MONITORING OF SPACE WEATHER EFFECTS WITH SOZVEZDIE-270 NANOSATELLITE CONSTELLATION OF MOSCOW UNIVERSITY
- Autores: Bogomolov A.V.1, Bogomolov V.V.2,1, Iyudin A.F.2, Kalegaev V.V.2,1, Myagkova I.N.3, Osedlo V.I.2, Svertilov S.I.2,1, Yashin I.V.2
-
Afiliações:
- M.V. Lomonosov Moscow State University
- M.V. Lomonosov Moscow State University, D.V. Skobeltsyn Institute of Nuclear Physics
- D.V. Skobeltsyn Scientific Research Institute of Nuclear Physics
- Edição: Volume 11, Nº 3 (2025)
- Páginas: 125-134
- Seção: Articles
- URL: https://journals.rcsi.science/2500-0535/article/view/361877
- DOI: https://doi.org/10.12737/stp-113202515
- ID: 361877
Citar
Texto integral
Resumo
We discuss various recent space weather manifestations associated with increased solar flare activity. Among such effects is the filling of the polar caps with particles of solar cosmic rays, dynamic processes in outer ERB during magnetic storms, rapid variations in electron fluxes due to precipitation.
We discuss various recent space weather manifestations associated with increased solar flare activity. Among such effects is the filling of the polar caps with particles of solar cosmic rays, dynamic processes in outer ERB during magnetic storms, rapid variations in electron fluxes due to precipitation.
Palavras-chave
Sobre autores
Andrey Bogomolov
M.V. Lomonosov Moscow State University
Email: aabboogg@srd.sinp.msu.ru
SINP
Vitaliy Bogomolov
M.V. Lomonosov Moscow State University, D.V. Skobeltsyn Institute of Nuclear Physics; M.V. Lomonosov Moscow State University
Email: bogovit@rambler.ru
candidate of physical and mathematical sciences
Anatoliy Iyudin
M.V. Lomonosov Moscow State University, D.V. Skobeltsyn Institute of Nuclear Physics
Email: aiyudin@srd.sinp.msu.ru
doctor of physical and mathematical sciences
Vladimir Kalegaev
M.V. Lomonosov Moscow State University, D.V. Skobeltsyn Institute of Nuclear Physics; M.V. Lomonosov Moscow State University
Email: klg@dec1.sinp.msu.ru
doctor of physical and mathematical sciences
Irina Myagkova
D.V. Skobeltsyn Scientific Research Institute of Nuclear PhysicsLaboratory of Space Physics Research, Senior Researcher, candidate of physical and mathematical sciences
Vladislav Osedlo
M.V. Lomonosov Moscow State University, D.V. Skobeltsyn Institute of Nuclear Physics
Email: osedlo@mail.ru
candidate of physical and mathematical sciences
Sergey Svertilov
M.V. Lomonosov Moscow State University, D.V. Skobeltsyn Institute of Nuclear Physics; M.V. Lomonosov Moscow State University
Email: sis@coronas.ru
doctor of physical and mathematical sciences
Ivan Yashin
M.V. Lomonosov Moscow State University, D.V. Skobeltsyn Institute of Nuclear Physics
Email: ivn@eas.sinp.msu.ru
candidate of physical and mathematical sciences
Bibliografia
Baker D.N. Satellite anomalies due to space storms. Space Storms and Space Weather Hazards. 2001, vol. 38. Springer, Dordrecht. doi: 10.1007/978-94-010-0983-6_11. Bashkirov V.F., Denisov Y.I., Gotselyuk Y.V., et al. Trapped and quasi-trapped radiation observed by “CORONAS-I” satellite. Radiation Measurements. 1999, vol. 30, no. 5, pp. 537–546. Belov A.V., Villoresi J., Dorman L.I., M.I. et al. Effect of the space on operation of satellites. Geomagnetism and Aeronomy. 2004, vol. 44, no. 4, pp. 461–468. Bogomolov A.V., Denisov Y.I., Kolesov G.Y., et al. Fluxes of quasi-trapped electrons with energies >0.08 MeV in the near-earth space on drift shells L<2. Cosmic Res. 2005, vol. 43, no. 5, pp. 307–313. Bogomolov V.V., Bogomolov A.V., Dement’ev Yu.N., Eremeev V.E., et al. A first experience of space radiation monitoring in the multi-satellite experiment of Moscow University in the framework of the Universat-SOCRAT project. Moscow University Physics Bulletin. 2020, vol. 73, no. 6, pp. 676–683. doi: 10.3103/S0027134920060089. Caspi A., Barthelemy M., Bussy-Virat C.D., et al. Small satellite mission concepts for space weather research and as pathfinders for operations. Space Weather, 2022, vol. 20, iss. 2, e2020SW002554. doi: 10.1029/2020SW002554. Cole D.G. Space weather: Its effects and predictability. Space Sci. Rev. 2003, vol. 107, pp. 295‒302. doi: 10.1023/A:1025500513499. Daglis I.A. Space Storms and Space Weather Hazards. Kluwer, Dordrecht, Boston, 2001. doi: 10.1007/978-94-010-0983-6. Dorman L.I., Miroshnichenko L.I. Solar Cosmic Rays. Moscow: Nauka, 1968, 468 p. (In Russian). Ginet G.P., O’Brien T.P., Huston S.L. AE9, AP9 and SPM: New models for specifying the trapped energetic particle and space plasma environment. Space Sci. Rev. 2013, vol. 179, pp. 579–615 doi: 10.1007/s11214-013-9964y. Iucci N., Levitin A., Belov E., Eroshenko E.A. Space weather conditions and spacecraft anomalies in different orbits. Space Weather. 2005, vol. 3, S01001. doi: 10.1029/2003SW000056. Kudela K. Space weather near Earth and energetic particles: selected results. Journal of Physics: Conf. Series. 2013, vol. 409, iss. 1, article id. 012017. doi: 10.1088/1742-6596/409/1/012017. Kuznetsov S.N., Myagkova I.N. Fluxes of quasi-trapped particles under the Earth's radiation belts. Geomagnetism and Aeronomy. 2001, vol. 41, no. 1, pp. 10–13. Kuznetsov S.N., Myagkova I.N. Quasi-trapped electron fluxes (>0.5 MeV) under the radiation belts: analysis of their connection with geomagnetic indices. J. Atmos. Solar-Terr. Phys. 2002, vol. 64, no. 5-6. pp. 601–605. Kuznetsov S.N., Bogomolov A.V., Denisov Y.I., et al. The solar flare of November 4, 2001, and its manifestations in energetic particles from CORONAS-F data. Solar System Res. 2003, vol. 37, pp. 121–127. doi: 10.1023/A:1023384425209. Kuznetsov N.V., Nymmik R.A., Panasyuk M.I., Popova E. Working model of flows of space charged particles and new experimental data. Voprosy atomnoi nauki i tekhniki [Problems of Atomic Science and Technology. Ser. Physics of Radiation Effects…] 2014, no. 1, pp. 44–48. (In Russian). Lundstedt H. The Sun, space weather and GIC effects in Sweden. Adv. Space Res. 2006, vol. 37, no. 6, pp. 1182–1191. doi: 10.1016/j.asr.2005.10.023. McGranaghan R.M., Camporeale E., Georgoulis M., Anastasiadis A. Space weather research in the digital age and across the full data lifecycle: Introduction to the topical issue. J. Space Weather and Space Climate. 2021, vol. 11, p. 50. doi: 10.1051/swsc/2021037. Myagkova I.N., Bogomolov A.V., Eremeev V.E., et al. Dynamics of the Radiation Environment in the Near-Earth space in September–November 2020 according to the Meteor-M and Electro-L Satellite Data. Cosmic Res. 2021, vol. 59, iss. 6, pp. 433–445. doi: 10.1134/S0010952521060071. Nagata K., Kohno T., Murakami H., Nakamoto A., Hasebe N., Kikuchi J., Doke T. Electron (0.19–3.2 MeV) and proton (0.58–35 MeV) precipitations observed by OHZORA satellite at low latitude zones L=1.6–1.8. Planet. Space Sci. 1988, vol. 36, pp. 591–606. Novikov L.S., Voronina E.N. Interaction of spacecraft with the environment. Moscow: KDU, 2021. Panasyuk M.I., Svertilov S.I., Bogomolov V.V., et al. Experiment on the Vernov satellite: Transient energetic processes in the Earth atmosphere and magnetosphere. Pt 1. Description of the experiment. Cosmic Res. 2016a, vol. 54, no. 4, pp. 261–269. doi: 10.1134/S0010952516040043. Panasyuk M.I., Svertilov S.I., Bogomolov V.V., et al. Experiment on-the Vernov satellite: Transient energetic processes in the Earth atmosphere and magnetosphere. Pt 2. First results. Cosmic Res. 2016b, vol. 54, no. 5, pp. 343–350. doi: 10.1134/S0010952516050051. Potapov A., Ryzhakova L., Tsegmed B. A new approach to predict and estimate enhancements of “killer” electron flux at geosynchronous orbit. Acta Astronaut. 2016, vol. 126, pp. 47–51. doi: 10.1016/j.actaastro.2016.04.017. Romanova N.V., Pilipenko V.A., Yagova N.V., et al. Statistical correlation of the rate of failures on geosynchronous satellites with fluxes of energetic electrons and protons. Cosmic Res. 2005, vol. 43, pp. 179–185. doi: 10.1007/s10604-005-0032-6. Sadovnichii V.A., Panasyuk M.I., Yashin I.V., et al. Investigations of the space environment aboard the Universitetsky-Tat’yana and Universitetsky—Tat’yana-2 microsatellites. Solar System Res. 2011, vol. 45, no. 1, pp. 3–29. Sadovnichii V.A., Panasyuk M.I., Amelyushkin A.M., et al. “Lomonosov” satellite — space observatory to study extreme phenomena in space. Space Sci. Rev. 2017, vol. 212, no. 3-4. pp. 1705–1738. doi: 10.1007/s11214-017-0425-x. Schrijver C.J., Kauristie K., Aylward A.D., et al. Understanding space weather to shield society: A global road map 772 for 2015–2025 commissioned by COSPAR and ILWS. Adv. Space Res. 2015, vol. 55, pp. 2745‒2807. doi: 10.1016/j.asr.2015.03.023. Vernov S.N., Grigorov N.L., Logachev YU.I., Chudakov A.Ye. Сhanges in cosmic radiation on an artificial Earth satellite. Doklady Akademii Nauk. 1958, vol. 120, no. 6, pp. 1231–1233. (In Russian). Wei F., Feng X., Guo J.S., Fan, Q., Wu, J. Space weather research in China. Adv. in Space Environment Res. Springer, Dordrecht. 2003, pp. 327–334. doi: 10.1007/978-94-007-1069-6_31. Wilkinson P. Space weather studies in Australia. Space Weather: The Intern. J. Research and Applications. 2009, vol. 7, S06002. doi: 10.1029/2009SW000485. URL: https://swx.sinp.msu.ru/tools/davisat.php/ (accessed July, 22, 2025).
Arquivos suplementares
