Geological and isotopic constraints on the copper ore formation in Ta Phoi area, Lao Cai province, Northwestern Vietnam

Cover Page

Cite item

Full Text

Abstract

The Ta Phoi copper deposit, located in the northeastern Phan Si Pan zone, Northwestern Vietnam, is a significant site of Neoproterozoic Cu mineralization. Its distinct geological characteristics justify its investigations, especially in comparison to nearby IOCG Sin Quyen deposit. This study is aimed at clarifying the genesis, ore-forming conditions, and fluid evolution of the Ta Phoi deposit through an integrated approach combining geological, petrographic, geochemical, and isotopic data analysis. The research specifically employs U-Pb dating of sphene, sulfur isotope analysis, and fluid inclusion microthermometry to identify the age, origin, and physicochemical environment of the mineralization. Sphene U-Pb dating yielded concordant ages of 810.7 ± 4.6 Ma and 819.5 ± 2.0 Ma, indicating a Neoproterozoic mineralization event temporally linked to regional granodiorite and diorite intrusions. Sulfur isotope values (δ³⁴S = +2.2 to +3.1‰) suggest a magmatic origin for ore-forming fluids. Fluid inclusion data detected fluid temperatures ranging from 163.1°C to 410°C, fluid salinities of 2.1–16.25 wt% NaCl equiv., and formation pressures of 44–100 MPa at depths of 3.4–6.5 km. These results confirmed that the Ta Phoi deposit formed from medium- to high-temperature, magmatogene hydrothermal fluids in a subduction-related continental arc setting; it may represent a porphyry-related skarn or endoskarn system that developed in response to magmatic fluid migration along lithological contacts and faults. These findings provide new insights into the metallogenic framework of the Ta Phoi deposit and highlight its potential for further Cu exploration in Northwestern Vietnam.

About the authors

K. T. Hung

Hanoi University of Mining and Geology, Vietnam

Email: khuongthehung@humg.edu.vn
ORCID iD: 0000-0003-1544-6470

D. X. Ngo

Vietnam Institute of Geosciences and Mineral Resources

Email: dacbmks@gmail.com

References

  1. Evans A. M. Ore geology and industrial minerals: an introduction. 3rd Edition. Wiley-Blackwell.; 1993. 403 p.
  2. Misra K. C., 2000. Understanding ore deposits. Kluwer Academic Publishers, 845 p. https://link.springer.com/book/10.1007/978-94-011-3925-0
  3. Robb L., 2004. Introduction to Ore-Forming Processes. Blackwell Publishing, Oxford, 373 p. https://doi.org/10.1144/1467-7873/05-073
  4. Tri T. V., Khuc V. (eds.), 2011. Geology and Earth Resources of Vietnam. General Department of Geology, and Minerals of Vietnam, Hanoi, Publishing House for Science and Technology, 645 p. https://books.google.com.vn/books/about/Geology_and_Earth_Resources_of_Vi%E1%BB%87t_Na.html?id=NClVMwEACAAJ&redir_esc=y
  5. Fromaget J.1 1937. Études géologiques sur le Nortd-Ouest du Tonkin et le Nord du Haut-Laos. Chef du Service Geologique de l’ Indochine, 153 p. https://books.google.com.vn/books/about/%C3%89tudes_g% C3%A9ologiques_sur_le_nord_ouest_d.html?id=h9oR0QEACAAJ&redir_esc=y
  6. Thi P. T., 1964. Iron- and copper-bearing metasomatic rocks in the Lao Cai area. Journal of Geology, Series A., 32:9-15 (in Vietnamese). http://idm.gov.vn/Data/TapChi/1964/A323.htm
  7. Hai T. Q., 1969. Further insights into ore-bearing metasomatic rocks in Sin Quyen. Journal of Geology, Series A, 85-86:23-40 (in Vietnamese). http://idm.gov.vn/Data/TapChi/1969/a854.htm
  8. Cuong H. H., Han N. D., 1969. Ore-forming types in the Sin Quyen area. Journal of Geology, Series A; 81-82:23-32 (in Vietnamese). http://idm.gov.vn/Data/TapChi/1969/a813.htm
  9. Mclean R. N., 2001. The Sin Quyen iron oxide-copper-gold-rare earth oxide mineralization of North Vietnam, in Porter, T.M., e.d., Hydrothermal iron oxide copper–gold & related deposits: a global perspective, volume 2. Adelaide, PGC Publishing, p. 293-301. https://doi.org/10.1007/s00410-011-0709-1
  10. Li X. C., Zhou M. F., Tran M. D., 2015. REE mineralization in the Sin Quyen Fe-Cu-LREE-(U-Au) deposit, Northwest Vietnam. Joint Assembly, Montreal, Canada. https://doi.org/10.5382/econgeo.2018.4565
  11. Dung T. M., Luat N. Q., Hai T. T., Thanh N. X., Long H. V., Quyen N. M., Que H. D., 2016a. Nature and formation age of copper mineralization in the northeastern Fan Si Pan belt and its metallogenic significance. Fundamental research project in natural sciences, Code 105.01-2012.06, Ministry of Science and Technology, 50 pages (in Vietnamese). http://csdlqg.vista.gov.vn/kqchitiet_du.asp? id=KQT014/11/2017~2:48:39~PM
  12. Dac N. X, Zhao X. F, Hai T. T, Deng X. D, Li J. W., 2020. Two episodes of REEs mineralization at the sin quyen IOCG deposit, NW Vietnam. Ore Geology Reviews, 125: 103676. https://doi.org/10.1016/j.oregeorev.2020.103676
  13. Anh T. T., Dung P. T., Hoa T. T., Nien B. A., Hung T. Q., Phuong N. T., Anh P. L., Can P. N., Ly V. H., Hieu T. V., Lam T. H., Hang H. V., Thuong V. T., 2010. Enhancing mineral extraction efficiency and environmental protection: Investigating associated components in basic metal and rare earth mineral deposits in northern Vietnam. State Science & Technology Programme, code KC.08.24/06-10, 459 pages (in Vietnamese). https://sti.vista.gov.vn/projects/kqnv/nghien-cuu-thanh-phan-di-kem-trong-cac-kieu-tu-khoang-kim-loai-quy-hiem-co-trien-vong-o-mien-bac-viet-nam-nham-nang-cao-hieu-qua-khai-thac-che-bien-khoang-san-va-bao-ve-moi-truong-149955.html
  14. Anh B. X. (ed.), 2007. Report on the assessment of copper ore potential and other mineral resources in the Ta Phoi area, Cam Duong Town, Lao Cai Province. Intergeo Federation (in Vietnamese).
  15. San P. V. (ed.), 2012. Exploration report on copper ore in the Ta Phoi area, Lao Cai City, Lao Cai Province. Geological Information and Archive Center (in Vietnamese).
  16. Metcalfe I., 2002. Permian tectonic framework and palaeogeography of SE asia. Journal of Asian Earth Sciences, 20(6): 551–566. https://doi.org/10.1016/S1367-9120(02)00022-6
  17. Metcalfe I., 2006. Palaeozoic and Mesozoic tectonic evolution and palaeogeography of East Asian crustal fragments: The Korean Peninsula in context. Gondwana Research, 9(1):24–46. https://doi.org/10.1016/j.gr.2005.04.002
  18. Golonka J., Krobicki M., Pająk J, Giang N. V. & Zuchiewicz W., 2006. Global plate tectonics and paleogeography of Southeast Asia. Faculty of Geology, Geophysics and Environmental Protection, AGH-University of Science and Technology; Arkadia, Kraków, 128 p. https://www.researchgate.net/ publication/235781343_Global_plate_tectonics_and_paleogeography_of_Southeast_Asia
  19. Hung K. T., 2010. Overview of magmatism in northwestern Vietnam. Annales Societatis Geologorum Poloniae, 80(2):185-226. http://www.asgp.pl/80_2_185_226
  20. Pham T. H., Chen F., Wang W., Nguyen T., Bui M., and Nguyen Q., 2009. Zircon U-Pb ages and Hf isotopic composition of the Posen granite in northwest Vietnam. Acta Petrologica Sinica, 25:3141–3152. (in Chinese with English abstract). http://www.ysxb.ac.cn/en/article/id/aps_20091204
  21. Wang W., Cawood P. A., Zhou M. F., and Zhao J. H., 2016. Paleoproterozoic magmatic and metamorphic events link Yangtze to northwest Laurentia in the Nuna supercontinent. Earth and Planetary Science Letters, 433:269–279. https://doi.org/10.1016/j.epsl.2015.11.005
  22. Qi X., Santosh M., Zhao Y., Hu Z., Zhang C., Ji F., and Wei C., 2016. Mid-neoproterozoic ridge subduction and magmatic evolution in the northeastern margin of the Indochina block: Evidence from geochronology and geochemistry of calc-alkaline plutons. Lithos, 248-251:138–152. https://doi.org/10.1016/j.lithos.2015.12.028
  23. Minh P., Hieu P. T., Thuy N. T. B., Dung L., Kawaguchi K., and Dung P. T., 2021. Neoproterozoic granitoids from the Phan Si Pan Zone, NW Vietnam: Geochemistry and geochronology constraints on reconstructing South China–India Palaeogeography. International Geology Review, 63(5): 585–600. https://doi.org/10.1080/00206814.2020.1728584
  24. Поляков Г. В., Балыкин П. А., Чан Ч. Х. и др. Эволюция мезозойско-кайнозойского магматизма рифта Шонгда и структур его обрамления (северо-западный Вьетнам). Геология и геофизика. 1998;39(6):695–706.
  25. Anh T. V., Pang K. N., Chung S. L., Lin H. M., Hoa T. T., Anh T. T., and Yang H. J., 2011. The Song Da magmatic suite revisited: A petrologic, geochemical and Sr–Nd isotopic study on picrites, flood basalts and silicic volcanic rocks. Journal of Asian Earth Sciences, 42(6):1341–1355. https://doi.org/10.1016/j. jseaes.2011.07.020
  26. Metcalfe I., 2012. Changhsingian (late Permian) conodonts from Son La, northwest Vietnam and their stratigraphic and tectonic implications. Journal of Asian Earth Sciences, 50:141–149. https://doi.org/10.1016/j.jseaes.2012.01.002
  27. Faure M., Lepvrier C., Van Nguyen V., Van Vu T., Lin W., and Chen Z., 2014. The South China block-Indochina collision: Where, when, and how?. Journal of Asian Earth Sciences, 79:260–274. https://doi.org/10.1016/j.jseaes.2013.09.022
  28. Faure M., Lin W., Chu Y., and Lepvrier C., 2016. Triassic tectonics of the southern margin of the South China block. Comptes Rendus Geoscience, 348(1):5–14. https://doi.org/10.1016/j.crte.2015.06.012
  29. Minh P., Hieu P. T., and Hoang N. K., 2018. Geochemical and geochronological studies of the Muong Hum alkaline granitic pluton from the Phan Si Pan Zone, northwest Vietnam: Implications for petrogenesis and tectonic setting. The Island Arc, 27(4): 12250. https://doi.org/10.1111/iar.12250
  30. Usuki T., Lan C. Y., Tran T. H., Pham T. D., Wang K. L., Shellnutt G. J., and Chung S. L., 2015. Zircon U–Pb ages and Hf isotopic compositions of alkaline silicic magmatic rocks in the Phan Si Pan-Tu Le region, northern Vietnam: Identification of a displaced western extension of the emeishan large igneous province: Journal of Asian Earth Sciences, 97:102–124. https://doi.org/10.1016/j.jseaes. 2014.10.016
  31. Tran T. H., Lan C. Y., Usuki T., Shellnutt J. G., Pham T. D., Tran T. A., Pham N. C., Ngo T. P., Izokh A. E., and Borisenko A. S., 2015. Petrogenesis of late permian silicic rocks of Tu Le basin and Phan Si Pan uplift (NW Vietnam) and their association with the Emeishan large igneous province. Journal of Asian Earth Sciences, 109:1–19. https://doi.org/10.1016/j.jseaes.2015.05.009
  32. DGMVN (Department of Geology and Minerals of Vietnam), 1995. Geology of Vietnam: Stratigraphy, Hanoi: Science Publisher, 1:1–359. (in Vietnamese).
  33. Pham T. H., Lei W. X., Minh P., Thuy N. T. B., Phuc L. D., and Luyen N. D., 2022. Archean to Paleoproterozoic crustal evolution in the Phan Si Pan zone, Northwest Vietnam: Evidence from the U-Pb geochronology and Sr-nd-hf isotopic geochemistry: International Geology Review, 64(1): 96–118. https://doi.org/10.1080/00206814.2020.1839976
  34. Lan C. Y., Chung S. L., Lo C. H., Lee T. Y., Wang P. L., Li H., and Van Toan, D., 2001. First evidence for Archean continental crust in northern Vietnam and its implications for crustal and tectonic evolution in Southeast Asia. Geology, 29(3):219–222. https://doi.org/10.1130/0091-7613(2001)0292.0.CO;2
  35. Nam T. N., 2003. 750 Ma U-Pb zircon age of the Po Sen Complex and tectonic implication. Journal of Geology, 274:11–16 (in Vietnamese). http://idm.gov.vn/Data/TapChi/2003/274/t11.htm
  36. Zhao T., Cawood P. A., Wang K., Zi J. W., Feng Q., Nguyen Q. M., and Tran D. M., 2019, Neoarchean and Paleoproterozoic K-rich granites in the Phan Si Pan Complex, North Vietnam: Constraints on the early crustal evolution of the Yangtze Block. Precambrian Research, 332:105395. https://doi.org/10.1016/j. precamres.2019.105395
  37. Zhao T., Cawood P. A., Zi J. W., Wang K., Feng Q., Tran D. M., Nguyen Q. M., Dang C. M., and Nguyen Q. M., 2023. Positioning the Yangtze Block within Nuna: Constraints from paleoproterozoic granitoids in North Vietnam. Precambrian Research, 391:107059. https://doi.org/10.1016/j.pre camres.2023.107059
  38. Wang P. L., Lo C. H., Lan C. Y., Chung S. L., Lee T. Y., Tran N. N., Sano Y., 2011. Thermochronology of the PoSen complex, northern Vietnam: Implications for tectonic evolution in SE Asia. Journal of Asian Earth Sciences, 40(5): 1044-1055. https://doi.org/10.1016/j.jseaes.2010.11.006
  39. Pham T. H., Chen F. K., Thuy N. T. B., Quoc Cuong, N., and Li S. Q., 2013. Geochemistry and zircon U–pb ages and Hf isotopic composition of Permian alkali granitoids of the Phan Si Pan zone in northwestern Vietnam. Journal of Geodynamics, 69:106–121. https://doi.org/10.1016/j.jog.2012.03.002
  40. Pham T. T., Shellnutt J. G., Tran T. A., and Lee H. Y., 2020. Petrogenesis of eocene to early Oligocene granitic rocks in Phan Si Pan uplift area, northwestern Vietnam: Geochemical implications for the Cenozoic crustal evolution of the South China block. Lithos, 372:105640. https://doi.org/10.1016/j.lithos.2020. 105640
  41. Dung P. T., Usuki T., Tran H. T., Hoang N., Usuki M., Minh P., Nong A. T. Q., Nguyen Y. V., and Pham T. H., 2023. Emplacement ages, geochemical and Sr–Nd–Hf isotopic characteristics of Cenozoic granites in the phan Si pan uplift, Northwestern Vietnam: Petrogenesis and tectonic implication for the adjacent structure of the red river shear zone. International Journal of Earth Sciences (Geol Rundsch), 112:1475–1497. https://doi.org/10.1007/s00531-023-02307-4
  42. Li X. C., Zhao J. H., Zhou M. F., Gao J. F., Sun W. H., Tran M. D., 2018. Neoproterozoic granitoids from the Phan Si Pan belt, Northwest Vietnam: Implication for the tectonic linkage between Northwest Vietnam and the Yangtze Block. Precambrian Research, 309: 212-230. https://doi.org/10.1016/ j.precamres.2017.02.019
  43. Zhou M. F., Yan D. P., Kennedy A. K., Li Y., and Ding J., 2002. SHRIMP U–pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China. Earth and Planetary Science Letters, 196(1–2):51–67. https://doi.org/10.1016/10.1016/ S0012-821X(01)00595-7
  44. Zhao J. H., and Zhou M. F., 2008. Neoproterozoic adakitic plutons in the northern margin of the Yangtze Block, China: Partial melting of a thickened lower crust and implications for secular crustal evolution. Lithos, 104(1): 231–248. https://doi.org/10.1016/j.lithos.2007.12.009
  45. Cai Y., Wang Y., Cawood, P. A., Fan W., Liu H., Xing X., and Zhang Y., 2014. Neoproterozoic subduction along the Ailaoshan zone, South China: Geochronological and geochemical evidence from amphibolite. Precambrian Research, 245:13–28. https://doi.org/10.1016/j.precamres.2014.01.009
  46. Cai Y., Wang Y., Cawood P. A., Zhang Y., and Zhang A., 2015. Neoproterozoic crustal growth of the Southern Yangtze Block: Geochemical and zircon U–Pb geochronological and Lu-hf isotopic evidence of neoproterozoic diorite from the Ailaoshan zone. Precambrian Research, 266:137–149. https://doi.org/10.1016/j.precamres.2015.05.008
  47. Dac N. X., Khan A., Ullah Z., Son T. H., Chun L. X., Hung K. T., Shi G. Z., Zhuang D., Farhan M. 2024. Neoproterozoic granitoids of northwest Vietnam and their tectonic implications. International Geology Review, 66(16): 2918–2939. https://doi.org/10.1080/00206814.2024.2309470
  48. Dung T. M., Liu J. L., Li X. C., Cung D. M, 2016b. Geology, Fluid Inclusion and Isotopic Study of the Neoproterozoic Suoi Thau Copper Deposit, Northwest Vietnam. Acta Geologica Sinica (English Edition), 90(3): 913–927. https://doi.org/10.1111/1755-6724.12733
  49. Roedder, E., 1984. Fluid inclusions. Reviews in Mineralogy, 12, 1–644. https://ebookbell.com/product/fluid-inclusions-edwin-roedder-50924168
  50. Van den Kerkhof, A. M., Hein, U. F., 2001. Fluid inclusion petrography. Lithos, 55:27–47. https://doi.org/10.1016/S0024-4937(00)00037-2
  51. Spandler C., Hammerli J., Sha P., Hilbert-Wolf H., Hu Y., Roberts E. and Schmitz M., 2016. MKED1: A new titanite standard for in situ analysis of SmNd isotopes and U-Pb geochronology. Chemical Geology, 425:110–126. https://doi.org/10.1016/j.chemgeo.2016.01.002
  52. Ludwig K., 2003. User’s manual for Isoplot/Ex, version 3.00, a geochronological toolkit for Microsoft excel. Berkeley Geochronology Center Special Publication, 4(2):1–70. https://searchworks.stanford.edu/view/6739593
  53. Coleman M. L., 1977. Sulphur isotopes in petrology. Journal of the Geological Society, 133:593-608. https://doi.org/10.1144/gsjgs.133.6.0593
  54. Claypool G. E., Helser W. T., Kaplan I. R., Sakai H. & Zak I., 1980. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chemical Geology, 28:199-260. https://doi.org/10.1016/0009-2541(80)90047-9
  55. Chambers L. A., 1982. Sulfur isotope study of a modem intertidal environment and the interpretation of ancient sulfides. Geochimica et Cosmochimica Acta, 46:721-728. https://doi.org/10.1016/0016-7037(82)90023-0
  56. Sakai H., Casadevall T. J., & Moore J. G., 1982. Chemistry and isotope ratios of sulfur in basalts and volcanic gases at Kilauea volcano, Hawaii. Geochimica et Cosmochimica Acta, 46:729-738. https://doi.org/10.1016/0016-7037(82)90024-2
  57. Kerridge J. F., Haymon R. M. & Kastner M., 1983. Sulfur isotope systematics at the 21oN site, East Pacific Rise. Earth and Planetary Science Letters, 66:91-100. https://doi.org/10.1016/0012-821X(83)90128-0
  58. Ueda A., & Sakai H., 1984. Sulfur isotope study of Quaternary volcanic rocks from the Japanese islands arc. Geochimica et Cosmochimica Acta, 48:1837-1848. https://doi.org/10.1016/0016-7037(84)90037-1
  59. Chaussidon M., Albarede,F. & Sheppard S. M. F., 1989. Sulfur isotope variations in the mantle from ion microprobe analyses of micro-sulphide inclusions. Earth and Planetary Science Letters, 144-156. https://doi.org/10.1016/0012-821X(89)90042-3
  60. Bakker R. J., 1999. Optimal Interpretation of Microthermometrical Data from Fluid Inclusions: Thermodynamic Modelling and Computer Programming. Heidelberg, Germany: Habilitation Thesis. University Heidelberg, 50.
  61. Bakker R. J., 2018. AqSo_NaCl: Computer Program to Calculate P-T-V-X Properties in the H2O-NaCl Fluid System Applied to Fluid Inclusion Research and Pore Fluid Calculation. Computers & Geosciences 115, 122-133 https://doi.org/10.1016/j.cageo.2018.03.003
  62. Shao J. L., Mei J. M., 1986. On the study of typomorphic characteristics of mineral inclusion in the gold deposit from volcanic terrain in Zhejiang and its genetic and prospecting significance. Miner. Rocks, 3:103–111 (in Chinese with English Abstract).
  63. Sibson R. H., 2001. Seismogenic Framework for Hydrothermal Transport and Ore Deposition. Rev. Economic Geology, 14:25–50. https://doi.org/10.5382/Rev.14.02
  64. Sibson R. H., 2004. Controls on Maximum Fluid Overpressure Defining Conditions for Mesozonal Mineralisation. Journal of Structural Geology, 26:1127–1136. https://doi.org/10.1016/j.jsg.2003.11.003
  65. Dac N. X., Son T. H., Tin Q. D., Hung K. T., Thu L. T., Thoa H. T., Giang P. H., 2023. In situ U-Pb isotopic dating method on titanite, and application to determine REE-Fe-Cu mineralization age of the Sin Quyen deposit, Lao Cai province. Journal of Mining and Earth Sciences, 64(6):50–57. https://doi.org/10.46326/JMES.2023.64(6).06
  66. Seedorff E., Dilles J. H., Proffett J. M. Jr., Einaudi M. T., Zurcher L., Stavast W. J. A., Johnson D. A., Barton M. D., 2005. Porphyry Deposits—Characteristics and Origin of Hypogene Features, pp. 251–298. Society of Economic Geologists. Economic Geology 100th Anniversary Volume, 1905–2005. http://refhub.elsevier.com/B978-0-08-102908-4.00005-9/rf0290
  67. Sillitoe R. H., 2010. Porphyry Copper Systems. Economic Geology, 105: 3-41. http://dx.doi.org/10.2113/gsecongeo.105.1.3
  68. Berger B. R., Ayuso R. A., Wynn J. C., Seal R. R., 2008. Preliminary model of porphyry copper deposits: U.S. Geological Survey Open-File Report 2008–1321, 55p. https://pubs.usgs.gov/of/2008/1321/
  69. Imai A., Ohno S., 2008. Primary Ore Mineral Assemblage and Fluid Inclusion Study of the Batu Hijau Porphyry Cu-Au Deposit, Sumbawa, Indonesia. Resource Geology, 55(3): 239–248. https://doi.org/10.1111/j.1751-3928.2005.tb00245.x

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».