🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

FEATURES OF TURBULENT CASCADE DEVELOPMENT IN THE MAGNETOSHEATH DURING ICME

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

Large-scale disturbances in the interplanetary medium are the main cause of the global perturbations inside Earth’s magnetosphere. Transition region called magnetosheath is known to be located in front of the magnetosphere in which plasma and magnetic field properties, as well as their variations differ significantly from those in the solar wind. Particularly, plasma passage through the magnetosheath has been demonstrated to modify substantially features of the cascade of turbulent fluctuations of the solar wind, with the pattern of the modification being different for quiet and disturbed conditions in the interplanetary medium. In this study, we examine features of turbulent cascade formation in the magnetosheath during interplanetary manifestation of coronal mass ejection (ICME), by analyzing several cases of ICME interactions with the magnetosphere. The analysis is conducted by comparing magnetic field variations measured simultaneously in the solar wind and in the dayside magnetosheath by Wind, Cluster, THEMIS, and MMS spacecraft in 2016–2017. Interaction of ICME with the magnetosphere is shown to cause the least change in the fluctuation power if there is a compression region in front of it; on the opposite, when there is no compression region, the fluctuation power increases considerably. ICMEs that caused significant changes in the Dst index were determined to be accompanied by the least changes in the turbulent cascade in the magnetosheath, whereas the most significant modification of the turbulence features were observed during ICMEs which did not trigger substantial geomagnetic disturbances

Негізгі сөздер

Авторлар туралы

Liudmila Rakhmanova

Space Research Institute RAS

Email: rakhlud@gmail.com
candidate of physical and mathematical sciences 2019

Maria Riazantseva

Space Research Institute of RAS (IKI)

Email: orearm@gmail.com

Aleksander Khokhlachev

Space Research Institute RAS

Email: aleks.xaa@yandex.ru

Yuri Yermolaev

Space Research Institute RAS

Email: yermol@iki.rssi.ru
doctor of physical and mathematical sciences

Georgy Zastenker

Space Research Institute RAS

Email: gzastenk@iki.rssi.ru
doctor of physical and mathematical sciences

Әдебиет тізімі

  1. Alexandrova O., Lacombe C., Mangeney A. Spectra and anisotropy of magnetic fluctuations in the Earth’s magnetosheath: Cluster observations. Ann. Geophys. 2008, vol. 26, iss. 11, pp. 3585–3596. doi: 10.5194/angeo-26-3585-2008.
  2. Auster H.U., Glassmeier K.H., Magnes W., Aydogar O., Baumjohann W., Constantinescu D., et al. The THEMIS Fluxgate Magnetometer. Space Sci. Rev. 2008, vol. 141, pp. 235–264. doi: 10.1007/s11214-008-9365-9.
  3. Balogh A., Carr C.M., Acuna M.H., Dunlop M.W., Beek T.J., Brown P., et al. The Cluster Magnetic Field Investigation: Overview of in-flight performance and initial results. Ann. Geophys. 2001, vol. 19, pp. 1207–1217. doi: 10.5194/angeo-19-1207-2001.
  4. Boldyrev S., Perez J.C. Spectrum of kinetic Alfven turbulence. Astrophys. J. Lett. 2012, vol. 758, no. 2, 5 p. doi: 10.1088/2041-8448205/758/2/L44.
  5. Borovsky J.E., Denton M.H. The differences between CME-driven storms and CIR-driven storms. J. Geophys. Res. 2006, vol. 111, A07S08.
  6. Boynton R.J., Balikhin M.A., Billings S.A., Sharma A.S., Amariutei O.A. Data derived NARMAX Dst model. Ann. Geophys. 2012, vol. 29, iss. 6, pp. 965–971. doi: 10.5194/angeo-29-965-2011.
  7. Bruno R., Trenchi L., Telloni D. Spectral slope variation at proton scales from fast to slow solar wind. Astrophys. J. Lett. 2014, vol. 793, L15.
  8. Burlaga L.F. Magnetic clouds. Physics of the Inner Heliosphere: vol. 2. Еds R. Schwenn and E. Marsch. Springer-Verlag, 1991, р. 1. doi: 10.1007/978-3-642-75364-0_1.
  9. Czaykowska A., Bauer T.M., Treumann R.A., Baumjohann W. Magnetic field fluctuations across the Earth’s bow shock. Ann. Geophys. 2001, vol. 19, iss. 3, pp. 275–287. doi: 10.5194/angeo-19-275-2001.
  10. D’Amicis R., Telloni D., Bruno R. The effect of solar-wind turbulence on magnetospheric activity. Front. Phys. 2020, vol. 8, 604857. doi: 10.3389/fphy.2020.604857.
  11. Ervin T., Jaffarove K., Badman S.T., Huang J., Rivera Ye.J., Bale S.D. Characteristics and source regions of slow Alfvénic solar wind observed by Parker Solar Probe. Astrophys. J. 2024, vol. 975, no. 2, 156. doi: 10.3847/1538-4357/ad7d00.
  12. Greenstadt E.W. Binary index for assessing local bow shock obliquity. J. Geophys. Res. 1972, vol. 77, pp. 5467–5479. doi: 10.1029/JA077i028p05467.
  13. Huang S.Y., Hadid L.Z., Sahraoui F., Yuan Z.G., Deng X.H. On the existence of the Kolmogorov inertial range in the terrestrial magnetosheath turbulence. Astrophys. J. Lett. 2017, vol. 836, no. 1, L10. doi: 10.3847/2041-8213/836/1/L10.
  14. Karimabadi H., Roytershteyn V., Vu H.X., Omelchenko Y.A., Scudder J., Daughton W., et al. The link between shocks, turbulence, and magnetic reconnection in collisionless plasmas. Phys. Plasmas. 2014, vol. 21, 062308. doi: 10.1063/1.4882875.
  15. Kilpua E., Koskinen H.E.J., Pulkkinen T.I. Coronal mass ejections and their sheath regions in interplanetary space. Living Rev. Solar Phys. 2017, vol. 14, article number 5. doi: 10.1007/s41116-017-0009-6.
  16. Lacombe C., Belmont G. Waves in the Earth’s magnetosheath: observations and interpretations. Adv. Space Res. 1995, vol. 15, pp. 329–340. doi: 10.1016/0273-1177(94)00113-F.
  17. Lepping R.P., Acũna M.H., Burlaga L.F., Farrell W.M., Slavin J.A., Schatten K.H., et al. The WIND Magnetic Field Investigation. Space Sci Rev. 1995, vol. 71, pp. 207–229. doi: 10.1007/BF00751330.
  18. McFadden J.P., Carlson C.W., Larson D., Ludlam M., Abiad R., Elliott B., et al. The THEMIS ESA plasma instrument and in-flight calibration. Space Sci. Rev. 2008, vol. 141, pp. 277–302. doi: 10.1007/s11214-008-9440-2.
  19. Ogilvie K.W., Chornay D.J., Fritzenreiter R.J., Hunsaker F., Keller J., Lobell J., et al. SWE, a comprehensive plasma instrument for the WIND spacecraft. Space Sci Rev. 1995, vol. 71, pp. 55–77. doi: 10.1007/BF00751326.
  20. Pallocchia G., Amata E., Consolini G. Geomagnetic Dst index forecast based on IMF data only. Ann. Geophys. 2006, vol. 24, pp. 989–999. doi: 10.5194/angeo-24-989-2006.
  21. Palmroth M., Ganse U., Pfau-Kempf Y., Battarbee M., Turc L., Brito T., et al. Vlasov methods in space physics and astrophysics. Living Reviews in Computational Astrophysics. 2018, vol. 4, article number 1. doi: 10.1007/s41115-018-0003-2.
  22. Podladchikova T.V., Petrukovich A.A. Extended geomagnetic storm forecast ahead of available solar wind measurements. Space Weather. 2012, vol. 10, S07001. doi: 10.1029/2012 SW000786.
  23. Pollock C., Moore T., Jacques A., Burch J., Gliese U., Saito Y., et al. Fast Plasma Investigation for Magnetospheric Multiscale. Space Sci. Rev. 2016, vol. 199, pp. 331–406. doi: 10.1007/s11214-016-0245-4.
  24. Pulinets M.S., Antonova E.E., Riazantseva M.O., Znatkova S.S., Kirpichev I.P. Comparison of the magnetic field before the subsolar magnetopause with the magnetic field in the solar wind before the bow shock. Adv. Space Res. 2014, vol. 54, pp. 604–616. doi: 10.1016/j.asr.2014.04.023.
  25. Rakhmanova L.S., Riazantseva M.O., Zastenker G.N., Verigin M.I. Effect of the magnetopause and bow shock on characteristics of plasma turbulence in the Earth’s magnetosheath. Geomagnetism and Aeronomy. 2018a, vol. 58, pp. 718–727. doi: 10.1134/S0016793218060129.
  26. Rakhmanova L., Riazantseva M., Zastenker G., Verigin M. Kinetic scale ion flux fluctuations behind the quasi-parallel and quasi-perpendicular bow shock. J. Geophys. Res.: Space Phys. 2018b, vol. 123, pp. 5300–5314. doi: 10.1029/2018JA025179.
  27. Rakhmanova L., Riazantseva M., Zastenker G. Plasma and magnetic field turbulence in the Earth’s magnetosheath at ion scales. Front. Astron. Space Sci. 2021, vol. 7, 616635. doi: 10.3389/fspas.2020.616635.
  28. Rakhmanova L., Khokhlachev A., Riazantseva M., Yermolaev Y., Zastenker G. Modification of the turbulence properties at the bow shock: Statistical results. Front. Astron. Space Sci. 2024a, vol. 11, 1379664. doi: 10.3389/fspas.2024.1379664.
  29. Rakhmanova L., Khokhlachev A., Riazantseva M., Yermolaev Y., Zastenker G. Changes in and recovery of the turbulence properties in the magnetosheath for different solar wind streams. Universe. 2024b, vol. 10, no. 5, 194. doi: 10.3390/universe10050194.
  30. Rakhmanova L., Khokhlachev A., Riazantseva M., Yermolaev Y., Zastenker G. Turbulence development behind the bow shock during disturbed and undisturbed solar wind. Sol.-Terr. Phys. 2024c, vol. 10, no. 2, pp. 13–25. DOI: 10.12737/ stp-102202402.
  31. Rème H., Aoustin C., Bosqued J.M., Dandouras I., Lavraud B., Sauvaud J.A., et al. First multispacecraft ion measurements in and near the Earth’s magnetosphere with the identical Cluster Ion Spectrometry (CIS) experiment. Ann. Geophys. 2001, vol. 19, pp. 1303–1354. doi: 10.5194/angeo-19-1303-2001.
  32. Riazantseva M.O., Rakhmanova L.S., Zastenker G.N., Yermolaev Yu.I., Lodkina I.G., Chesalin L.S. Small-scale plasma fluctuations in fast and slow solar wind streams. Cosmic Res. 2019, vol. 57, no. 6, pp. 434–442. doi: 10.1134/S0010952519060078.
  33. Riazantseva M.O., Rakhmanova L.S., Yermolaev Yu.I., Lodkina I.G., Zastenker G.N., Chesalin L.S. Characteristics of turbulent solar wind flow in plasma compression regions. Cosmic Res., 2020, vol. 58, no. 6, pp. 468–477. doi: 10.1134/S001 095252006009X.
  34. Riazantseva M.O., Treves T.V., Khabarova O., Rakhmanova L.S., Yermolaev Yu.I., Khokhlachev A.A. Linking turbulent interplanetary magnetic field fluctuations and current sheets. Universe. 2024, vol. 10, no. 11, 417. doi: 10.3390/universe10110417.
  35. Richardson I.G., Cane H.V. Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996–2009): catalog and summary of properties. Solar Phys. 2010, vol. 264, pp. 189–237. doi: 10.1007/s11207-010-9568-6.
  36. Russell C.T., Anderson B.J., Baumjohann W., Bromund K.R., Dearborn D., Fischer D., et al. The Magnetospheric Multiscale Magnetometers. Space Sci Rev. 2016, vol. 199, pp. 189–256. doi: 10.1007/s11214-014-0057-3.
  37. Šafránková J., Hayosh M., Gutinska O., Němeček Z., Přech L. Reliability of prediction of the magnetosheath Bz component from the interplanetary magnetic field observations. J. Geophys. Res. 2009, vol. 114, A12213. doi: 10.1029/2009A014552.
  38. Sahraoui F., Hadid L., Huang S. Magnetohydrodynamic and kinetic scale turbulence in the near-Earth space plasmas: A (short) biased review. Rev. Mod. Phys. 2020, vol. 4, article number 4. doi: 10.1007/s41614-020-0040-2.
  39. Schekochihin A.A., Cowley S.C., Dorland W., Yermolaev Yu.I., Lodkina I.G., Chesalin L.S. Astrophysical gyrokinetics: Kinetic and fluid turbulent cascades in magnetized weakly collisional plasmas. Astrophys. J. Suppl. 2009, vol. 182, pp. 310–377. doi: 10.1088/0067-0049/182/1/310.
  40. Schwartz S.J., Burgess D., Moses J.J. Low-frequency waves in the Earth’s magnetosheath: Present status. Ann. Geophys. 1996, vol. 14, pp. 1134–1150. doi: 10.1007/s00585-996-1134-z.
  41. Shevyrev N.N., Zastenker G.N. Some features of the plasma flow in the magnetosheath behind quasi-parallel and quasi-perpendicular bow shocks. Planet. Space Sci. 2005, vol. 53, pp. 95–102. doi: 10.1016/j.pss.2004.09.033.
  42. Spreiter J.R., Summers A.L., Alksne A.Y. Hydromagnetic flow around the magnetosphere. Planet. Space Sci. 1966, vol. 14, pp. 223–253.
  43. Turc L., Fontaine D., Escoubet C.P., Kilpua E.K.J., Dimmock A.P. Statistical study of the alteration of the magnetic structure of magnetic clouds in the Earth’s magnetosheath. J. Geophys. Res.: Space Phys. 2017, vol. 122, pp. 2956–2972. doi: 10.1002/2016JA023654.
  44. Tóth G., Sokolov I., Gombosi T., Chesney D., Clauer C.R., De Zeeuw D.L., et al. Space Weather Modeling Framework: A new tool for the space science community. J. Geophys. Res. 2005, vol. 110, A12226. doi: 10.1029/2005JA011126.
  45. Woodham L.D., Wicks R.T., Verscharen D., Owen C.J. The role of proton cyclotron resonance as a dissipation mechanism in solar wind turbulence: A statistical study at ion-kinetic scales. Astrophys. J. 2018, vol. 856, no. 1, 49. doi: 10.3847/1538-4357/aab03d.
  46. Yermolaev Y.I., Nikolaeva N.S., Lodkina I.G., Yermolaev M.Y. Catalog of large-scale solar wind phenomena during 1976–2000. Cosmic Res. 2009, vol. 47, pp. 81–94. doi: 10.1134/S0010952509020014.
  47. Yermolaev Y.I., Lodkina I.G., Nikolaeva N.S., Yermolaev M.Y. Dynamics of large-scale solar-wind streams obtained by the double superposed epoch analysis. J. Geophys. Res.: Space Phys. 2015, vol. 120, pp. 7094–7106. doi: 10.1002/2015JA021274.
  48. Zimbardo G., Greco A., Sorriso-Valvo L., Perri S., Vörös Z., Aburjania G., et al. Magnetic turbulence in the geospace environment. Space Sci. Rev. 2010, vol. 156, pp. 89–134. doi: 10.1007/s11214-010-9692-5.
  49. URL: http://iki.rssi.ru/pub/omni/catalog/ (accessed April 8, 2025).
  50. URL: https://cdaweb.gsfc.nasa.gov/sp_phys/ (accessed April 8, 2025).
  51. URL: https://wdc.kugi.kyoto-u.ac.jp/dstdir/ (accessed April 8, 2025).

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».