Конфигурирование память-ориентированной системы управления движением

Обложка

Цитировать

Полный текст

Аннотация

В статье исследуются возможности конфигурирования цикла управления, т.е. определения распределения интервалов времени, необходимых для выполнения отдельных операций управления, по потокам исполнения, обеспечивающего реализуемость управления. Параллельное выполнение операций управления, там, где это допускается алгоритмом управления, в случае успешного конфигурирования цикла управления позволяет существенно снизить его длительность. Объектом исследования в данной статье являются системы управления с объектно-ориентированной архитектурой, предполагающей комбинированную вертикально-горизонтальную интеграцию функциональных блоков и модулей, распределяющих между собой все задачи управления. Данная архитектура реализуется посредством акторной инструментальной модели с использованием метапрограммирования. Такие системы управления наилучшим образом обеспечивают сокращение длительности цикла управления за счет параллельного выполнения вычислительных и других операций управления. Рассматриваются несколько подходов к конфигурированию цикла управления: без оптимизации, с комбинаторной оптимизацией по времени, с комбинаторной оптимизацией по ресурсам системы. Также достижение конфигурации, близкой к оптимальной, может быть достигнуто за счет использования адаптивного конфигурирования. Исследования показывают, что задача конфигурирования цикла системы управления имеет несколько вариантов решения. Практическое получение решения задачи конфигурирования в случае комбинаторной оптимизации связано с существенными сложностями, обусловленными высокой алгоритмической сложностью задачи и большим объемом потребных вычислений, быстро растущим по мере увеличения числа операций на этапах цикла управления. Возможным средством преодоления этих сложностей является использование стохастических методов, резко снижающих потребный объем вычислений. Также существенное снижение сложности задачи конфигурирования цикла системы управления можно добиться при использовании адаптивного конфигурирования, имеющего два варианта реализации. Первый вариант – это конфигурирование цикла системы управления в реальном времени. Второй вариант – это определение квазиоптимальной конфигурации на основе многократного конфигурирования с разными исходными данными и последующего сравнения получаемых результатов.

Об авторах

Александр Александрович Зеленский

Научно-производственный комплекс "Технологический центр"

Email: zelenskyaa@gmail.com
ORCID iD: 0000-0002-3464-538X
ведущий научный сотрудник;

Андрей Армович Грибков

Научно-производственный комплекс "Технологический центр"

Email: andarmo@yandex.ru
ORCID iD: 0000-0002-9734-105X
ведущий научный сотрудник;

Список литературы

  1. Зеленский А.А., Кузнецов А.П., Илюхин Ю.В., Грибков А.А. Реализуемость управления движением промышленных роботов, станков с ЧПУ и мехатронных систем. Часть 1 // Вестник машиностроения. 2022. №11. С. 43-51.
  2. Зеленский А.А., Кузнецов А.П., Илюхин Ю.В., Грибков А.А. Реализуемость управления движением промышленных роботов, станков с ЧПУ и мехатронных систем. Часть 2 // Вестник машиностроения. 2023. №3. С. 213-220.
  3. Cell Broadband Engine Programming Tutorial. Version 2.0. IBM Systems and Technology Group, December 15, 2006. URL: https://arcb.csc.ncsu.edu/~mueller/cluster/ps3/CBE_Tutorial_v2.0_15December2006.pdf
  4. Ghose S., Hsieh K., Boroumand A., Ausavarungnirun R., Mutlu O. Enabling the Adoption of Processing-in-Memory: Challenges, Mechanisms, Future Research Directions. 2018. URL: https://arxiv.org/abs/1802.00320
  5. Singh G., Chelini L., Corda S., Awan A.J., Stuijk S., Jordans R., Corporaal H., Boonstraz A. Near-Memory Computing: Past, Present, and Future. August 2019, Microprocessors and Microsystems 71. URL: https://www.researchgate.net/publication/335028505_Near-Memory_Computing_Past_Present_and_Future
  6. Зеленский А.А., Ивановский С.П., Илюхин Ю.В., Грибков А.А. Программирование доверенной память-центрической системы управления движением робототехнических и мехатронных систем // Вестник Московского авиационного института. 2022. Т. 29. № 4. С. 197-210.
  7. Juurlink B., Meenderinck C. Amdahl's law for predicting the future of multicores considered harmful // ACM SIGARCH Computer Architecture News, 40 (2012), 2. pp. 1-9.
  8. Кнут Д.Э. Искусство программирования, том 3. Сортировка и поиск. М.: ООО "И.Д. Вильямс", 2018. 832 с.
  9. Time Complexities of all Sorting Algorithms. Geeks for Geeks, 2023. URL: https://www.geeksforgeeks.org/time-complexities-of-all-sorting-algorithms/
  10. Heap Algorithms. Massachusetts Institute of Technology, 2010. URL: https://courses.csail.mit.edu/6.006/fall10/handouts/recitation10-8.pdf
  11. Binary Insertion Sort. Geeks for Geeks, 2023. URL: https://www.geeksforgeeks.org/binary-insertion-sort/

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».