation)Регион RegionФедеральный округ Federal DistrictAK AR AR AR Altai RegionСФО Altai RegionSFDИО IR Irkutsk RegionSFDKK KR KRACHORDCKHÜ KPAÜR KR KRACHORDCKHÜ KPAÜR KRACHORDCKHÜ KPAÜR KRACHORDCKHÜ KPAÜR KRACHORDCKHÜ KPAÜR KRACHORDCKHÜ KRACHORDCKHÜ KRACHORDCKAR OĞЛАСТЬ KRACHORDCKAR OĞЛАСТЬ KRACHORDCKAR OĞЛАСТЬ KRACHORDCKAR OĞЛАСТЬ KRACHORDCKAR OĞЛАСТЬ NOR NOR NOVR NOVOSİBİRSK REGION NOVR NOVOSİBİRSK REGION OD <th></th> <th>The voiga i eaci ai District (v</th> <th></th>		The voiga i eaci ai District (v	
Дофе (аbbreviation) Region округ Federal District AK Ак Алтайский край СФО AR Altai Region SFD ИО Иркутская область СФО IR Irkutsk Region SFD КК Красноярский край СФО КК Ккаснороскай область СФО КК Кемеровская область ПФО КК Кемеророская область ПФО КК Ккоровская область ПФО КК Кеметороодская область ПФО NR Nizegorodsk Region VFD НО Новосибирская область СФО Nov Novsibirsk region SFD ОО Омская область ПФО ОР Оренбургская область ПФО ОР Оренбургская область ПФО ОР Оренбургская область ПФО ОР Оренбургская область ПФО ОР Оренбургская область ПФО ОР Оренбургская область <t< td=""><td>Код</td><td>Регион</td><td>Федеральный</td></t<>	Код	Регион	Федеральный
АК Алтайский край СФО АК АК Алтайский край СФО АК АК Аltai Region SFD ИО Иркутская область СФО IR Irkutsk Region SFD КК Красноярский край СФО КК КК Ктаsnoyarsk Region SFD КО Кемеровская область СФО КК Кетеогоо Region SFD КрО Кировская область ПФО КК Кігоv Region VFD НгО Нижегородская область ПФО NR Nizegorodsk Region SFD ОО Омская область СФО ОК Омозівітsk region SFD ОО Омская область ПФО ОП Омская область ПФО ОП Омская область ПФО ОП Омская область ПФО ОП Омская область ОФО ОП Омская область ОФО ОП Омская область ПФО ОП Омская область ОФО ОП Омская область ОФО ОП Омская область ПФО ОГР ОРО Оренбургская область ПФО ОГР ОГР ОГР ОГР ОГР ОГР ОГР ОГР ОГР ОГ			
AR Altai Region SFD ИО Иркутская область СФО IR Irkutsk Region SFD КК Красноярский край СФО КК Красноярский край СФО КК Кизонов кар область СФО КР Кировская область ПФО КВ Кігоv Region УFD НгО Нижегородская область ПФО NR Nizegorodsk Region VFD НО Новосибирская область СФО NovR Novosibirsk region SFD ОО Омская область СФО OR Омзк Region SFD ОРО Оренбургская область ПФО ОР		_	
ИО Иркутская область СФО IR Irkutsk Region SFD KK Красноярский край СФО KK Красноярский край СФО KK Кканолоуагsk Region SFD КО Кемеровская область СФО КR Кетого Region SFD КрО Кировская область ПФО NR Nizegorodsk Region VFD HO Новосибирская область СФО Nov Novosibirsk region SFD ОО Омская область СФО ОR Отвак Region SFD ОРО Оренбургская область ПФО ОРА Оренбургская область ПФО <t< td=""><td></td><td>-</td><td></td></t<>		-	
IRIrkutsk RegionSFDКККрасноярский крайСФОКККК Красноярский крайСФОКККК Катаsnoyarsk RegionSFDКОКемеровская областьПФОКВКировская областьПФОКВКировская областьПФОКВКігоv RegionVFDНГОНижегородская областьСФОNRNizegorodsk RegionVFDНОНовосибирская областьСФОNovRNovosibirsk regionSFDОООмская областьСФООРОренбургская областьПФООРОренбургская областьПФООгаОгенбирг RegionVFDПНОПензенская областьПФОРепяРепха RegionVFDПркПермский крайПФОРРРегт RegionVFDРАРеспублика АлтайСФОRARepublic of AltaiSFDРБшРеспублика БашкортостанПФОRBRepublic of BashkortostanVFDРМрРеспублика МордовияПФОRMorRepublic of MordoviaVFDРМэРеспублика Марий ЭлПФОRMRepublic of TatarstanVFDРТРеспублика ТатарстанПФОRTRepublic of TyvaSFDРТРеспублика ХакасияСФОRKhRepublic of ChuvashiaVFDСМОСамарская областьПФОСРОСаратовская областьПФООСО<		Ŭ	
КК Красноярский край СФО КК КГазпоуагяк Region SFD КО Кемеровская область СФО КР Кировская область ПФО КР Кировская область ПФО КР Кигоv Region VFD НгО Нижегородская область ПФО NR Nizegorodsk Region VFD НО Новосибирская область СФО NovR Novosibirsk region SFD ОО Омская область СФО ОR Отвк Region SFD ОР Оренбургская область ПФО Огт Огенбургская область ПФО Огт Огенфургская область ПФО Огенфургенфургская область ПФО Огенф	-		
KKKrasnoyarsk RegionSFDKOКемеровская областьСФОKRКетого RegionSFDКрОКировская областьПФОKRКігоv RegionVFDHrOНижегородская областьПФОNRNizegorodsk RegionVFDHOНовосибирская областьСФОNovRNovosibirsk regionSFDОООмская областьСФОORОтвк RegionSFDОрООренбургская областьПФООгОгенбигу RegionVFDПНОПензенская областьПФОРепRРепха RegionVFDПрКПермский крайПФОРРРеп RegionVFDРАРеспублика АлтайСФОRARepublic of AltaiSFDРБшРеспублика БашкортостанПФОRBRepublic of BashkortostanVFDРМрРеспублика МордовияПФОRMorRepublic of MordoviaVFDРМЭРеспублика Марий ЭлПФОRMRepublic of MordoviaVFDРТРеспублика ТатарстанПФОRTRepublic of TyvaSFDРТРеспублика ТатарстанПФОRKhRepublic of TatarstanVFDРУРеспублика ХакасияСФОRKhRepublic of КhakassiaSFDРЧВРеспублика ЧувашияПФОRChRepublic of ChuvashiaVFDСрОСаратовская областьПФОVAPУ	IR		SFD
КО Кемеровская область СФО КРО Кировская область ПФО КРО Кировская область ПФО КК Кігоv Region VFD НгО Нижегородская область ПФО NR Nizegorodsk Region VFD НО Новосибирская область СФО NovR Novosibirsk region SFD ОО Омская область ПФО ОR Отвкая область ПФО ОРО Оренбургская область ПФО ОРК Огепьигу Region VFD ПНО Пензенская область ПФО Репя Репа Region VFD ПРК Пермский край ПФО РР Ретя Region VFD РА Республика Алтай СФО RA Republic of Altai SFD РБш Республика Вашкортостан ПФО RB Republic of Bashkortostan VFD РВш Республика Мордовия ПФО RM	КК	Красноярский край	СФО
KR Kemerovo Region SFD KpO Кировская область ПФО KR Kirov Region VFD HrO Нижегородская область ПФО NR Nizegorodsk Region VFD HO Новосибирская область СФО NovR Novosibirsk region SFD OO Омская область СФО OR Omsk Region SFD OpO Оренбургская область ПФО OrR Orenburg Region VFD ПнО Пензенская область ПФО PenR Orenburg Region VFD Пр Пр ПфО PenR Penza Region VFD Пр Пр ПфО Реп Реп Region VFD Ра Реги Region VFD Ра Реги Region VFD Ра Реги Region VFD Ра Реги ублика Алатай СФО Ра Республика Мардовия ПфО	KK		SFD
KR Kemerovo Region SFD KpO Кировская область ПФО KR Kirov Region VFD HrO Нижегородская область ПФО NR Nizegorodsk Region VFD HO Новосибирская область СФО NovR Novosibirsk region SFD OO Омская область СФО OR Omsk Region SFD OpO Оренбургская область ПФО OrR Orenburg Region VFD ПнО Пензенская область ПФО PenR Orenburg Region VFD Пр Пр ПфО PenR Penza Region VFD Пр Пр ПфО Реп Реп Region VFD Ра Реги Region VFD Ра Реги Region VFD Ра Реги Region VFD Ра Реги ублика Алатай СФО Ра Республика Мардовия ПфО	КО	Кемеровская область	СФО
KRKirov RegionVFDHr0Нижегородская областьПФОNRNizegorodsk RegionVFDH0Новосибирская областьСФОNovRNovosibirsk regionSFD00Омская областьСФО0RОтвк RegionSFDОрООренбургская областьПФООгаОгенburg RegionVFDПнОПензенская областьПФОРепяРепяРепяПФОРепяРепяРепяПФОРаРепяРепяРепяПФОРаРепяРепяРепяПФОРаРепяРепяРепяРепяРепяРаРепяРепяРепяРепяРепяРаРепяРепяРепяРепяРепяРаРепяРепяРепяРепяРепяРаРепяРепяРепяРепяРепяРаРепяРепяРепяРепяРепяРаРепяРепяРепяРепяРепяРаРепяРепяРепяРепяРепяРаРепяРепяРепяРепяРепяРаРепяРепяРепяРепяРепяРаРепяРепяРепяРепяРепяРаРепяРепяРепяРепяРепяРаРепяРепяРепяРепяРепяРаРепяРепяРепяРепяРепя<	KR		SFD
HrO Нижегородская область ПФО NR Nizegorodsk Region VFD HO Новосибирская область СФО NovR Novosibirsk region SFD ОО Омская область СФО ОR Отвк Region SFD ОРО Оренбургская область ПФО ОгР Огепьига Region VFD ПнО Пензенская область ПФО Репя Репа Region VFD ПрК Пермский край ПФО РР Репя Region VFD РА Республика Kpaй ПФО RA Republic of Altai SFD РА Республика Башкортостан ПФО RA Republic of Altai SFD РБш Республика Башкортостан ПФО RB Republic of Altai SFD РВш Республика Башкортостан ПФО RB Republic of Bashkortostan VFD РМЭ Республика Мордовия ПФО R	КрО	Кировская область	ПФО
NRNizegorodsk RegionVFDHOНовосибирская областьСФОNovRNovosibirsk regionSFDOOОмская областьСФОOROmsk RegionSFDOpOОренбургская областьПФОOrROrenburg RegionVFDПнОПензенская областьПФОPenRPenza RegionVFDПрКПермский крайПФОPRPerm RegionVFDPAPecnyблика АлтайСФОRARepublic of AltaiSFDPБшPecnyблика БашкортостанПФОRBRepublic of BashkortostanVFDPMpPecnyблика МордовияПФОRMorRepublic of MordoviaVFDPM3Pecnyблика Марий ЭлПФОRMRepublic of Mari ElVFDPTPecnyблика ТываСФОRTRepublic of TatarstanVFDPXPecnyблика ТатарстанПФОRKhRepublic of KhakassiaSFDPYBPecnyблика ЧувашияПФОRChRepublic of ChuvashiaVFDCMOСамарская областьПФОSRSamara RegionVFDСрОСаратовская областьПФОSarRSaratov regionVFDTOТомская областьСФОTRTomsk RegionSFDУдРУдрудуртская республикаПФОUdRUdmurtia RegionVFD	KR	Kirov Region	VFD
НО Новосибирская область СФО NovR Novosibirsk region SFD ОО Омская область СФО ОВ Отвяк Region SFD ОРО Оренбургская область ПФО ОГР Огепьигу Region VFD ПНО Пензенская область ПФО Репя Репя Region VFD РА Репя Region VFD РВ Репя Region VFD РВ Республика Mapuro ПФО RМ Republic of Mordovia VFD РР Республика Татарстан ПФО RТ Republic of Tyva SFD <tr< td=""><td>НгО</td><td>Нижегородская область</td><td>ПФО</td></tr<>	НгО	Нижегородская область	ПФО
НО Новосибирская область СФО NovR Novosibirsk region SFD 00 Омская область СФО 0R Отвк Region SFD ОрО Оренбургская область ПФО ОгР Огепьигу Region VFD ПнО Пензенская область ПФО Репя Репя Region VFD РА Репя Region VFD РА Республика Алтай СФО RA Republic of Altai SFD РБш Республика Башкортостан ПФО RB Republic of Bashkortostan VFD РМр Республика Мордовия ПФО RM Republic of Mordovia VFD РМЭ Республика Марий Эл ПФО RM Republic of Mari El VFD РТ Республика Тыва СФО RT Republic of Tyva SFD РТт Республика Татарстан ПФО RKh Republic of Tatarstan VFD РХ	NR	Nizegorodsk Region	VFD
NovR Novosibirsk region SFD 00 Омская область СФО 0R Отвк Region SFD 0рО Оренбургская область ПФО 0rR Отепьиг Region VFD ПнО Пензенская область ПФО Репя Репя ПФО Репя Репя Region VFD РА Республика Алтай СФО RA Republic of Altai SFD РБш Республика Башкортостан ПФО RB Republic of Bashkortostan VFD РМр Республика Башкортостан ПФО RM Republic of Bashkortostan VFD РМр Республика Мордовия ПФО RMor Republic of Mordovia VFD РМЭ Республика Марий Эл ПФО RM Republic of Mari El VFD РТ Республика Татарстан ПФО RT Republic of Туча SFD РТт Республика Татарстан ПФО	НО		СФО
00 Омская область СФО 0R Отвк Region SFD 0р0 Оренбургская область ПФО 0rR Огенбиг Region VFD ПнО Пензенская область ПФО РепЯ Репа Region VFD ПрК Пермский край ПФО РР Рег Region VFD РА Республика Край СФО RA Republic of Altai SFD РБш Республика Башкортостан ПФО RB Republic of Altai SFD РБш Республика Башкортостан ПФО RB Republic of Bashkortostan VFD РМр Республика Башкортостан ПФО RB Republic of Mordovia VFD РМр Республика Марий Эл ПФО RM Republic of Mordovia VFD РМ Республика Марий Эл ПФО RM Republic of Mordovia VFD РТ Республика Татарстан ПФО RT	_		
OROmsk RegionSFDOpOОренбургская областьПФОOrROrenburg RegionVFDПНОПензенская областьПФОPenRPenza RegionVFDПрКПермский крайПФОPRPerm RegionVFDPAPecпублика АлтайСФОRARepublic of AltaiSFDPБШPecпублика БашкортостанПФОRBRepublic of BashkortostanVFDPMpPecпублика МордовияПФОRMorRepublic of MordoviaVFDPM3Pecпублика Марий ЭлПФОRMRepublic of Mari ElVFDPTPecпублика ТываСФОRTRepublic of ТyvaSFDPTTPecпублика ТатарстанПФОRTatRepublic of ТatarstanVFDPXPecпублика ХакасияСФОRKhRepublic of КhakassiaSFDPЧвPecпублика ЧувашияПФОRChRepublic of ChuvashiaVFDСмОСамарская областьПФОSarSamara RegionVFDСрОСаратовская областьПФОSarRSaratov regionVFDTOТомская областьСФОTRTomsk RegionSFDУдРУдРУдмуртская республикаПФОUdRUdmurtia RegionVFDУлоУльяновская областьПФО		Ü	
ОрО Оренбургская область ПФО ОгR Огеnburg Region VFD ПНО Пензенская область ПФО РепR Репza Region VFD ПрК Пермский край ПФО РР Регт Region VFD РА Республика Aлтай СФО RA Republic of Altai SFD РБш Республика Башкортостан ПФО RB Republic of Bashkortostan VFD РМр Республика Башкортостан ПФО RM Republic of Bashkortostan VFD РМр Республика Мордовия ПФО RM Republic of Mordovia VFD РМэ Республика Марий Эл ПФО RM Republic of Mari El VFD РТ Республика Тыва СФО RT Republic of Tyva SFD РТт Республика Татарстан ПФО RKh Republic of Tatarstan VFD РХ Республика Хакасия СФО			
OrROrenburg RegionVFDПнОПензенская областьПФОPenRPenza RegionVFDПрКПермский крайПФОPRPerm RegionVFDPAPecnyблика АлтайСФОRARepublic of AltaiSFDPБшPecnyблика БашкортостанПФОRBRepublic of BashkortostanVFDPMpPecnyблика МордовияПФОRMorRepublic of MordoviaVFDPMЭPecnyблика Марий ЭлПФОRMRepublic of Mari ElVFDPTPecnyблика ТываСФОRTRepublic of TyvaSFDPTTPecnyблика ТатарстанПФОRTatRepublic of TatarstanVFDPXPecnyблика ХакасияСФОRKhRepublic of KhakassiaSFDPЧвPecnyблика ЧувашияПФОRChRepublic of ChuvashiaVFDСмОСамарская областьПФОSRSamara RegionVFDСрОСаратовская областьПФОSarRSaratov regionVFDTOТомская областьСФОTRТомская областьСФОTRTomsk RegionSFDУдРУдмуртская республикаПФОUdRUdmurtia RegionVFD		Ü	
ПнО Пензенская область ПФО PenR Репла Region VFD ПрК Пермский край ПФО PR Регт Region VFD PA Республика Алтай СФО RA Republic of Altai SFD PБш Республика Башкортостан ПФО RB Republic of Bashkortostan VFD PMp Республика Башкортостан ПФО RB Republic of Bashkortostan VFD PMp Республика Мордовия ПФО RMor Republic of Mordovia VFD PM9 Республика Марий Эл ПФО RM Republic of Mordovia VFD PM Республика Марий Эл ПФО RM Republic of Mordovia VFD PT Республика Тыва СФО RT Republic of Tyva SFD PT Республика Тыва СФО RKh Republic of Tatarstan VFD PX Республика Хакасия СФО			
PenRPenza RegionVFDПрКПермский крайПФОPRPerm RegionVFDPAPecnyблика АлтайСФОRARepublic of AltaiSFDPБшPecnyблика БашкортостанПФОRBRepublic of BashkortostanVFDPMpPecnyблика МордовияПФОRMorRepublic of MordoviaVFDPMЭPecnyблика Марий ЭлПФОRMRepublic of Mari ElVFDPTPecnyблика ТываСФОRTRepublic of TyvaSFDPTTPecnyблика ТатарстанПФОRTatRepublic of TatarstanVFDPXPecnyблика ХакасияСФОRKhRepublic of KhakassiaSFDPЧвPecnyблика ЧувашияПФОRChRepublic of ChuvashiaVFDСмОСамарская областьПФОSRSamara RegionVFDСрОСаратовская областьПФОSarRSaratov regionVFDTOТомская областьСФОTRTomsk RegionSFDУдРУдмуртская республикаПФОUdRUdmurtia RegionVFD			
ПрК Пермский край ПФО PR Регт Region VFD PA Республика Алтай СФО RA Republic of Altai SFD PБш Республика Башкортостан ПФО RB Republic of Bashkortostan VFD PМр Республика Мордовия ПФО RMor Republic of Mordovia VFD PMЭ Республика Марий Эл ПФО RM Republic of Mari El VFD PT Республика Тыва СФО RT Republic of Tyva SFD PTт Республика Татарстан ПФО RTat Republic of Tatarstan VFD PX Республика Хакасия СФО RKh Republic of Khakassia SFD PЧв Республика Чувашия ПФО RCh Republic of Chuvashia VFD СмО Самарская область ПФО SR Samara Region VFD СрО Саратовская область ПФО			
PR Perm Region VFD PA Pecnyблика Алтай СФО RA Republic of Altai SFD PEIII Pecnyблика Башкортостан ПФО RB Republic of Bashkortostan VFD PMp Pecnyблика Мордовия ПФО RMor Republic of Mordovia VFD PM3 Pecnyблика Марий Эл ПФО RM Republic of Mari El VFD PT Pecnyблика Тыва СФО RT Republic of Tyva SFD PTT Pecnyблика Татарстан ПФО RTat Republic of Tatarstan VFD PX Pecnyблика Хакасия СФО RKh Republic of Khakassia SFD PYB Pecnyблика Чувашия ПФО RCh Republic of Chuvashia VFD CMO Самарская область ПФО SAR Samara Region VFD CpO Саратовская область ПФО TO Томская область СФО TR Tomsk Region SFD YAP Удмуртская республика ПФО UdR Udmurtia Region VFD UdR Udmurtia Region VFD VFD VAD VAD VAD VAD VAD VAD VAD VAD VAD VA			
PAРеспублика АлтайСФОRARepublic of AltaiSFDPБШРеспублика БашкортостанПФОRBRepublic of BashkortostanVFDPMpРеспублика МордовияПФОRMorRepublic of MordoviaVFDPMЭРеспублика Марий ЭлПФОRMRepublic of Mari ElVFDPTРеспублика ТываСФОRTRepublic of TyvaSFDPTTРеспублика ТатарстанПФОRTatRepublic of TatarstanVFDPXРеспублика ХакасияСФОRKhRepublic of KhakassiaSFDPЧвРеспублика ЧувашияПФОRChRepublic of ChuvashiaVFDСмОСамарская областьПФОSRSamara RegionVFDСрОСаратовская областьПФОSarRSaratov regionVFDТОТомская областьСФОTRТотяк RegionSFDУдРУдмуртская республикаПФОUdRUdmurtia RegionVFD			
RA Republic of Altai SFD PBIII PECNYGЛИКА БАШКОРТОСТАН RB Republic of Bashkortostan VFD PMP PECNYGЛИКА МОРДОВИЯ ПФО RMOT Republic of Mordovia VFD PM3 PECNYGЛИКА МАРИЙ ЭЛ ПФО RM Republic of Mari El VFD PT PECNYGЛИКА ТЫВА RT Republic of Tyva SFD PTT PECNYGЛИКА ТАТАРСТАН ПФО RTAT Republic of Tatarstan VFD PX PECNYGЛИКА ТАТАРСТАН ОФО RKH Republic of Tatarstan VFD PX PECNYGЛИКА ХАКАСИЯ RKH Republic of Khakassia SFD PYB PECNYGЛИКА ЧУВАШИЯ ПФО RCH Republic of Chuvashia VFD CMO CAMAPCKAS OGЛАСТЬ ПФО SR SAMATA REGION VFD CPO CAPATOBCKAS OGЛАСТЬ ПФО SAR SATATOV region VFD TO ТОМСКАЯ ОБЛАСТЬ СФО TR TOMSK REGION SFD VAP УДМУРТСКАЯ РЕСПУБЛИКА UdR Udmurtia Region VFD UdR VAD УЛЬЯНОВСКАЯ ОБЛАСТЬ ПФО VFD VAO УЛЬЯНОВСКАЯ ОБЛАСТЬ			-
РБш Республика Башкортостан ПФО RB Republic of Bashkortostan VFD PMp Республика Мордовия ПФО RMor Republic of Mordovia VFD PMЭ Республика Марий Эл ПФО RM Republic of Mari El VFD PT Республика Тыва СФО RT Republic of Tyva SFD PTт Республика Татарстан ПФО RTat Republic of Tatarstan VFD PX Республика Хакасия СФО RKh Republic of Khakassia SFD РЧв Республика Чувашия ПФО RCh Republic of Chuvashia VFD СмО Самарская область ПФО SR Samara Region VFD СрО Саратовская область СФО TR Томская область СФО TR Томская область СФО TR Томская область ПФО VAP Удмуртская республика ПФО			
RB Republic of Bashkortostan VFD PMp Республика Мордовия ПФО RMor Republic of Mordovia VFD PM9 Республика Марий Эл ПФО RM Republic of Mari El VFD PT Республика Тыва СФО RT Republic of Tyva SFD PTT Республика Татарстан ПФО RTat Republic of Tatarstan VFD PX Республика Хакасия СФО RKh Republic of Khakassia SFD PYB Республика Чувашия ПФО RCh Republic of Chuvashia VFD CMO Самарская область ПФО SR Samara Region VFD CpO Саратовская область ПФО SarR Saratov region VFD TO Томская область СФО TR Tomsk Region SFD YAP Удмуртская республика ПФО UdR Udmurtia Region VFD VD VлО Ульяновская область ПФО VFD VFD VFD VFD VFD VFD VFD VFD VFD VFD			
PMp RMorРеспублика Мордовия Republic of MordoviaПФО VFDPMЭ PMЭ 			
RMOrRepublic of MordoviaVFDPMЭРеспублика Марий ЭлПФОRMRepublic of Mari ElVFDPTРеспублика ТываСФОRTRepublic of TyvaSFDPTTРеспублика ТатарстанПФОRTatRepublic of TatarstanVFDPXРеспублика ХакасияСФОRKhRepublic of KhakassiaSFDРЧвРеспублика ЧувашияПФОRChRepublic of ChuvashiaVFDСмОСамарская областьПФОSRSamara RegionVFDСрОСаратовская областьПФОSarRSaratov regionVFDTOТомская областьСФОTRТотяк RegionSFDУдРУдмуртская республикаПФОUdRUdmurtia RegionVFD			
РМЭ Республика Марий Эл ПФО RM Republic of Mari El VFD PT Республика Тыва СФО RT Republic of Tyva SFD PTT Республика Татарстан ПФО RTat Republic of Tatarstan VFD PX Республика Хакасия СФО RKh Republic of Khakassia SFD РЧв Республика Чувашия ПФО RCh Republic of Chuvashia VFD СмО Самарская область ПФО SR Samara Region VFD СрО Саратовская область ПФО SarR Saratov region VFD TO Томская область СФО TR Тоmsk Region SFD УдР Удмуртская республика ПФО UdR Udmurtia Region VFD			
RM Republic of Mari El VFD PT Республика Тыва СФО RT Republic of Tyva SFD PTT Республика Татарстан ПФО RTat Republic of Tatarstan VFD PX Pecnyблика Хакасия СФО RKh Republic of Khakassia SFD PЧВ Республика Чувашия ПФО RCh Republic of Chuvashia VFD СмО Самарская область ПФО SR Samara Region VFD СрО Саратовская область ПФО SarR Saratov region VFD ТО Томская область СФО TR Tomsk Region SFD УдР Удмуртская республика ПФО UdR Udmurtia Region VFD УлО Ульяновская область ПФО			
PT Республика Тыва СФО RT Republic of Tyva SFD PTт Республика Татарстан ПФО RTat Republic of Tatarstan VFD PX Республика Хакасия СФО RKh Republic of Khakassia SFD PЧв Республика Чувашия ПФО RCh Republic of Chuvashia VFD СмО Самарская область ПФО SR Samara Region VFD СрО Саратовская область ПФО SarR Saratov region VFD TO Томская область СФО TR Тотяк Region SFD УдР Удмуртская республика ПФО UdR Udmurtia Region VFD			
RT Republic of Tyva SFD PTT Республика Татарстан ПФО RTat Republic of Tatarstan VFD PX Республика Хакасия СФО RKh Republic of Khakassia SFD PЧВ Республика Чувашия ПФО RCh Republic of Chuvashia VFD СмО Самарская область ПФО SR Samara Region VFD СрО Саратовская область ПФО SarR Saratov region VFD TO Томская область СФО TR Tomsk Region SFD УдР Удмуртская республика ПФО UdR Udmurtia Region VFD УлО Ульяновская область ПФО		•	
РТт Республика Татарстан ПФО RTat Republic of Tatarstan VFD PX Республика Хакасия СФО RKh Republic of Khakassia SFD PЧв Республика Чувашия ПФО RCh Republic of Chuvashia VFD СмО Самарская область ПФО SR Samara Region VFD СрО Саратовская область ПФО SarR Saratov region VFD TO Томская область СФО TR Тотяк Region SFD УдР Удмуртская республика ПФО UdR Udmurtia Region VFD УлО Ульяновская область ПФО			
RTatRepublic of TatarstanVFDPXРеспублика ХакасияСФОRKhRepublic of KhakassiaSFDPЧвРеспублика ЧувашияПФОRChRepublic of ChuvashiaVFDСмОСамарская областьПФОSRSamara RegionVFDСрОСаратовская областьПФОSarRSaratov regionVFDTOТомская областьСФОTRТотяк RegionSFDУдРУдмуртская республикаПФОUdRUdmurtia RegionVFDУлОУльяновская областьПФО		Republic of Tyva	
PX Республика Хакасия СФО RKh Republic of Khakassia SFD PЧв Республика Чувашия ПФО RCh Republic of Chuvashia VFD СмО Самарская область ПФО SR Samara Region VFD СрО Саратовская область ПФО SarR Saratov region VFD TO Томская область СФО TR Тотяк Region SFD УдР Удмуртская республика ПФО UdR Udmurtia Region VFD УлО Ульяновская область ПФО			
RKhRepublic of KhakassiaSFDPЧвРеспублика ЧувашияПФОRChRepublic of ChuvashiaVFDСмОСамарская областьПФОSRSamara RegionVFDСрОСаратовская областьПФОSarRSaratov regionVFDTOТомская областьСФОTRТотяк RegionSFDУдРУдмуртская республикаПФОUdRUdmurtia RegionVFDУлОУльяновская областьПФО			
РЧв Республика Чувашия ПФО RCh Republic of Chuvashia VFD CмО Самарская область ПФО SR Samara Region VFD CpO Саратовская область ПФО SarR Saratov region VFD TO Томская область СФО TR Тотяк Region SFD УдР Удмуртская республика ПФО UdR Udmurtia Region VFD УлО Ульяновская область ПФО			
RChRepublic of ChuvashiaVFDCMOСамарская областьПФОSRSamara RegionVFDCpOСаратовская областьПФОSarRSaratov regionVFDTOТомская областьСФОTRТотяк RegionSFDУдРУдмуртская республикаПФОUdRUdmurtia RegionVFDУлОУльяновская областьПФО			
СмО Самарская область ПФО SR Samara Region VFD CpO Саратовская область ПФО SarR Saratov region VFD TO Томская область СФО TR Тотяк Region SFD УдР Удмуртская республика ПФО UdR Udmurtia Region VFD УлО Ульяновская область ПФО			
SR Samara Region VFD CpO Саратовская область ПФО SarR Saratov region VFD TO Томская область СФО TR Tomsk Region SFD УдР Удмуртская республика ПФО UdR Udmurtia Region VFD УлО Ульяновская область ПФО			
СрОСаратовская областьПФОSarRSaratov regionVFDТОТомская областьСФОTRTomsk RegionSFDУдРУдмуртская республикаПФОUdRUdmurtia RegionVFDУлОУльяновская областьПФО			
SarRSaratov regionVFDTOТомская областьСФОTRTomsk RegionSFDУдРУдмуртская республикаПФОUdRUdmurtia RegionVFDУлОУльяновская областьПФО			
TOТомская областьСФОTRTomsk RegionSFDУдРУдмуртская республикаПФОUdRUdmurtia RegionVFDУлОУльяновская областьПФО			
TRTomsk RegionSFDУдРУдмуртская республикаПФОUdRUdmurtia RegionVFDУлОУльяновская областьПФО		Saratov region	
УдР Удмуртская республика ПФО UdR Udmurtia Region VFD УлО Ульяновская область ПФО	-	Томская область	
UdRUdmurtia RegionVFDУлОУльяновская областьПФО			SFD
UdRUdmurtia RegionVFDУлОУльяновская областьПФО	УдР	Удмуртская республика	ПФО
УлО Ульяновская область ПФО			VFD
UR Ulyanovsk Region VFD			
	UR	Ulyanovsk Region	VFD

В исследовании используется выборка 24 регионов СФО и ПФО за 2010–2022 гг. База содержит данные Росстата [18]. Всего база данных содержит информацию по 24 регионам России и состоит из 312 наблюдений (24 регионов умножить на 13 лет).

С учетом проведенных ранее исследований мы используем:

- интенсивность неконтролируемых выбросов (Emission intensity *EI*) в качестве зависимой переменной [19]. *EI* рассчитывается как отношение неучтенных выбросов в атмосферу от стационарных источников в регионе к стоимости продаж региональных фирм (тонны выбросов на 1 млрд р. реализованной продукции);
- интенсивность НИОКР (Regional R&D intensity
 RDI) в регионе в качестве независимой переменной [20]. RDI рассчитывается как отношение инвестиций в НИОКР региональных компаний к объему продаж в регионе (в %).

Для оценки влияния интенсивности НИОКР на интенсивность выбросов была использована панельная регрессия [21–25]. Выбор адекватной модели (сквозной, фиксированных эффектов и случайных эффектов) осуществляется на основании тестов Вальда, Бройша–Пагана и Хаусмана. Выражение для панельной регрессионной модели (1) выглядит следующим образом:

$$EI_{it} = \beta RDI_{it} + u_i + \epsilon_{it} , \qquad (1)$$

где i — номер объекта наблюдения (региона); t время наблюдения (год), RDI и EI - стандартизированные независимая и зависимая переменные; β – коэффициент при независимой переменной; u_i – индивидуальные эффекты; ϵ_{it} – остаточные случайные величины. Индивидуальные эффекты равны нулю в случае сквозной модели (Zero Effects -ZE-модели), считаются фиксированными параметрами в панельной регрессионной модели с детерминированными эффектами (для уникального набора объектов) (Fixed-Effects - FE-модели) и предполагаются случайными в панельной регрессионной модели со случайными эффектами (для случайным образом выбранных объектов из большой генеральной совокупности) (Random-Effects – RE-модели).

Аналогичные исследования на уровне стран были проведены в [26] по использованию панельной регрессии с фиксированными и случайными эффектами для оценки влияния экономического развития (в частности, роста ВВП) на выбросы углекислого газа. На уровне российских регионов в [27] исследована панельной сквозная регрессии влияния 17 ключевых социо-эколого-экономических показателей на улавливание загрязняющих атмосферу веществ. Следуя Маркуардту [28], была стандартизирована предикторная переменная (RDIcт). Расче-


ты проводились с использованием программы STATA. Заметим, что иногда в подобных случаях ограничиваются использованием корреляционного анализа: в [29] — для исследования взаимосвязи интегрального показателя социально-экономического развития и сводного экологического индекса или в [30] — для выявления взаимосвязи между индексом экономического развития и индексом экологической результативности территории на основе данных нефинансовой отчетности, где сами результирующие индексы предварительно были рассчитаны с помощью множественной регрессии от соответствующих экономических или экологических компонент.

- 1. Для оценки пространственной неоднородности показателей *RDI* и *EI* применен метод иерархической кластеризации (с помощью правила объединения метода Варда и меры близости Евклидово расстояние), эффективно применяемый для кластеризации российских регионов по инновационным показателям [31–33]. Оценка качества построенных кластерных моделей регионов проводилась с использованием статистических критериев дисперсионного анализа [34].
- 2. Оценка эффективности функционирования регионов СФО и ПФО по показателям инновационно-экологической деятельности проведена с помощью метода DEA (Data Envelopment Analysis) [35, 36] или анализа среды функционирования [37]. DEA-метод реализуется посредством многократного решения оптимизационной задачи линейного программирования и име-

ет два вида моделей: модели, ориентированные на вход (IN), для оценки эффективности минимизации использования ресурсов и модели, ориентированные на выход (OUT), для оценки эффективности максимизации получения результата. Эффективные регионы расположены на линии фронта эффективности (фронтире), а неэффективные — внутри фронта. Чем ближе к фронтиру расположен регион, тем выше значение относительной эффективности его управленческой деятельности. Расчеты выполнены с помощью программных продуктов: DEAP [38] и STATISTICA [34].

Результаты исследования

Регионы СФО и ПФО составляют неоднородную выборку по исходным показателем RDI и EI. Относительно (выборки регионов СФО и ПФО) высокие значения показателя EI имеют следующие регионы: прежде всего Красноярский край (КК), а также Кемеровская область (КО) и республика Тыва (РТ). При этом республики Тыва и Алтай характеризуются относительно высоким значением коэффициента вариации EI. Группа регионов — Нижегородская (НгО) и Ульяновская (УлО) области — имеет относительно высокие значения показателя RDI. Опять же республика Алтай характеризуется относительно высоким значением коэффициента вариации RDI. Пространственная неоднородность исходных показателей RDI и EI проиллюстрирована на рис. 1.

Рис. 1. Линейные графики стандартизированных числовых характеристик региональных показателей EI и RDI за период 2010–2022 гг.: среднее **m** и коэффициент вариации **V**

Fig. 1. Line graphs of standardized numerical characteristics of regional indicators EI and RDI for 2010–2022: mean m and coefficient of variation V

Таблица 2. Оценки влияния RDI на EI по кластерам регионов СФО+ПФО за 2010–2022 гг.(фрагмент) **Table 2.** Estimates of RDI impact on EI by clusters of SFD+VFD regions for 2010–2022 (fragment)

Кластер Cluster	К	74	К	:5	К7			
Регионы Regions	ИО, АК, РМ	Э, УдР, РБш	· ·	О, НО, оО, ПрК	РМр, РТт			
Эффекты Effects	FE	RE	FE	RE	FE	RE		
β	0,324*** (0,090)	0,332*** (0,088)	0,089 (0,111)	0,070 (,108)	-0,273* (0,116)	-0,71*** (0,144)		
Критерий каче- ства модели Model quality criterion	F(1;59)=12,85***	χ2(1)=14,08***	F(1; 71)=0,64	χ2(1)=0,42	F(1;23)=5,51*	χ2(1)=24,51***		
Тест Вальда Wald test	F(4;59)=85,13***	-	F(5;71)=42,03***	-	F(1;23)=36,46***	-		
Тест Бройша- Пагана Breusch- Pagan test	-	χ²(01)=266,53***	-	χ²(01)=231,07***	-	χ²(01)=0,00		
Тест Хаусмана Hausman test	χ²(1)	=0,25	χ²(1)	=0,58	χ²(1)=14,72***			

Примечание. Зависимая переменная: EI. Стандартные ошибки – в скобках; ***p<0,001; **p<0,01; *p<0,05. Note. Dependent Variable: EI. Standard errors are in parentheses; ***p<0.001; **p<0.05.

С учетом уже выделенных контрастных групп регионов (HrO, УлО); (PT, PA) и (КК) методом иерархической кластеризации построена восьми-кластерная высококачественная (по критериям дисперсионного анализа) модель регионов СФО и ПФО по совокупности показателей EI и RDI. Проведена оценка пространственной неоднородности взаимосвязи между EI и RDI по выделенным кластерам регионам СФО и ПФО. Результаты кластерной панельной регрессии RDI на EI представлены в табл. 2.

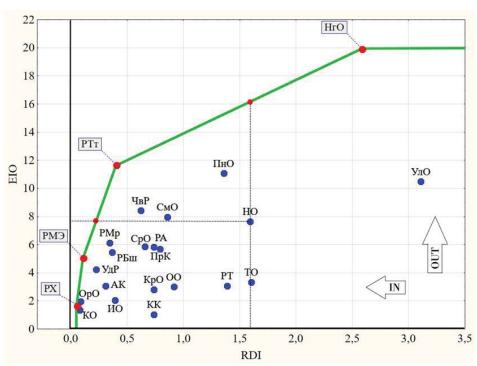
Согласно табл. 2, в зависимости от регионального кластера влияние RDI на EI характеризуются высоко значимым положительным β в случае K4, статистически значимым отрицательным β в случае K7 или незначимым $\beta \approx 0$ в случае K5. При этом в случае K4 и K5 высоко значимы как фиксированные эффекты (по тесту Вальда), так и случайные эффекты (по тесту Бройша–Пагана), причем в равной мере (на основании теста Хаусмана). В случае K7 фиксированные эффекты высоко значимы (по тесту Вальда), а случайные эффекты незначимы (по тесту Бройша–Пагана), поэтому адекватной моделью панельных данных в случае K7 является статистически значимая панельная регрессия с фиксированными эффектами FE.

По результатам панельной регрессии выявлена кластерная пространственная неоднородность влияния интенсивности НИОКР (*RDI*) на интенсивность выбросов (*EI*):

• **К1** — кластер регионов (PA, PT) со средними значениями *RDI*, выше среднего значениями *EI* и высоко значимым положительным влиянием *RDI* на *EI* ($\beta \approx 1,00$; $p \approx 0,000$).

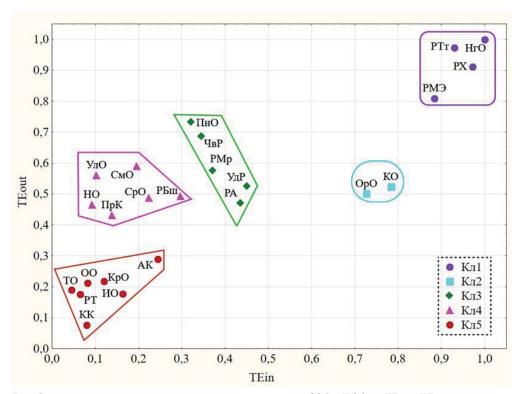
- **К2** кластер регионов (КО, ОрО, РХ) с относительно низкими значениями RDI, выше среднего значениями EI и сильно значимым положительным влиянием RDI на EI ($\beta \approx 0.41$; $p \approx 0.005$).
- **К3** кластер регионов (РЧв, СмО, СрО) со средними значениями *RDI*, низкими значениями *EI* и высоко значимым положительным влиянием *RDI* на *EI* ($\beta \approx 0.65$; $p \approx 0.000$).
- **К4** кластер регионов (АК, ИО, РБш, РМЭ, УдР) с относительно низкими значениями *RDI*, средними значениями *EI* и высоко значимым положительным влиянием *RDI* на *EI* ($\beta \approx 0.32$; $p \approx 0.000$).
- **К5** кластер регионов (КрО, НО, ОО, ПнО, ПрК, ТО) со средними (КрО, ОО, ПрК) и выше среднего (НО, ПнО, ТО) значениями *RDI*, со средними (КрО, ОО, ТО) и ниже среднего (НО, ПнО, ПрК) значениями *EI* и незначимым положительным влиянием *RDI* на *EI* ($\beta \approx 0.09$; $p \approx 0.43$).
- **К6** кластер регионов (HrO, УлО) с относительно высокими значениями *RDI*, относительно низкими значениями *EI* и незначимым отрицательным влиянием *RDI* на *EI* ($\beta \approx -0.07$; $p \approx 0.51$).
- **К7** кластер регионов (РМр, РТт) с относительно низкими значениями *RDI* и *EI*, при этом со статистически значимым отрицательным влиянием *RDI* на *EI* ($\beta \approx -0.27$; $p \approx 0.028$).
- **К8** моно кластер (КК) со средним значением *RDI*, относительно высоким значением *EI* и незначимым отрицательным влиянием *RDI* на *EI* ($\beta \approx -0.35$; $p \approx 0.25$ в рамках сквозной регрессии *ZE*).

Согласно критериям дисперсионного анализа (параметрическому Фишера и ранговому Краскела—Уоллиса) построена высококачественная (на уровне значимости p=0,0000 по RDI и EI) восьмикластерная модель регионов СФО+ПФО. При этом, например, кластеры К1 и К2, или К4 и К5, а также К3 и К7 незначимо (p>0,10) различаются по EI, но высоко значимо по RDI; наоборот, кластеры К1 и К5, или К4 и К7 незначимо (p>0,10) различаются по RDI, но высоко значимо по EI.


Для оценки эффективности функционирования регионов СФО и ПФО по показателям инновационно-экологической деятельности с помощью метода DEA проведено преобразование зависимого показателя EI в результирующий EI0, обратно пропорционально связанный с EI, то есть при оценке эффективности минимизации ресурсов использован RDI (TEin) и оценки эффективности максимизации результата — EI0 (TEout).

Модель DEA (IN / OUT _VRS) для ресурса *RDI* и результата EI0, ориентированная на вход (IN)/выход (OUT) с переменной отдачей от масштаба (VRS), позволила оценить как статическую эффективность TEout регионов по максимизации результата EI0 при фиксированном ресурсе *RDI*, так и эффективность TEin регионов по минимизации ресурса *RDI* при фиксированном результате EI0.

По результатам расчета DEA оценены эффективности (усредненные по регионам и годам) ТЕоut=0,503 (по максимизации результата EI0 при фиксированном ресурсе RDI) и TEin=0,378 (по минимизации ресурса *RDI* при фиксированном результате EIO). В результате расчетов выявлено: 1 постоянный (все 13 лет) регион-лидер (НгО) и 6 непостоянных (РТт – 11 лет, РХ – 10 лет, РМЭ – 7 лет, РА— 5 лет, КО — 3 года, ОрО — 1 год) за 2010—2022 гг.


Графически техническая эффективность TEout определяется как отношение расстояния от оси ресурсов до фактического положения к расстоянию от оси ресурсов до точки имитационного положения региона (ломаная прямая зелёного цвета). Аналогично ТЕin определяется как отношение расстояния от оси результатов до точки имитационного положения региона фактического положения к расстоянию от оси результатов до фактического положения (рис. 2).

Полученные результаты свидетельствуют о пространственной неоднородности показателей эффективности ТЕіп и ТЕоиt, усредненных за 2010–2022 гг. по регионам СФО и ПФО. Для оценки этой неоднородности применен метод иерархической кластеризации (с помощью правила объединения — метода Варда, и меры близости — Евклидово расстояние). Результаты кластеризации регионов по ТЕіп и ТЕоиt представлены на рис. 3.

Рис. 2. Диаграмма рассеяния регионов СФО+ПФО относительно фронтира (ломаная прямая зелёного цвета) в координатах (RDI; EIO), усредненных за 2010–2022гг.

Fig. 2. Scatter diagram of the SFD+VFD regions relative to the frontier (broken straight line in green) in coordinates (RDI; EIO), averaged for 2010–2022

Puc. 3. Диаграмма рассеяния с кластерами регионов СФО и ПФО по TEin и TEout **Fig. 3.** Scatter diagram with clusters of the SFD and VFD regions by TEin and TEout

Характеристика кластеров регионов СФО и ПФО по TEin и TEout (при средних по всем регионам TEin=0,379 и TEout=0,503):

- Кл1 кластер высокой эффективности (средние по кластеру TEin=0,946 и TEout=0,923) включает 4 региона: HrO, PTт, PX и PMЭ.
- Кл2 кластер эффективности выше средней по TEin и средней по TEout (средние по кластеру TEin=0,755 и TEout=0,512) включает 2 региона: КО и OpO.
- Кл3 кластер средней эффективности (средние по кластеру TEin=0,385 и TEout=0,598) включает 5 регионов: ПнО, ЧвР, РМр, УдР, РА.
- Кл4 кластер эффективности средней TEout и низкой TEin (средние по кластеру TEin=0,175 и TEout=0,504) включает 6 регионов: УлО, Но, ПрК, СмО, СрО и РБш.
- Кл5 кластер низкой эффективности (средние по кластеру TEin=0,114 и TEout=0,191) включает 7 регионов: ИО, КрО, ОО, ТО, РТ, АК и КК.

Согласно критерию Краскела–Уоллиса по параметрам ТЕіп и ТЕоиt построена высококачественная (на уровне значимости p=0,0005 по параметру ТЕіп и на уровне значимости p=0,0006 по параметру ТЕоиt) пятикластерная модель регионов СФО и ПФО. При этом, например, по параметру ТЕіп кластер Кл2 слабо значимо отличается от Кл1 (p=0,064) и от Кл3 (p=0,053), а кластер Кл3 сильно значимо отличается от Кл4 (p=0,006) и от Кл5 (p=0,004); ана-

логично по параметру TEout кластеры Кл4 и Кл5 различаются сильно значимо (p=0,003), а кластеры Кл1 и Кл2 – слабо значимо (p=0,064).

Обсуждение и заключение

- 1. Результаты панельной регрессии с фиксированными эффектами для кластеров регионов ПФО и СФО за 2010–2022 гг. показали преимущественно положительную связь между показателями RDI и EI. Что подтверждает тезис о том, что экономические и экологические аспекты целей устойчивого развития, выдвинутых ООН, сами по себе находятся в противоречии друг с другом, и без вмешательства государства они вряд ли смогут найти естественное соответствие.
- 2. Оценка пространственной неоднородности взаимосвязи между RDI и EI по регионам ПФО и СФО с помощью панельной регрессии и метода иерархической кластеризации выявила три группы регионов: 13 регионов (К1–К4) имеют положительную связь между показателями RDI и EI; 2 региона (К7) со значимой отрицательной связью между показателями RDI и EI; 9 регионов (К5, K6, K8) с незначимой положительной и отрицательной связью между показателями RDI и EI. В этой связи отмечается высокая пространственная неоднородность взаимосвязи между RDI и EI по регионам ПФО и СФО.

- 3. Особенностью инновационного развития России является то, что большая часть инноваций относится к промышленной сфере. Так, стоимость инновационных продуктов в области промышленного производства составила 3693 млрд р., в сфере услуг 789 млрд р. Данные по всем видам деятельности, включая сельское хозяйство, строительство, транспорт, сферу услуг свидетельствуют о том, что промышленность является самой инновационной сферой. Именно в промышленности и для нее патентуется большая часть изобретений» [39].
- 4. Полученные результаты свидетельствуют о том, что не все инвестиции в инновации одинаковы:
 - 4.1. Регионы с доминированием сельского хозяйства в структуре экономики: Республики Алтай (РА, К1) 18 %, Тыва (РТ, К1) 21 %, Марий Эл (РМЭ, К4) 18 % и Алтайский край (АК, К4) 11 %, показали значимую положительную связь между показателями *RDI* и *EI*; Пензенская область (ПнО, К5) –19 % с незначимой положительной связью между показателями *RDI* и *EI*. Что подтверждает невысокий уровень вложений НИОКР в сельское хозяйство, которые не сопровождаются снижением неконтролируемых выбросов на территории данных регионов.
 - 4.2. В отраслевой структуре промышленно развитых регионов ПВО и СФО доминируют добывающая и перерабатывающая промышленность:
 - группа промышленно развитых регионов К7 (РТт, РМр) со значимой отрицательной связью между показателями RDI и EI отличается относительно высокой инновационной активностью. Так, Республика Татарстан (РТт) входит в тройку лидеров по инновационной активности (наряду с г. Москвой и Санкт-Петербургом). Что свидетельствует о том, что в данной группе регионов инвестиции в инновации сопровождаются внедрением «зеленых» технологий, которые появились совсем недавно и опираются на новые отрасли и широкое технологическое развитие. Кроме того, регионы, наиболее развитые экономически и иновационно активны, не обладают достаточной квалификацией для внедрения инноваций.
 - в группе регионов К2–К4 со значимой положительной связью между показателями RDI и EI представлены, в частности, Иркутская (ИО, К4) и Самарская области (СмО, К3), в которых доля до-

- бывающей промышленности в структуре экономики 13,2 и 22,3 %, доля обрабатывающей промышленности 15,4 и 17,7 % соответственно. Вместе с тем приоритетом инновационного развития в Иркутской и Самарской областях является авиационная промышленность, а также автомобилестроение в Самарской области. В результате инвестиции в инновации в приоритетные отрасли не сопровождаются сокращением неконтролируемых выбросов в данные регионы. В данную группу также входят регионы К2 (КО, РХ, ОрО) и К3 (ЧвР, СрО) с относительно менее развитым промышленным потенциалом и К4 (РБш) с инновационным развитием наукоёмких отраслей.
- 4.3. В группу регионов ПФО и СФО с незначимой положительной (К5) и отрицательной (К6 и К8) корреляцией между показателями RDI и EI входят регионы К5 с высокоразвитым научно-образовательным комплексом (НО, ТО, ОО), регионы К6 с инновационным развитием наукоёмких отраслей (УлО) и с относительно менее развитым промышленным потенциалом (НгО), а также К8 (КК).
- 5. Оценка эффективности функционирования эколого-инновационной деятельности регионов с помощью DEA-метода выявила группу регионов (HrO, PTt, PX и PMЭ) с относительно высокой технической эффективностью (средние по кластеру TEin=0,946 и TEout=0,923):
 - регионом-лидером по сбалансированности инноваций и политики устойчивого развития является Республика Татарстан (РТ) со значимой (на уровне p=0,03) отрицательной (R= -0,6) корреляцией между показателями EI и RDI и со значением TEout=0,973 по максимизации результата EIO при фиксированном ресурсе RDI, и по эффективности TEin=0,930 по минимизации ресурса RDI при фиксированном результате EI0;
 - у Нижегородской области, несмотря на максимальное значение технической эффективности как по TEout=1, так и по TEin=1, видна незначимая (на уровне p=0,38) отрицательная (R= -0,26) корреляция между показателями EI и RDI. Что свидетельствует об эффективном вложении имеющихся ресурсов RDI в EI0, вместе с тем имеющихся ресурсов недостаточно для сбалансированности инновационной политики и политики устойчивого развития региона.
 - Республика Хакасия (РХ) с незначимой (на уровне p=0,32) положительной (R=0,30) кор-

реляцией и Республика Марий Эл (РМэ) со значимой (на уровне p=0,01) положительной (R=0,69) корреляцией между показателями EI и RD имеют относительно других регионов-лидеров по технической эффективности (TEout=0,911 и TEout=0,809, TEin=0,972 и TEin=0,884 соответственно) меньше ресурсов для сбалансированной политики между инновациями и устойчивым развитием региона (что подтверждается их расположением в нижней части кривой фронтира эффективности)

Результаты исследования подтвердили, что экономические и экологические аспекты целей устойчивого развития, выдвинутых ООН, сами по себе находятся в противоречии друг с другом, и без вмешательства государства они вряд ли смогут найти естественное соответствие. Регионы Сибири

и Поволжья характеризуются высокой степенью пространственной неоднородности по влиянию интенсивности НИОКР на уровень загрязнения территорий, что подтверждает выдвинутую гипотезу. Есть территории с высоко значимой положительной связью между показателями RDI и EI (кластеры К1-К4 из 13 регионов), с статистически значимой отрицательной связью между показателями RDI и EI (кластер К7 из 2 регионов) и остальные 9 регионов (К5, К6, К8) с незначительной отрицательно-положительной связью. И хотя инвестиции в инновации можно рассматривать как необходимый этап в борьбе с загрязнением окружающей среды, сами по себе они не являются достаточным фактором, и изучение подобных факторов может дать важную информацию для раскрытия роли инноваций в концепции устойчивого развития.

СПИСОК ЛИТЕРАТУРЫ

- 1. Roca J., Serrano M. Income growth and atmospheric pollution in Spain: An input-output approach // Ecological Economics. 2007. Vol. 63. P. 230–242.
- Лабузова Е. С. Экология и экономический рост: сибирские регионы в свете концепции экологической кривой Кузнеца // Региональная экономика: теория и практика. – 2009. – № 12. – С. 60–62.
- 3. Шкиперова Г.Т. Экологическая политика как инструмент согласования интересов экономического развития и экологической безопасности // Национальные интересы: приоритеты и безопасность. 2016. № 6. С. 97–111.
- 4. Общенаучные и специфические основы территориальных исследований / А.Ю. Даванков, Д.Ю. Двинин, П.Я. Дегтярев, Ю.Г. Мальцев // Управление в современных системах. 2020. № 3 (27). С. 16–22.
- 5. Дружинин П.В., Шкиперова Г.Т., Поташева О.В. Исследование взаимосвязи экологических и экономических показателей: моделирование и анализ расчетов. Петрозаводск: Карельский научный центр Российской академии наук, 2019. 128 с.
- Fried B., Getzner M. Determinants of CO2 emissions in a small open economy // Ecological Economics. 2003. Vol. 45. P. 133–148.
- 7. Using the sustainable development goals towards a better understanding of sustainability challenges / W. Leal Filho, S.K. Tripathi, J.B.S.O.D. Andrade Guerra, R. Giné-Garriga, V. Orlovic Lovren, J. Willats // International Journal of Sustainable Development & World Ecology. −2019. −Vol. 26. −№ 2. −P. 179−190. DOI: 10.1080/13504509.2018.1505674
- 8. Gordon I. R., McCann P. Innovation, agglomeration, and regional development // Journal of economic Geography. 2005. Vol. 5. № 5. P. 523–543.
- 9. Radjou N., Prabhu J. Frugal Innovation: how to do more with less. London: The Economist, 2015. 272 p.
- Aghion P., Tirole J. The management of innovation // The Quarterly Journal of Economics. 1994. Vol. 109. № 4. P. 1185–1209.
- 11. Schulte U.G. New business models for a radical change in resource efficiency // Environmental Innovation and Societal Transitions. 2013. № 9. P. 43–47.
- 12. Friedman M. A Friedman doctrine the social responsibility of business is to increase its profits // The New York Times. 1970. Sept. 13. URL: https://www.nytimes.com/1970/09/13/archives/a-friedman-doctrine-the-social-responsibility-of-business-is-to.html (дата обращения: 07.11.2023).
- 13. The sustainable development goals report 2016 // The sustainable development goals. URL https://unstats.un.org/sdgs/report/2016/ (дата обращения: 07.11.2023).
- 14. Elkington J. 25 years ago i coined the phrase "Triple Bottom Line." Here's why it's time to rethink it // Harvard Business Review. 2018. № 25. Р. 2–5. URL: https://hbr.org/2018/06/25-years-ago-i-coined-the-phrase-triple-bottom-line-heres-why-im-giving-up-on-it (дата обращения: 07.11.2023).
- 15. Anokhin S., Wincent J. Start-up rates and innovation: a cross-country examination // Journal of International Business Studies. 2012. Vol. 43. № 1. P. 41–60. DOI: 10.1057/jibs.2011.47
- 16. Company performance and optimal capital structure: evidence of transition economy (Russia) / V. Spitsin, D. Vukovic, S. Anokhin, L Spitsina // Journal of Economic Studies. 2021. Vol. 48. № 2. P. 313–332. DOI: 10.1108/JES-09-2019-0444
- 17. Regional issue, innovation, and the ecological footprint / V. Spitsin, D.B. Vuković, E. Akerman, L. Borilo, N. Chistyakova // Journal of the Geographical Institute "Jovan Cvijic", SASA. − 2023. − Vol. 73. − № 2. − P. 221–236.
- 18. Федеральная служба государственной статистики. Регионы России. Социально-экономические показатели. 1999–2023. URL: https://rosstat.gov.ru/folder/210/document/13204 (дата обращения: 07.11.2023).
- 19. Drivers of carbon emission intensity change in China / F. Dong, B. Yu, T. Hadachin, Y. Dai, Y. Wang, S. Zhang, R. Long // Resources, Conservation and Recycling. 2018. Vol. 129. P. 187–201. DOI: 10.1016/j.resconrec.2017.10.035
- 20. Chen Y., Lee C.C. Does technological innovation reduce CO2 emissions? Cross-country evidence // Journal of Cleaner Production. 2020. Vol. 263. Article 121550. DOI: 10.1016/j.jclepro.2020.121550

- 21. Torres-Reyna O. Panel data analysis fixed and random effects using Stata (v. 4.2). Data & Statistical Services. USA: Priceton University, 2007. 58 p.
- 22. Baltagi B.H. Econometric analysis of panel data. 6th ed. Business and economics. Cham, Switzerland: Springer, 2021. 424 p.
- 23. Wooldridge J.M. Introductory econometrics: a modern approach. 6th ed. Boston: Cengage, 2016. 771 p.
- 24. Ратникова Т.А. Введение в эконометрический анализ панельных данных // Экономический журнал Высшей школы экономики. 2006. Т. 10. № 2. С. 267–316.
- 25. Баум К.Ф., Айвазян С.А., Пеникас Г.И. Эконометрика. Применение пакета Stata. М.: Изд-во «Юрайт», 2020. 370 с.
- 26. Ali E.B., Amfo B. Comparing the values of economic, ecological and population indicators in High- and Low-Income Economies // Economy of region. − 2021. − № 1. − P. 72–85.
- 27. Алешникова В. И., Бурцева Т. А. Интегральный измеритель экологического развития регионов // Регион: системы, экономика, управление. 2023 № 2 (61). С. 41–49.
- 28. Marquardt D.W. Comment: you should standardize the predictor variables in your regression models // Journal of the American Statistical Association. 1980. Vol. 75 (369). P. 87–91.
- 29. Хавроничев В.И., Тюлю Г.М. Статистический анализ влияния экологических факторов на социально-экономическое развитие территории // Научный журнал НИУ ИТМО. Серия: Экономика и экологический менеджмент. 2020. № 2. С. 46–57.
- 30. Модель корреляции между экономическим развитием и экологической результативностью на основе данных нефинансовой отчетности компании / В.Д. Богданов, Н.Н. Илышева, Е.В. Балдеску, У.Ш. Закиров // Экономика региона. 2016. Т. 12. Вып. 1. С. 93–104.
- 31. Ёмельянова О.В., Свеженцева К.И. Кластерный анализ регионов ЦФО по уровню инновационного развития // Russian Economic Bulletin. -2023. T. 6. № 1. C. 155–161.
- 32. Заварухин В.П., Чинаева Э.Ю., Чурилова Т.И. Регионы России: результаты кластеризации на основе экономических и инновационных показателей // Статистика и Экономика. 2022. Т. 19. № 5. С. 35–47.
- 33. Шамрай-Курбатова Л.В., Леденева М.В. Кластерный анализ субъектов РФ по уровню инновационной активности // Бизнес. Образование. Право. 2021. № 1 (54). С. 88–97.
- 34. Халафян А.А., Боровиков В.П., Калайдина Г.В. Теория вероятностей, математическая статистика и анализ данных: основы теории и практика на компьютере. STATISTICA. EXCEL. М.: URSS, 2022. 320 с.
- 35. Data envelopment analysis: theory, methodology and applications / A. Charnes, W.W. Cooper, A.Y. Lewin, L.M. Seiford. New York: Springer Dordrecht, Kluwer. 1995. 513 p. DOI: 10.1007/978-94-011-0637-5
- 36. Seiford L.M. Data envelopment analysis: the evolution of the state of the art (1978–1995) // Journal of Productivity Analysis. 1996. Vol. 7. P. 99–138.
- 37. Ратнер С.В. Динамические задачи оценки эколого-экономической эффективности регионов на основе базовых моделей анализа среды функционирования // Управление большими системами: сборник трудов. 2017. Т. 67. С. 81–106.
- 38. DEAP Version 2.1 бесплатный программный продукт, доступный для скачивания на сайте университета «The University of Queensland». URL: https://economics.uq.edu.au/cepa/software (дата обращения: 07.11.2023).
- 39. РБК.Тренды // Эксперты ВШЭ составили рейтинг инновационного развития регионов России. 2021. URL: https://trends.rbc.ru/trends/innovation/61403f699a794719a68bf3b5 (дата обращения: 07.11.2023).

Информация об авторах

Владислав Владимирович Спицын, кандидат экономических наук, доцент Бизнес-школы, Национальный исследовательский Томский политехнический университет, Россия, 634050, г. Томск, пр. Ленина, 30; доцент кафедры экономики, Томский государственный университет систем управления и радиоэлектроники, Россия, 634050, г. Томск, пр. Ленина, 40; spitsinvy @mail.ru; https://orcid.org/0000-0002-8360-7590

Александр Александрович Михальчук, кандидат физико-математических наук, доцент, Национальный исследовательский Томский политехнический университет, Россия, 634050, г. Томск, пр. Ленина, 30; aamih@tpu.ru; https://orcid.org/0000-0001-8100-7076

Наталья Олеговна Чистякова, доктор экономических наук, профессор Бизнес-школы, Национальный исследовательский Томский политехнический университет, Россия, 634050, г. Томск, пр. Ленина, 30. worldperson@mail.ru, https://orcid.org/0000-0002-6580-9930

Валерия Владимировна Татарникова, кандидат экономических наук, доцент Бизнес-школы, Национальный исследовательский Томский политехнический университет, Россия, 634050, г. Томск, пр. Ленина, 30; tvv0907@yandex.ru; https://orcid.org/0000-0002-6409-1410

Екатерина Александровна Акерман, младший научный сотрудник Института экономики и менеджмента, Национальный исследовательский Томский государственный университет, Россия, 634050, г. Томск, пр. Ленина, 36; https://orcid.org/0000-0002-6654-1024

Поступила в редакцию: 09.11.2023

Поступила после рецензирования: 25.12.2023

Принята к публикации: 14.02.2024

REFERENCES

1. Roca J., Serrano M. Income growth and atmospheric pollution in Spain: An input–output approach. *Ecological Economics*, 2007, vol. 63, pp. 230–242.

- 2. Labuzova E.S. Ecology and economic growth: Siberian regions in the light of the concept of the ecological Kuznets curve. *Regionalnaya ekonomika: teoriya i* praktika, 2009, no. 12, pp. 60–62. (In Russ.)
- 3. Shkiperova G.T. Environmental policy as a tool for coordinating the interests of economic development and environmental safety. *Nacionalnye interesy: prioritety i bezopasnost*, 2016, no. 6, pp. 97–111. (In Russ.)
- 4. Davankov A.Yu., Dvinin D.Yu., Degtyarev P.Ya., Maltsev Yu.G. General scientific and specific foundations of territorial research. *Upravlenie v sovremennykh sistemakh*, 2020, no. 3 (27), pp. 16–22. (In Russ.)
- 5. Druzhinin P.V., Shkiperova G.T., Potasheva O.V. Study of the relationship between environmental and economic indicators: modeling and analysis of calculations. Petrozavodsk, Karelian Scientific Center of the Russian Academy of Sciences Publ., 2019. 128 p. (In Russ.)
- Fried B., Getzner M. Determinants of CO2 emissions in a small open economy. Ecological Economics, 2003, vol. 45, pp. 133– 148.
- 7. Leal Filho W., Tripathi S.K., Andrade Guerra J.B.S.O.D., Giné-Garriga R., Orlovic Lovren V., Willats J. Using the sustainable development goals towards a better understanding of sustainability challenges. *International Journal of Sustainable Development & World Ecology*, 2019, vol. 26, no. 2, pp. 179–190. DOI: 10.1080/13504509.2018.1505674
- 8. Gordon I.R., McCann P. Innovation, agglomeration, and regional development. *Journal of economic Geography*, 2005, vol. 5, no. 5, pp. 523–543.
- 9. Radjou N., Prabhu J. Frugal innovation: how to do more with less. London, The Economist, 2015. 272 p.
- 10. Aghion P., Tirole J. The management of innovation. The Quarterly Journal of Economics, 1994, vol. 109, no. 4, pp. 1185–1209.
- 11. Schulte U.G. New business models for a radical change in resource efficiency. *Environmental Innovation and Societal Transitions*, 2013, no. 9, pp. 43–47.
- 12. Friedman M. A Friedman doctrine The social responsibility of business is to increase its profits. *The New York Times*, 1970, Sept. 13. Available at: https://www.nytimes.com/1970/09/13/archives/a-friedman-doctrine-the-social-responsibility-of-business-is-to.html (accessed: 7 November 2023).
- 13. The sustainable development goals report 2016. The sustainable development goals. Available at: https://unstats.un.org/sdgs/report/2016/ (accessed: 7 November 2023).
- 14. Elkington J. 25 Years ago i coined the phrase "Triple Bottom Line." Here's why it's time to rethink it. *Harvard Business Review*, 2018, no. 25, pp. 2–5. Available at: https://hbr.org/2018/06/25-years-ago-i-coined-the-phrase-triple-bottom-line-heres-why-imgiving-up-on-it (accessed: 7 November 2023).
- 15. Anokhin S., Wincent J. Start-up rates and innovation: a cross-country examination. *Journal of International Business Studies*, 2012, vol. 43, no. 1, pp. 41–60. DOI: 10.1057/jibs.2011.47
- 16. Spitsin V., Vukovic D., Anokhin S., Spitsina L. Company performance and optimal capital structure: evidence of transition economy (Russia). *Journal of Economic Studies*, 2021, vol. 48, no. 2, pp. 313–332. DOI: 10.1108/JES-09-2019-0444
- 17. Spitsin V., Vuković D.B., Akerman E., Borilo L., Chistyakova N. Regional issue, innovation, and the ecological footprint. *Journal of the Geographical Institute "Jovan Cvijic"*, SASA, 2023, vol. 73, no. 2. pp. 221–236.
- 18. Federal State Statistics Service. Regions of Russia. Socio-economic indicators. 1999–2023. (In Russ.) Available at: https://rosstat.gov.ru/folder/210/document/13204 (accessed: 7 November 2023).
- 19. Dong F., Yu B., Hadachin T., Dai Y., Wang Y., Zhang S., Long R. Drivers of carbon emission intensity change in China. *Resources, Conservation and Recycling*, 2018, vol. 129, pp. 187–201. DOI: 10.1016/j.resconrec.2017.10.035
- 20. Chen Y., Lee C.C. Does technological innovation reduce CO2 emissions? Cross-country evidence. *Journal of Cleaner Production*, 2020, vol. 263, Article 121550. DOI: 10.1016/j.jclepro.2020.121550
- 21. Torres-Reyna O. Panel data analysis fixed and random effects using Stata (v. 4.2). *Data & Statistical Services*. USA, Priceton University. 2007, 58 p.
- 22. Baltagi B.H. Econometric analysis of panel data. 6th ed. Business and Economics. Cham, Switzerland, Springer, 2021. 424 p.
- 23. Wooldridge J.M. Introductory econometrics: a modern approach. 6th ed. Boston, Cengage, 2016. 771 p.
- 24. Ratnikova T.A. Introduction to econometric analysis of panel data. *Ekonomicheskiy zhurnal Vysshey shkoly ekonomiki*, 2006, vol. 10, no. 2, pp. 267–316. (In Russ.)
- 25. Baum K.F., Ayvazyan S.A., Penikas G.I. Econometrics. Using the Stata package: textbook and workshop for universities. Moscow, Yurayt Publ. House, 2020. 370 p. (In Russ.)
- 26. Ali E. B., Amfo B. Comparing the values of economic, ecological and population indicators in High- and Low-Income Economies. *Economy of region*, 2021, no. 1, pp. 72–85.
- 27. Aleshnikova V.I., Burtseva T.A. Integral meter of environmental development of regions. *Region: sistemy, ekonomika, upravlenie*, 2023, no. 2 (61), pp. 41–49. (In Russ.)
- 28. Marquardt D.W. Comment: you should standardize the predictor variables in your regression models. *Journal of the American Statistical Association*, 1980, vol. 75 (369). pp. 87–91.
- 29. Khavronichev V.I., Tyulyu G.M. Statistical analysis of the influence of environmental factors on the socio-economic development of the territory. *Nauchny zhurnal NIU ITMO. Seriya: Ekonomika i ekologicheskiy menedzhment*, 2020, no. 2, pp. 46–57. (In Russ.)
- 30. Bogdanov V.D., Ilysheva N.N., Baldescu E.V., Zakirov U.Sh. Correlation model between economic development and environmental performance based on company non-financial reporting data. *Ekonomika regiona*, 2016, vol. 12, no. 1, pp. 93–104. (In Russ.)
- 31. Emelyanova O.V., Svezhentseva K.I. Cluster analysis of regions of the Central Federal District by level of innovative development. *Russian Economic Bulletin*, 2023, vol. 6, no. 1, pp. 155–161. (In Russ.)
- 32. Zavarukhin V.P., Chinaeva E.Yu., Churilova T.I. Regions of Russia: results of clustering based on economic and innovation indicators. *Statistika i Ekonomika*, 2022, vol. 19, no. 5, pp. 35–47. (In Russ.)
- 33. Shamray-Kurbatova L.V., Ledeneva M.V. Cluster analysis of subjects of the Russian Federation according to the level of innovation activity. *Biznes. Obrazovanie. Pravo*, 2021, no. 1 (54), pp. 88–97. (In Russ.)

- 34. Khalafyan A.A., Borovikov V.P., Kalaidina G.V. Probability theory, mathematical statistics and data analysis: Fundamentals of theory and practice on a computer. STATISTICS. EXCEL. Moscow, URSS Publ., 2022. 320 p. (In Russ.)
- 35. Charnes A., Cooper W.W., Lewin A.Y., Seiford L.M. *Data envelopment analysis: theory, methodology and applications*. New York, Springer Dordrecht, Kluwer, 1995. 513 p. DOI: 10.1007/978-94-011-0637-5
- 36. Seiford L.M. Data envelopment analysis: the evolution of the state of the art (1978–1995). *Journal of Productivity Analysis*, 1996, vol. 7, pp. 99–138.
- 37. Ratner S.V. Dynamic problems of assessing the environmental and economic efficiency of regions based on basic models for analyzing the operating environment. *Upravlenie bolshimi sistemami: sbornik trudov*, 2017, vol. 67, pp. 81–106. (In Russ.)
- 38. DEAP Version 2.1 is a free software product available for download on the university website «The University of Queensland». Available at: https://economics.uq.edu.au/cepa/software (accessed: 7 November 2023).
- 39. RBC/Trends. HSE experts compiled the rating of innovative development of Russian regions, 2021. (In Russ.) Available at: https://trends.rbc.ru/trends/innovation/61403f699a794719a68bf3b5 (accessed: 7 November 2023).

Information about the authors

Vladislav V. Spitsyn, Cand. Sc., Associate Professor, National Research Tomsk Polytechnic University, 30, Lenin avenue, Tomsk, 634050, Russian Federation; Associate Professor, Tomsk State University of Control Systems and Radioelectronics, 40, Lenin avenue, Tomsk, 634050, Russian Federation; spitsinvv_@mail.ru; https://orcid.org/0000-0002-8360-7590

Alexander A. Mikhalchuk, Cand. Sc., Associate Professor, National Research Tomsk Polytechnic University, 30, Lenin avenue, Tomsk, 634050, Russian Federation; aamih@tpu.ru; https://orcid.org/0000-0001-8100-7076

Natalia O. Chistyakova, Dr. Sc., Professor, National Research Tomsk Polytechnic University, 30, Lenin avenue, Tomsk, 634050, Russian Federation; worldperson@mail.ru; https://orcid.org/0000-0002-6580-9930

Valeria V. Tatarnikova, Cand. Sc., Associate Professor, National Research Tomsk Polytechnic University, 30, Lenin avenue, Tomsk, 634050, Russian Federation; tvv0907@yandex.ru; https://orcid.org/0000-0002-6409-1410

Ekaterina A. Akerman, Junior Researcher, National Research Tomsk State University, 36, Lenin avenue, Tomsk, 634050, Russian Federation; https://orcid.org/0000-0002-6654-1024

Received: 09.11.2023 Revised: 25.12.2023 Accepted: 14.02.2024

Компьютерная верстка О.Ю. Аршинова Корректура и перевод на английский язык С.В. Жаркова Дизайн обложки Т.В. Буланова

Фотографии на обложке взяты из личного архива Валерия Касаткина

Руководство для авторов и образец оформления статьи: izvestiya.tpu.ru

Подписано к печати 27.03.2024. Дата выхода журнала: 29.03.2024. Формат 60х84/8. Бумага «Снегурочка». Печать ХЕROX. Усл. печ. л. 29,43. Уч.-изд. л. 26,62. Заказ 82-24. Тираж 500 экз. Цена свободная.

Адрес учредителя, редакции, издателя, типографии: 634050, г. Томск, пр. Ленина, 30, каб. 139.

