GEOMAGNETIC CUTOFF OF COSMIC RAYS DURING THE MARCH 23–24, 2023 MAGNETIC STORM: RELATIONSHIP WITH SOLAR WIND PARAMETERS AND GEOMAGNETIC ACTIVITY TAKING INTO ACCOUNT LATITUDINAL EFFECTS
- Авторы: Данилова О.А.1, Птицына Н.Г.1, Сдобнов В.Е.2
-
Учреждения:
- Санкт-Петербургский филиал Института земного магнетизма, ионосферы и распространения радиоволн РАН
- Институт солнечно-земной физики СО РАН
- Выпуск: Том 11, № 3 (2025)
- Страницы: 37-43
- Раздел: Статьи
- URL: https://journals.rcsi.science/2500-0535/article/view/361860
- DOI: https://doi.org/10.12737/stp-113202505
- ID: 361860
Цитировать
Полный текст
Аннотация
Об авторах
Ольга Александровна Данилова
Санкт-Петербургский филиал Института земного магнетизма, ионосферы и распространения радиоволн РАН
Email: md1555@mail.ru
кандидат физико-математических наук
Наталья Григорьевна Птицына
Санкт-Петербургский филиал Института земного магнетизма, ионосферы и распространения радиоволн РАН
Email: nataliaptitsyna@yandex.ru
кандидат физико-математических наук
Валерий Евгеньевич Сдобнов
Институт солнечно-земной физики СО РАН
Email: sdobnov@iszf.irk.ru
доктор физико-математических наук
Список литературы
Adriani O., Barbarino G.C., Bazilevskaya G.N., Bellotti R., Boezio M., Bogomolov E.A., et al. PAMELA’s measurements of geomagnetic cutoff variations during the 14 December 2006 storm. Space Weather. 2016, vol. 14, no. 3. doi: 10.1002/2016SW001364. Akasofu S.-I. The magnetospheric currents: An introduction. In T.A. Potemra (Ed.), Magnetospheric currents. Geophysical Monograph Series. 1984, vol. 28, pp. 29–48. doi: 10.1029/GM028p0029. Burov V.A., Meleshkov Yu.S., Ochelkov Yu.P. The technique of operational evaluation of the level of radiation danger due to the cosmic weather disturbance during air travel. Heliogeophysical Research. 2005, iss. 7, pp. 1–41. Burton R.K., McPherron R.L., Russell C.T. An empirical relationship between interplanetary conditions and Dst. J. Geophys. Res. 1975, vol. 80, iss. 31, pp. 4204–4214. doi: 10.1029/JA080i031p04204. Danilova O.A., Ptitsyna N.G., Tyasto M.I., Sdobnov V.E. Variations in cosmic ray cutoff rigidities during the March 8–11, 2012 magnetic storm (CAWSES II period). Sol.-Terr. Phys. 2023, vol. 9, iss. 2, pp. 81–87. doi: 10.12737/stp-92202310. Dungey J.W. Interplanetary magnetic field and the auroral zones. Phys Rev Lett. 1961, vol. 6, pp. 47–48. doi: 10.1103/PhysRevLett.6.47. Iucci N., Levitin A.E., Belov A.V., Eroshenko E.A., Ptitsyna N.G., Villoresi G., et al. Space weather conditions and spacecraft anomalies in different orbits. Space Weather. 2005, vol. 3, S01001. doi: 10.1029/2003SW000056. Kanekal S., Baker D., Blake J., Klecker B., Cummings J., Mewaldt R., Mason G., Mazur J. High-latitude energetic particle boundaries and the polar cap: A statistical study. J. Geophys. Res.: Space Phys. 1998, vol. 103, pp. 9367–9372. Kovalev I.I., Olemskoy S.V., Sdobnov V.E. A proposal to extend the spectrographic global survey method. J. Atmos. Solar-Terr. Phys. 2022, vol. 235, p. 105887. doi: 10.1016/j.jastp.2022.105887. Kurazhkovskaya N.A., Zotov O.D., Klain B.I. Relationship between geomagnetic storm development and the solar wind parameter β. Sol.-Terr. Phys. 2021, vol. 7, no. 4, pp. 25–34. doi: 10.12737/szf-74202104. Leske R.A., Mewaldt R.A., Stone E.C., von Rosenvinge T.T. Observations of geomagnetic cutoff variations during solar energetic particle events and implications for the radiation environment at the space station. J. Geophys. Res. 2001, vol. 106, pp. 30011–30022. doi: 10.1029/2000JA000212. Ptitsyna N.G., Danilova O.A., Tyasto M.I., Sdobnov V.E. Influence of the solar wind and geomagnetic activity parameters on variations in the cosmic ray cutoff rigidity during strong magnetic storms. Geomagnetism and Aeronomy. 2019, vol. 59, no. 5, pp. 530–538. doi: 10.1134/S0016793219050098. Shea M.A., Smart D.F., McCracken K.G. A study of vertical cutoff rigidities using sixth degree simulations of the geomagnetic field. J. Geophys. Res. 1965, vol. 70, pp. 4117–4130. Shimazu H. Solar proton event and proton propagation in the Earth’s magnetosphere. J. National Institute of Information and Communications Technology. 2009, vol. 1, pp. 191–199. Tahir A., Wu F., Shah M., Amory-Mazaudier C., Jamjareegulgarn P., Verhulst T.G.W., Ayyaz Ameen М. Multi-instrument observation of the ionospheric irregularities and disturbances during the 23–24 March 2023 geomagnetic storm. Remote Sensing. 2024, vol. 16, no. 9, p. 1594. doi: 10.3390/rs16091594. Teng W., Su Y., Ji H., Zhan Q. Unexpected major geomagnetic storm caused by faint eruption of a solar transequatorial flux rope. Nature Communications. 2024, vol. 15, pp. 9198–9214. doi: 10.1038/s41467-024-53538-1. Tsyganenko N.A., Singer H.J., Kasper J.C. Storm-time distortion of the inner magnetosphere: How severe can it get? J. Geophys. Res. 2003, vol. 108, no. A5, p. 1209. doi: 10.1029/2002JA009808. Tyasto M.I., Danilova O.A., Sdobnov V.E. Cosmic ray geomagnetic cutoff rigidities in the magnetic field of two empirical models during a strong disturbance in November 2003: A comparison of models. Geomagnetism and Aeronomy. 2012, vol. 52, pp. 1087–1096. doi: 10.1134/S0016793212080208. Tyssøy H.N, Stadsnes J. Cutoff latitude variation during solar proton events: Causes and consequences. J. Geophys. Res. Space. 2014, vol. 120, pp. 553–563. doi: 10.1002/2014JA0200508. URL: https://omniweb.gsfc.nasa.gov/form/dx1.html (accessed January 16, 2024). URL: http://omniweb.gsfc.nasa.gov (accessed January 16, 2024). URL: http://ckp-rf.ru/ckp/3056/ (accessed January 16, 2024). URL: https://ckp-rf.ru/usu/433536 (accessed January 16, 2024).
Дополнительные файлы

