FEATURES OF TURBULENT CASCADE DEVELOPMENT IN THE MAGNETOSHEATH DURING ICME
- Авторлар: Rakhmanova L.S.1, Riazantseva M.O.2, Khokhlachev A.A.1, Yermolaev Y.I.1, Zastenker G.N.1
-
Мекемелер:
- Space Research Institute RAS
- Space Research Institute of RAS (IKI)
- Шығарылым: Том 11, № 3 (2025)
- Беттер: 13-21
- Бөлім: Articles
- URL: https://journals.rcsi.science/2500-0535/article/view/361857
- DOI: https://doi.org/10.12737/stp-113202502
- ID: 361857
Дәйексөз келтіру
Толық мәтін
Аннотация
Негізгі сөздер
Авторлар туралы
Liudmila Rakhmanova
Space Research Institute RAS
Email: rakhlud@gmail.com
candidate of physical and mathematical sciences 2019
Maria Riazantseva
Space Research Institute of RAS (IKI)
Email: orearm@gmail.com
Aleksander Khokhlachev
Space Research Institute RAS
Email: aleks.xaa@yandex.ru
Yuri Yermolaev
Space Research Institute RAS
Email: yermol@iki.rssi.ru
doctor of physical and mathematical sciences
Georgy Zastenker
Space Research Institute RAS
Email: gzastenk@iki.rssi.ru
doctor of physical and mathematical sciences
Әдебиет тізімі
Alexandrova O., Lacombe C., Mangeney A. Spectra and anisotropy of magnetic fluctuations in the Earth’s magnetosheath: Cluster observations. Ann. Geophys. 2008, vol. 26, iss. 11, pp. 3585–3596. doi: 10.5194/angeo-26-3585-2008. Auster H.U., Glassmeier K.H., Magnes W., Aydogar O., Baumjohann W., Constantinescu D., et al. The THEMIS Fluxgate Magnetometer. Space Sci. Rev. 2008, vol. 141, pp. 235–264. doi: 10.1007/s11214-008-9365-9. Balogh A., Carr C.M., Acuna M.H., Dunlop M.W., Beek T.J., Brown P., et al. The Cluster Magnetic Field Investigation: Overview of in-flight performance and initial results. Ann. Geophys. 2001, vol. 19, pp. 1207–1217. doi: 10.5194/angeo-19-1207-2001. Boldyrev S., Perez J.C. Spectrum of kinetic Alfven turbulence. Astrophys. J. Lett. 2012, vol. 758, no. 2, 5 p. doi: 10.1088/2041-8448205/758/2/L44. Borovsky J.E., Denton M.H. The differences between CME-driven storms and CIR-driven storms. J. Geophys. Res. 2006, vol. 111, A07S08. Boynton R.J., Balikhin M.A., Billings S.A., Sharma A.S., Amariutei O.A. Data derived NARMAX Dst model. Ann. Geophys. 2012, vol. 29, iss. 6, pp. 965–971. doi: 10.5194/angeo-29-965-2011. Bruno R., Trenchi L., Telloni D. Spectral slope variation at proton scales from fast to slow solar wind. Astrophys. J. Lett. 2014, vol. 793, L15. Burlaga L.F. Magnetic clouds. Physics of the Inner Heliosphere: vol. 2. Еds R. Schwenn and E. Marsch. Springer-Verlag, 1991, р. 1. doi: 10.1007/978-3-642-75364-0_1. Czaykowska A., Bauer T.M., Treumann R.A., Baumjohann W. Magnetic field fluctuations across the Earth’s bow shock. Ann. Geophys. 2001, vol. 19, iss. 3, pp. 275–287. doi: 10.5194/angeo-19-275-2001. D’Amicis R., Telloni D., Bruno R. The effect of solar-wind turbulence on magnetospheric activity. Front. Phys. 2020, vol. 8, 604857. doi: 10.3389/fphy.2020.604857. Ervin T., Jaffarove K., Badman S.T., Huang J., Rivera Ye.J., Bale S.D. Characteristics and source regions of slow Alfvénic solar wind observed by Parker Solar Probe. Astrophys. J. 2024, vol. 975, no. 2, 156. doi: 10.3847/1538-4357/ad7d00. Greenstadt E.W. Binary index for assessing local bow shock obliquity. J. Geophys. Res. 1972, vol. 77, pp. 5467–5479. doi: 10.1029/JA077i028p05467. Huang S.Y., Hadid L.Z., Sahraoui F., Yuan Z.G., Deng X.H. On the existence of the Kolmogorov inertial range in the terrestrial magnetosheath turbulence. Astrophys. J. Lett. 2017, vol. 836, no. 1, L10. doi: 10.3847/2041-8213/836/1/L10. Karimabadi H., Roytershteyn V., Vu H.X., Omelchenko Y.A., Scudder J., Daughton W., et al. The link between shocks, turbulence, and magnetic reconnection in collisionless plasmas. Phys. Plasmas. 2014, vol. 21, 062308. doi: 10.1063/1.4882875. Kilpua E., Koskinen H.E.J., Pulkkinen T.I. Coronal mass ejections and their sheath regions in interplanetary space. Living Rev. Solar Phys. 2017, vol. 14, article number 5. doi: 10.1007/s41116-017-0009-6. Lacombe C., Belmont G. Waves in the Earth’s magnetosheath: observations and interpretations. Adv. Space Res. 1995, vol. 15, pp. 329–340. doi: 10.1016/0273-1177(94)00113-F. Lepping R.P., Acũna M.H., Burlaga L.F., Farrell W.M., Slavin J.A., Schatten K.H., et al. The WIND Magnetic Field Investigation. Space Sci Rev. 1995, vol. 71, pp. 207–229. doi: 10.1007/BF00751330. McFadden J.P., Carlson C.W., Larson D., Ludlam M., Abiad R., Elliott B., et al. The THEMIS ESA plasma instrument and in-flight calibration. Space Sci. Rev. 2008, vol. 141, pp. 277–302. doi: 10.1007/s11214-008-9440-2. Ogilvie K.W., Chornay D.J., Fritzenreiter R.J., Hunsaker F., Keller J., Lobell J., et al. SWE, a comprehensive plasma instrument for the WIND spacecraft. Space Sci Rev. 1995, vol. 71, pp. 55–77. doi: 10.1007/BF00751326. Pallocchia G., Amata E., Consolini G. Geomagnetic Dst index forecast based on IMF data only. Ann. Geophys. 2006, vol. 24, pp. 989–999. doi: 10.5194/angeo-24-989-2006. Palmroth M., Ganse U., Pfau-Kempf Y., Battarbee M., Turc L., Brito T., et al. Vlasov methods in space physics and astrophysics. Living Reviews in Computational Astrophysics. 2018, vol. 4, article number 1. doi: 10.1007/s41115-018-0003-2. Podladchikova T.V., Petrukovich A.A. Extended geomagnetic storm forecast ahead of available solar wind measurements. Space Weather. 2012, vol. 10, S07001. doi: 10.1029/2012 SW000786. Pollock C., Moore T., Jacques A., Burch J., Gliese U., Saito Y., et al. Fast Plasma Investigation for Magnetospheric Multiscale. Space Sci. Rev. 2016, vol. 199, pp. 331–406. doi: 10.1007/s11214-016-0245-4. Pulinets M.S., Antonova E.E., Riazantseva M.O., Znatkova S.S., Kirpichev I.P. Comparison of the magnetic field before the subsolar magnetopause with the magnetic field in the solar wind before the bow shock. Adv. Space Res. 2014, vol. 54, pp. 604–616. doi: 10.1016/j.asr.2014.04.023. Rakhmanova L.S., Riazantseva M.O., Zastenker G.N., Verigin M.I. Effect of the magnetopause and bow shock on characteristics of plasma turbulence in the Earth’s magnetosheath. Geomagnetism and Aeronomy. 2018a, vol. 58, pp. 718–727. doi: 10.1134/S0016793218060129. Rakhmanova L., Riazantseva M., Zastenker G., Verigin M. Kinetic scale ion flux fluctuations behind the quasi-parallel and quasi-perpendicular bow shock. J. Geophys. Res.: Space Phys. 2018b, vol. 123, pp. 5300–5314. doi: 10.1029/2018JA025179. Rakhmanova L., Riazantseva M., Zastenker G. Plasma and magnetic field turbulence in the Earth’s magnetosheath at ion scales. Front. Astron. Space Sci. 2021, vol. 7, 616635. doi: 10.3389/fspas.2020.616635. Rakhmanova L., Khokhlachev A., Riazantseva M., Yermolaev Y., Zastenker G. Modification of the turbulence properties at the bow shock: Statistical results. Front. Astron. Space Sci. 2024a, vol. 11, 1379664. doi: 10.3389/fspas.2024.1379664. Rakhmanova L., Khokhlachev A., Riazantseva M., Yermolaev Y., Zastenker G. Changes in and recovery of the turbulence properties in the magnetosheath for different solar wind streams. Universe. 2024b, vol. 10, no. 5, 194. doi: 10.3390/universe10050194. Rakhmanova L., Khokhlachev A., Riazantseva M., Yermolaev Y., Zastenker G. Turbulence development behind the bow shock during disturbed and undisturbed solar wind. Sol.-Terr. Phys. 2024c, vol. 10, no. 2, pp. 13–25. DOI: 10.12737/ stp-102202402. Rème H., Aoustin C., Bosqued J.M., Dandouras I., Lavraud B., Sauvaud J.A., et al. First multispacecraft ion measurements in and near the Earth’s magnetosphere with the identical Cluster Ion Spectrometry (CIS) experiment. Ann. Geophys. 2001, vol. 19, pp. 1303–1354. doi: 10.5194/angeo-19-1303-2001. Riazantseva M.O., Rakhmanova L.S., Zastenker G.N., Yermolaev Yu.I., Lodkina I.G., Chesalin L.S. Small-scale plasma fluctuations in fast and slow solar wind streams. Cosmic Res. 2019, vol. 57, no. 6, pp. 434–442. doi: 10.1134/S0010952519060078. Riazantseva M.O., Rakhmanova L.S., Yermolaev Yu.I., Lodkina I.G., Zastenker G.N., Chesalin L.S. Characteristics of turbulent solar wind flow in plasma compression regions. Cosmic Res., 2020, vol. 58, no. 6, pp. 468–477. doi: 10.1134/S001 095252006009X. Riazantseva M.O., Treves T.V., Khabarova O., Rakhmanova L.S., Yermolaev Yu.I., Khokhlachev A.A. Linking turbulent interplanetary magnetic field fluctuations and current sheets. Universe. 2024, vol. 10, no. 11, 417. doi: 10.3390/universe10110417. Richardson I.G., Cane H.V. Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996–2009): catalog and summary of properties. Solar Phys. 2010, vol. 264, pp. 189–237. doi: 10.1007/s11207-010-9568-6. Russell C.T., Anderson B.J., Baumjohann W., Bromund K.R., Dearborn D., Fischer D., et al. The Magnetospheric Multiscale Magnetometers. Space Sci Rev. 2016, vol. 199, pp. 189–256. doi: 10.1007/s11214-014-0057-3. Šafránková J., Hayosh M., Gutinska O., Němeček Z., Přech L. Reliability of prediction of the magnetosheath Bz component from the interplanetary magnetic field observations. J. Geophys. Res. 2009, vol. 114, A12213. doi: 10.1029/2009A014552. Sahraoui F., Hadid L., Huang S. Magnetohydrodynamic and kinetic scale turbulence in the near-Earth space plasmas: A (short) biased review. Rev. Mod. Phys. 2020, vol. 4, article number 4. doi: 10.1007/s41614-020-0040-2. Schekochihin A.A., Cowley S.C., Dorland W., Yermolaev Yu.I., Lodkina I.G., Chesalin L.S. Astrophysical gyrokinetics: Kinetic and fluid turbulent cascades in magnetized weakly collisional plasmas. Astrophys. J. Suppl. 2009, vol. 182, pp. 310–377. doi: 10.1088/0067-0049/182/1/310. Schwartz S.J., Burgess D., Moses J.J. Low-frequency waves in the Earth’s magnetosheath: Present status. Ann. Geophys. 1996, vol. 14, pp. 1134–1150. doi: 10.1007/s00585-996-1134-z. Shevyrev N.N., Zastenker G.N. Some features of the plasma flow in the magnetosheath behind quasi-parallel and quasi-perpendicular bow shocks. Planet. Space Sci. 2005, vol. 53, pp. 95–102. doi: 10.1016/j.pss.2004.09.033. Spreiter J.R., Summers A.L., Alksne A.Y. Hydromagnetic flow around the magnetosphere. Planet. Space Sci. 1966, vol. 14, pp. 223–253. Turc L., Fontaine D., Escoubet C.P., Kilpua E.K.J., Dimmock A.P. Statistical study of the alteration of the magnetic structure of magnetic clouds in the Earth’s magnetosheath. J. Geophys. Res.: Space Phys. 2017, vol. 122, pp. 2956–2972. doi: 10.1002/2016JA023654. Tóth G., Sokolov I., Gombosi T., Chesney D., Clauer C.R., De Zeeuw D.L., et al. Space Weather Modeling Framework: A new tool for the space science community. J. Geophys. Res. 2005, vol. 110, A12226. doi: 10.1029/2005JA011126. Woodham L.D., Wicks R.T., Verscharen D., Owen C.J. The role of proton cyclotron resonance as a dissipation mechanism in solar wind turbulence: A statistical study at ion-kinetic scales. Astrophys. J. 2018, vol. 856, no. 1, 49. doi: 10.3847/1538-4357/aab03d. Yermolaev Y.I., Nikolaeva N.S., Lodkina I.G., Yermolaev M.Y. Catalog of large-scale solar wind phenomena during 1976–2000. Cosmic Res. 2009, vol. 47, pp. 81–94. doi: 10.1134/S0010952509020014. Yermolaev Y.I., Lodkina I.G., Nikolaeva N.S., Yermolaev M.Y. Dynamics of large-scale solar-wind streams obtained by the double superposed epoch analysis. J. Geophys. Res.: Space Phys. 2015, vol. 120, pp. 7094–7106. doi: 10.1002/2015JA021274. Zimbardo G., Greco A., Sorriso-Valvo L., Perri S., Vörös Z., Aburjania G., et al. Magnetic turbulence in the geospace environment. Space Sci. Rev. 2010, vol. 156, pp. 89–134. doi: 10.1007/s11214-010-9692-5. URL: http://iki.rssi.ru/pub/omni/catalog/ (accessed April 8, 2025). URL: https://cdaweb.gsfc.nasa.gov/sp_phys/ (accessed April 8, 2025). URL: https://wdc.kugi.kyoto-u.ac.jp/dstdir/ (accessed April 8, 2025).
Қосымша файлдар
