METEOROLOGICAL RESPONSE TO CHANGES IN IONOSPHERIC ELECTRIC POTENTIAL CAUSED BY DISTURBED SOLAR WIND
- Autores: Karakhanyan A.A.1, Molodykh S.I.2
-
Afiliações:
- Institute of Solar-Terrestrial Physics SB RAS
- Institute of Solar Terrestrial Physics SB RAS
- Edição: Volume 11, Nº 3 (2025)
- Páginas: 91-97
- Seção: Articles
- URL: https://journals.rcsi.science/2500-0535/article/view/361866
- DOI: https://doi.org/10.12737/stp-113202511
- ID: 361866
Citar
Texto integral
Resumo
Sobre autores
Ashkhen Karakhanyan
Institute of Solar-Terrestrial Physics SB RAS
Email: asha@iszf.irk.ru
candidate of physical and mathematical sciences
Sergey Molodykh
Institute of Solar Terrestrial Physics SB RAS
Email: sim@iszf.irk.ru
candidate of physical and mathematical sciences
Bibliografia
Abunina M.A., Shlyk N.S., Belov S.M., et al. On the most interesting events in the solar wind and cosmic rays in 2023–2024. Mezhdunarodnaya Baikal'skaya molodezhnaya nauchnaya shkola po fundamental'noi fizike. Trudy XVIII Konferentsii molodykh uchenykh «Vzaimodeistvie polei i izlucheniya s veshchestvom» [The Baikal Young Scientists’ International School on Fundamental Physics. Proc. XVIII Young Scientists’ Conference “Interaction of Fields and Radiation with Matter”]. Irkutsk, 2024, pp. 5–7. (In Russian). Grechnev V.V., Uralov A.M., Chertok I.M., et al. A challenging solar eruptive event of 18 November 2003 and the causes of the 20 November geomagnetic superstorm. IV. Unusual magnetic cloud and overall scenario. Solar Phys. 2014, vol. 289, iss. 12, pp. 4653–4673. doi: 10.1007/s11207-014-0596-5. Harrison R.G., Lockwood M. Rapid indirect solar responses observed in the lower atmosphere. Proc. Roy. Soc. A. 2020, vol. 476, iss. 2241, 20200164. doi: 10.1098/rspa.2020.0164. Ishkov V.N. Properties and surprises of solar activity XXIII cycle. Sun and Geosphere. 2010, vol. 5, iss. 2, pp. 43–46. Ishkov V.N. Current solar cycle 25 on the eve of the maximum phase. Geomagnetism and Aeronomy. 2024, vol. 64, iss. 7, pp. 1167–1175. doi: 10.1134/S0016793224700257. Karakhanyan A.A., Molodykh S.I. A decline of linear relation between outgoing longwave radiation and temperature during geomagnetic disturbances. JASTP. 2025, vol. 270, iss. 5, 106503. doi: 10.1016/j.jastp.2025.106503. Krivolutsky A.A., Vyushkova T.Y., Mironova I.A. Changes in the chemical composition of the atmosphere in the polar regions of the Earth after solar proton flares (3D modeling). Geomagnetism and Aeronomy. 2017, vol. 57, iss. 2, pp. 156–176. doi: 10.1134/S0016793217020074. Mironova I.A., Aplin K.L., Arnold F., et al. Energetic particle influence on the Earth’s atmosphere. Space Sci. Rev. 2015, vol. 194, iss. 1-4, pp. 1–96. doi: 10.1007/s11214-015-0185-4. Mokhov I.I. Russian climate research in 2019–2022. Izvestiya RAN. Fizika atmosfery i okeana [Izvestiya, Atmospheric and Oceanic Physics]. 2023, vol. 59, iss. 7, pp. 830–851. (In Russian). Molodykh S.I., Zherebtsov G.A., Karakhanyan A.A. Estimation of solar activity impact on the outgoing infrared-radiation flux. Geomagnetism and Aeronomy. 2020, vol. 60, iss. 2, pp. 205–211. doi: 10.1134/S0016793220020103. Ptashnik I.V. Water vapour continuum absorption: short prehistory and current status. Optika atmosfery i okeana [Atmospheric and Oceanic Optics]. 2015, vol. 28, iss. 5, pp. 443–459. (In Russian). Simonova A.A., Ptashnik I.V., Elsey J., et al. Water vapour self-continuum in near-visible IR absorption bands: Measurements and semiempirical model of water dimer absorption. J. Quantitative Spectroscopy and Radiative Transfer. 2022, vol. 277, iss. 1, 107957. doi: 10.1016/j.jqsrt.2021.107957. Tinsley B.A. The global atmospheric electric circuit and its effects on cloud microphysics. Rep. on Progress in Physics. 2008, vol. 71, iss. 6, 066801. doi: 10.1088/0034-4885/71/6/066801. Troshichev O.A., Andrezen V.G., Vennerstrom S., Friis-Christensen E. Magnetic activity in the polar cap – A new index. Planet. Space Sci. 1988, vol. 36, iss. 11, pp. 1095–1102. doi: 10.1016/0032-0633(88)90063-3. Veretenenko S.V., Dmitriev P.B., Dergachev V.A. Long-term effects of solar activity on cyclone tracks in the North Atlantic. St. Petersburg State Polytechnical University J.: Physics and Mathematics. 2023a, vol. 16, iss. 1.2, pp. 454–460. doi: 10.18721/JPM.161.269. Veretenenko S.V., Dmitriev P.B., Dergachev V.A. Long-term changes main trajectories of extratropical cyclones in the North Atlantic and their possible association with solar activity. Geomagnetism and Aeronomy. 2023b, vol. 63, iss. 7, pp. 953–965. doi: 10.1134/s0016793223070265. Weimer D.R. An improved model of ionospheric electric potentials including substorm perturbations and application to the Geospace Environment Modeling November 24, 1996, event. J. Geophys. Res.: Space Phys. 2001, vol. 106, iss. A1, pp. 407–416. doi: 10.1029/2000JA000604. Weimer D.R. Improved ionospheric electrodynamic models and application to calculating Joule heating rates. J. Geophys. Res. 2005, vol. 110, iss. A5, A05306. doi: 10.1029/2004JA010884. Wielicki B.A., Barkstrom B.R., Harrison E.F., et al. Clouds and the Earth’s Radiant Energy System (CERES): An Earth observing system experiment. Bull. American Meteorological Society. 1996, vol. 77, iss. 5, pp. 853–868. doi: 10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2. URL: https://zenodo.org/records/2530324 (accessed April 4, 2025). URL: https://omniweb.gsfc.nasa.gov/html/ow_data.html (accessed April 4, 2025). URL: https://iszf.irk.ru/usu-optical-instruments/ (accessed April 4, 2025). URL: https://ceres-tool.larc.nasa.gov/ord-tool/jsp/SYN1degEd41Selection.jsp (accessed April 4, 2025). URL: https://www.ipcc.ch/report/ar6/syr/ (accessed April 4, 2025). URL: https://wdc.kugi.kyoto-u.ac.jp/wdc/Sec3.html (accessed April 4, 2025). URL: https://pcindex.org/ (accessed April 4, 2025).
Arquivos suplementares
