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Аннотация: Снижение кровли мерзлоты и повышение температуры грунтов приводят к
риску газопроявлений из многолетнемерзлых пород. Потенциальную опасность эмиссии
парниковых газов в атмосферу представляют газонасыщенные эпикриогенные морские
мерзлые отложения, а также некоторые типы подземных льдов Ямала. Проведено
исследование генезиса подземных льдов в пределах стационара «Васькины Дачи» в
2019–2021 гг. В строении III равнины на Центральном Ямале изучены четыре группы
подземных льдов – повторно-жильные льды, псевдоморфоза, пластовые льды. Целью
работы является исследование генезиса подземных льдов и их взаимосвязи с
вмещающими отложениями в условиях изменения климата. На основе данных об
особенностях залегания льдов в естественных обнажениях, литологическом составе
вмещающих отложений, петрографических особенностях льдов в шлифах авторы статьи
предлагают выделить геохимические маркеры, указывающие на генезис льдов.
У становлено криолитологическое строение, определен литологический состав
отложений на лазерном гранулометре, определен ионный состав льдов и отложений
методами ионометрического титрования, титриметрии, атомной абсорбции, атомной
эмиссии, турбидиметрии и ионометрии. Проведено исследование структуры и текстуры
льда, ионного, элементного состава методом масс-спектрометрии с индуктивно-
связанной плазмой. У становлена взаимосвязь химического состава, текстуры и
структуры повторно-жильных, линзовидных, пластовых льдов и вмещающих отложений. В
верхней части разреза на границе слоя озерных отложений установлено
континентальное засоление, а в нижней части разреза химический состав указывает на
прибрежно-морские условия. По ионному составу подтвержден прибрежно-морской
генезис пластовых льдов; выделена засоленная псевдоморфоза, отличающаяся по
структуре и текстуре льда и химическому составу от повторно-жильных льдов.
Распределения редкоземельных элементов позволили определить условия
льдообразования. Линзовидный лед и псевдоморфоза имеют отрицательную цериевую и
положительную европиевую аномалии в отличии от повторно-жильных льдов.
У становлено промерзание в обводненных условиях для пластового, линзовидного льда
и псевдоморфозы. Обоснована применимость геохимических маркеров для уточнения
условий при формировании подземных льдов и генезиса отложений с учетом
криолитологического строения разрезов.
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подземный лед, геохимия подземных льдов, геокриологические условия, лантаноиды,
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интенсивность водной миграции, микроэлементный состав льда, петрография льда
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Введение

По данным Гидрометцентра России 2024 год стал вторым самым теплым годом за период
наблюдения с 1891 г. Снижение кровли мерзлоты, повышение температуры грунтов

приводят к риску газопроявлений из многолетнемерзлых пород (ММП) [1].
Потенциальную опасность эмиссии парниковых газов в атмосферу представляют
газонасыщенные эпикриогенные морские мерзлые отложения, а также некоторые типы

подземных льдов Ямала, которые имеют высокие содержания CO2, CH4 
[2].

Для оценки газонасыщенности подземных льдов важное значение имеют их генезис и
распространение на равнинах Севера Западной Сибири, Севера Канады и Аляски.
Однако генезис пластовых льдов (ПЛ) остается дискуссионным: ледниковым [3–11],
морским или внуригрунтовым [12–17]. Различия в интерпретации результатов
исследований связано с тем, что термин «пластовый лед» носит собирательный характер

и не отражает их генезис [14]. Идентификация механизма и условий формирования льдов
часто осложнена парагенезисом ПЛ с повторно-жильными (ПЖ Л) и линзовидными,

трещинными и клиновидными льдами [15, 18–20].

Пластовые льды Центрального Ямала большинство современных авторов относят к
внутригрунтовому типу. Одни считают, что формирование ПЛ связано с промерзанием
вод подозерных таликов в морских отложениях в субаэральной обстановке [15–16];
другие - с промерзанием прибрежно-морских осадков с участием морских вод,

разбавленных поверхностными водами в субаквальных условиях [13, 17] или за счет

инъекций и промерзания сеноманских вод [21].

На основе данных об особенностях залегания льдов в естественных обнажениях,
литологическом составе вмещающих отложений, петрографических особенностях льдов в
шлифах авторы статьи предлагают выделить геохимические маркеры, указывающие на
генезис льдов.

Методы исследований

На Центральном Ямале в 2019 г. установлено криолитологическое строение разрезов
стенок термоцирков (ТЦ) №№ 1, 2, 4, 5 и 5н, собраны образцы отложений и монолитов
льда. Определены суммарная влажность, гранулометрический состав (31 проба), состав
основных ионов водных вытяжек из отложений (17 проб), ионный и микроэлементный
состав ПЛ (3), ПЖ Л (4), псевдоморфозы по ПЖ Л (1) и линзовидного льда (2).

Поскольку генезис льда также определяется генезисом вмещающей четвертичной толщи,
для корреляции разрезов определен состав пород на гранулометре Mastersizer 3000 с
ультразвуковой диспергацией в Институте криосферы Земли ТюмНЦ СО РАН.

Количество и соотношение ионов во льдах и отложениях отражают условия их

формирования и источник вод [13, 21, 22]. Для определения морского типа исходных вод

используют соотношения ионов Cl->> SO4
2-> HCO3

- и Na+ >> Mg2+ > Ca2+ [14, 22]. Для

этого монолиты льда были сохранены в мёрзлом состоянии до проведения анализа в
Тюменском индустриальном университете методами ионометрического титрования
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(HCO3
-), титриметрии (Cl-), атомной абсорбции (Ca+2, Mg+2), атомной эмиссии (Na+, К+),

турбидиметрии (SO4
2-) и ионометрии (pH). Часть расплава льда отфильтрована и

заморожена до минус 17 °С и отправлена вместе с монолитами льда для анализа по

ме тодике [20] в Лабораторию гидрохимии и химии атмосферы Лимнологического
института СО РАН. После повторного замораживания минерализация проб уменьшилась
на 30 %, увеличилось значение pH на 0,3–0,5 ед. и, незначительно, изменился состав
ионов.

Для установления связи между количеством грунта во льдах и количеством
растворенных солей определено массовое содержание грунта. Для оценки засоленности

льдов использована количественная классификация [23]. Термин «степень засоленности»
или «засоленность» отложений использован по ГОСТ Р 59540-2021, а интерпретация
проведена по ГОСТ 25100-2020.

Распределение редкоземельных элементов (РЗЭ) в отложениях зависит от состава пород

и от фракционирования лантаноидов в зоне гипергенеза [24]. Выполнено определение
общего количества РЗЭ во всех типах льда и проведена оценка по величинам цериевой
(Cean) и европиевой (Euan) аномалий [20 25, 26]. Значения Cean и Euan менее 1 называют

отрицательной аномалией, а более 1 – положительной.

Для осадочных пород показатель ∑Ce/∑Y, где ∑Ce:(La-Eu), ∑Y:(Gd-Lu,Y ) используют как
индикатор климата. При гумидном литогенезе интенсивнее разрушаются полевые шпаты,
акцессорные минералы, содержащие церий, что приводит к увеличению соотношения.
Значение ΣСе/ΣY =3 рассматривают как границу между гумидными и аридными

обстановками, а для криолитозоны этот показатель может возрастать [24].

Изучены нормированные соотношения La/Sm, La/Y b, являющиеся индикаторами физико-
химических и фациальных условий диагенеза – мелководно-морских или глубоководных
[24, 27].

Текстура и структура льда изучена в проходящем и поляризованном свете, в шлифах
[28]. Для оценки расположения, размеров, формы и ориентировки кристаллов и

рассчитаны параметры: Smid – площадь сечения осредненного кристалла (см2); Cdiff–

коэффициент различия (отношение максимальной площади кристалла к минимальной);Cel

– коэффициент удлиненности (отношение максимальной диагонали к среднему
поперечнику кристалла).

Район исследования

Исследования проведены на научно-исследовательском стационаре «Васькины Дачи»

ИКЗ ТюмНЦ СО РАН на Центральном Ямале [29]. Он расположен в пределах
геоморфологических уровней с высотами 13–40 м – холмисто-увалистых казанцевской и

салехардской III, IV равнин [30]. В долинах ограниченно распространены низкие

аллювиальные поймы с высотами 3–12 м [31]. Поверхность равнин преобразована

термоденудацией и термокарстом, за счет вытаивания ПЖ Л и ПЛ [18].

На Центральном Ямале четвертичную толщу с ПЛ по генезису относят, как к ледниковой
[8–11], так и к морской, содержащей фауну каргинского периода [12–14, 32]. Авторы,
придерживаются более обоснованной современными фактами версии, что верхняя часть
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разреза равнин состоит из двух пачек: нижней – морской, верхней континентальной [14].
Возраст морских и прибрежно-морских отложений с абсолютными отметками 25–35 м

оценивают, как зырянско-каргинский; с отметками 12–20 м – как сартанский [20, 33].

В районе исследований паралельно-слоистые ПЛ имеют внутригрунтовый
сегрегационный генезис, сформированы при эпигенетическом промерзании, отличаются
более крупными кристаллами, чем ПЖ Л. ПЛ в разрезах приурочены к морским,
прибрежно-морским или субаэральным отложениям. Время формирования ПЛ оценивают

по-разному от 90–50 до 34–25 т.л.н. [14, 34]; ПЖ Л, секущие ПЛ, сформированы в

сартанский период 29–11,7 т.л.н. [34, 35] и позднее до 5.т.л н [36]; линзовидные в кровле

ММП и клиновидные льды сформированы, предположительно, в голоцене [2, 20].

Отложения ТЦ1

Термоцирк развивается на останце III равнины с полигональным микрорельефом на
берегу озера LK-031 (рис. 1А). Отложения ТЦ1 незасоленные суммой ионов 0,09–0,11
г/кг. В слоях 2 и 3 преобладают ионы кальция, натрия и гидрокарбонат-ионы (рис. 1Б).
Слой 2 по текстуре, гранулометрическому и химическому составам отнесен к
континентальным аллювиальным отложениям. Ионный состав и наличие псевдоморфозы
в слое 3 свидетельствуют о его протаивании и преобразовании. Cлой 3 по
гранулометрическому составу, аналогичен прослоям грунта в слое 4. Слоистый
ледогрунт слоя 4 отнесен к ПЛ с корковой, микролинзовидной и ячеистой текстурами.
Cлой 4 отличается преобладанием хлоридов и натрия и повышенной суммой ионов 0,36–
0,47 г/кг.

Подземные льды ТЦ1

Ледогрунтовые ПЖ Л (табл. 1) толщиной 15–25 cм вскрыты вкрест простирания ПЛ.
Контакт жил пропитан гидроокислами железа, что указывает на их эпигенетичность по
отношению к ПЛ. Льды пресные 0,07–0,10 г/л. В составе ионов преобладают
гидрокарбонаты и натрий (рис. 2). Лед содержит плёнки мути и мелкие пузырьки
воздуха. Текстура вертикально-полосчатая за счет минеральных частиц супесей. В
структуре установлены элементарные жилки с осевыми швами и зажатыми удлиненными
включения грунта. Структура представлена, преимущественно, мелкими Smid ~0,03–0,04

см2 удлиненными кристаллами, создающими полосчатость и более крупными Smid ~0,04–

0,07 см2 между элементарными жилками (рис. 3А).

Линзовидное ледяное тело, вложенное в понижение кровли ПЛ и ПЖ Л, образует
козырек. Лед имеет пресный 0,12 г/л гидрокарбонатно-хлоридный, натриевый состав. Во
льду хаотично распределены пузырьки газа. В структуре отсутствуют элементарные
жилки и осевые швы. Вогнутая параллельная слоистая текстура, образованная
удлиненными Cel=1,5 обжатыми включениями песчаного грунта, соответствует контурам

линзы и подчеркивает затек вниз вдоль клиновидного тела, что характерно для
оплавленного контакта (рис. 3Б). Структура представлена, преимущественно, мелкими

кристаллами Smid~ 0,02 см2, неоднородными по размеру Cdiff= 47; и более крупными

Smid= 0,09 см2 однородными Cdiff= 9 (рис. 3В).

Отложения ТЦ2

Термоцирк расположен на склоне III равнины на берегу озера LK-015. Cлои 3, 4 и 6
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имеют незасоленный континентальный сульфатно-кальциевый состав суммой ионов 0,06-
0,19 г/кг (рис. 1В). Супеси слоя 5 отличаются повышенной суммой ионов 0,27–0,77 г/кг с
преобладанием гидрокарбонатов и кальция (рис. 2А), что может указывает на
накопление солей при вторичном промерзании толщи. Ледогрунт слоя 7 образован
супесью с частой линзовидно-слоистой криогенной текстурой со шлирами льда толщиной
0,2-2 см. Псевдоморфозы по ледяным жилам и ожелезнение указывает на протаивание
всей видимой толщи и переработку склоновыми процессами.

Рис. 1. Естественное обнажение ТЦ1 (70.280895, 69.179702) (А); строение отложений и
условия залегания подземных льдов ТЦ1 (Б) и ТЦ2 (70.267702, 68.923545) (В): 1 –

мохово-растительный слой; 2 – пески мелкие и пылеватые; 3 –Cупеси и пески с
оторфованными прослоями; 4 – ПЛ, серые суглинки и супеси сильнольдистые; 5 – ПЖ Л;

6 – псевдоморфозы; 7 – ожелезнение; 8 – глубина сезонно-талого слоя (СТС) [37]; 9 –
реликтовая глубина СТС; 10 – места отбора проб для определения химического состава;

11 – суммарная влажность; 12 – состав водорастворимых ионов; 13–15 –
гранулометрические фракции: 13 – песков (0,25–0,05 мм), 14 – пыли (0,05–0,005 мм), 15

– глины (> 0,005 мм)

Fig. 1. Outcrop in the TC1 thermocirque (70.280895, 69.179702) (A); structure of deposits
and conditions of occurrence of ground ice of TC1 (B) and TC2 (70.267702, 68.923545) (С):
1 – moss; 2 – fine sands; 3 –sandy loam and sand with peaty interlayers; 4 – massive ice,
gray loams and sandy loams with high ice content; 5 – ice wedge; 6 – pseudomorphs; 7 –

iron hydroxide; 8 – recent base of active layer [37]; 9 – relict base of active layer; 10 –
chemical composition sampling points; 11 – total moisture; 12 – composition of water-

soluble ions; 13-15 – granulometric fractions: 13 – sand (0.25–0.05 mm), 14 – dust (0.05–
0.005 mm), 15 – clay (> 0.005 mm)
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Рис. 2. Диаграмма состава основных ионов в %-эквивалентах в расплавах подземных
льдов ТЦ1, ТЦ4, ТЦ5 и ТЦ5н: 1 – ПЖ Л; 2 – псевдоморфоза; 3 – линзовидный лед; 4 –ПЛ

Fig. 2. Diagram of the composition of the main ions in % equivalents in the melts of ground
ice of the thermocirques TC1, TC4, TC5 and TC5n: 1 – wedge ice; 2 – pseudomorphs; 3 –ice

lens; 4 –massive ice

Таблица 1. Редкоземельные элементы в подземных льдах в районе НИС Васькины Дачи

Table 1. Rare earth elements in ground ice, Vaskiny Dachi

Термо-
цирк

Тип льда Образец %
грунта

∑(РЗЭ+Y),
ppb

∑Ce/∑Y Cean Euan La/Sm La/Yb

ТЦ1 ПЖ Л Рис 1Б,
обр. 4

8,7 0,31 1,3 0,93 1,10 2,7 7,0

ПЖ Л Рис 1Б,
обр. 8

10,9 0,54 2,0 0,91 1,26 3,9 5,3

Линзовидный Рис 1Б,
обр. 5

6,5 0,78 5,3 0,08 1,19 23,7 67,2

Линзовидный
на контакте с
ПЖ Л

Рис 1Б,
обр. 7

3,7 0,45 1,2 0,89 1,63 2,3 4,0

ПЛ Рис 1Б,
обр. 6

16,9 3,41 3,0 0,85 0,89 5,9 16,1

ТЦ4 ПЖ Л – кaйма
жилы

Рис 4 0,8 0,80 2,3 0,44 2,11 9,2 13,7

ПЖ Л –
центральная
часть

Рис 4 3,0 0,60 1,4 0,77 1,90 2,6 4,0

ТЦ5 Псевдоморфоза Рис 4 48,1 0,36 3,6 0,09 2,07 27,9 20,2
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Рис 3. Текстура и структура ПЖ Л (А) и линзовидного льда (В) в шлифах; параллельная
слоистая текстура линзовидного льда в монолите с оплавленным контактом (Б): 1 –

контуры кристаллов; 2 – пузырьки воздуха; 3 – включения грунта; 4–6 – группы
кристаллов

Fig 3. Texture and structure of wedge ice (A) and ice lense (B) in thin sections; parallel
layered texture of lense ice in a monolith with a melted contact (B): 1 – contours of

crystals; 2 – air bubbles; 3 – soil inclusions; 4–6 – groups of crystals

Отложения ТЦ4, ТЦ5 и ТЦ5н

ТЦ5 и ТЦ4 вскрывают с разных сторон останец III равнины с абс. отметками до 25 м,
расположенный между двумя озерами. ТЦ5н расположен в 35 м севернее ТЦ5 на
пологом термоденудационном склоне, бровка термоцирка сниженна до абс. отметки 14 м.
В сводном разрезе отложений выделено 5 слоев (рис. 4). Во вложенных отложениях
слоя 2 увеличивается количество ионов с глубиной от 0,13 до 0,96 г/кг при неизменном
континентальном сульфатно-натриевом составе. На подошве слоя 2 засоленный песок
имеет сульфатно-кальциевый состав и сумму ионов 2,36 г/кг. В незасоленных
отложениях слоя 3 преобладают гидрокарбонаты, сульфаты, натрий и кальций суммой
0,13–0,39 г/кг. Таберированные отложения слоя 4 имеют несогласный срезающий
контакт с льдистыми подстилающими отложениями, отличаются линзовидно-ломанными
криогенными текстурами согласными со слоистостью. Слой 5 слоистого суглинистого
ледогрунта отнесен к ПЛ и имеет хлоридно-сульфатный, натриевый состав и сумму ионов
0,62 г/кг.

Химических состав отложений разреза имеет сходство с составом отложений в районе м.

Марре-Сале [20] – в верхней части разреза на границе слоя в озерных отложениях
установлено континентальное засоление, а в нижней части разреза химический состав
указывает на прибрежно-морские условия. Засоленность на контакте глин и песков –
результат промерзания, отжиманием солей в остаточный раствор и преобразованием
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химического состава [22].

Льды ТЦ4, ТЦ5 и ТЦ5н

В ТЦ4 вскрыты ПЖ Л шириной 1 м через каждые ~12 м и линзовидный лед, фиксирующий
чашу протаивания в кровле ПЛ под СТС. ПЖ Л пресные 0,10-0,11 г/л в составе
преобладают гидрокарбонаты и натрий. Лед содержит незначительное количество
минеральных пылеватых частиц (табл. 1). Текстура вертикально-полосчатая, за счет
фрагментов элементарных жилок с четкими осевыми швами в которых зажаты мелкие
круглые пузырьки воздуха и минеральные примеси. Кристаллы льда распложены
симметрично от шва имеют изометричную форму и ровные границы.

На вершине останца равнины в ТЦ5 вскрыта ледогрунтовая жила, состоящая из
клиновидных вертикально вытянутых затеков разного состава (рис. 5А). Ж ила
представлена: ледогрунтом с вертикально-волнистой прожилковой, линзовидной,
микролинзовидной текстурой сегрегационного льда (рис. 5Б), клиновидными
внедрениями вертикально-полосчатого льда; прожилками белёсого пузырчатого льда и
стекловидного льда.

Ледогрунтовая часть жилы (табл. 1) имеет слабосолёный сульфатно-гидрокарбонатный,
магниево-натриево-кальциевый состав и сумму ионов 0,46 г/л.

Вертикально-полосчатый лед выполнен чередованием минеральных прослоев с льдом-
цементом и льдом с песчаными примесями, вытянутыми пузырьками воздуха, пересечен
наклонными трещинами с грунтом (рис. 5В). Структура льда представлена крупными Smid

~0,04–0,33 см2 вытянутыми кристаллами Cel=1,6, и мелкими локализованными в области

сгущения минеральных примесей (рис. 6А).

Белесый пузырчатый лед имеет текстуру льда, выполненную множеством трубчатых
пузырьков и между удлиненными кристаллами зажаты рассеянные минеральных частицы.
Вертикально-полосчатый и белесый полосчатый сложены вертикально и наклонно
ориентированными удлиненными изометричными кристаллами, с многочисленными
пузырьками воздуха, вытянутыми вверх, что указывает на их миграцию в свободной

воде. Структура стекловидного льда представлена крупными Smid ~ 0,02–0,42 см2 слабо

вытянутыми вертикально Cel= 1,4 кристаллами, а мелкие локализованы в скоплении

примесей грунта (рис. 6Б).

Ж ила отнесена к ледогрунтовой псевдоморфозе, т.е. в ее строении участвуют прослои
грунта с сегрегационными текстурами и отсутствуют элементарные жилки.
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Рис. 4. Строение отложений и условия залегания подземных льдов ТЦ4, ТЦ5н и ТЦ5
(70.231805,69.014393): 1 – мохово-растительный слой, торф; 2 – пески мелкие и

пылеватые; 3 – супеси и суглинки слоистые с оторфованными прослоями, таберальный
комплекс; 4 – серые суглинки и супеси сильнольдистые; 5 – вложенные озерные

отложения; 6 – линза льда; 7 – повторно-жильный лед; 8 – ледогрунтовая-жила; 9 –

ожелезнение; 10 – современная глубина СТС [37]; 11 – реликтовая глубина СТС; 12 –
суммарная влажность 13 – места отбора проб для определения химического состава; 14

– состав водорастворимых ионов; 15–17 – гранулометрические фракции: 15 – песков
(0,25–0,05 мм), 16 – пыли (0,05–0,005 мм), 17 – глины (> 0,005 мм)

Fig. 4. Structure of deposits and the conditions of occurrence of ground ice TC4, TC5n and
TC5 (70.231805,69.014393): 1 – moss; 2 – fine sands; 3 – layered sandy loams and loams

with peat interlayers, taberal complex; 4 – gray loams and sandy loams with high ice
content; 5 – embedded lacustrine deposits; 6 – ice lens; 7 – wedge ice; 8 – ice–soil vein; 9

– iron hydroxide; 10 – recent base of active layer [37]; 11 – relict base of active layer; 12 –
total moisture; 13 – chemical composition sampling points; 14 – composition of water–

soluble ions; 15–17 – granulometric fractions: 15 – sand (0.25–0.05 mm), 16 – dust (0.05–
0.005 mm), 17 – clay (> 0.005 mm)

А

Б В
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Рис. 5. Вертикально-полосчатое строение ледогрунтовой псевдоморфозы ТЦ5 (А);
вертикальная шлировая текстура ледогрунтовой части (Б); вертикально-полосчатый лед

с элементарной жилкой (В): 1 – границы псевдоморфозы; 2 – границы вертикально-
полосчатого льда (обр.1) и стекловидного льда (обр. 3); 3 –белёсый пузырчатый лед

(обр. 2); 4 – граница ледогрунта; 5 – осыпь; 6 – граница СТС; 7 – места отбора проб; 8 –
номер монолита

Fig. 5. Vertically banded ice-soil pseudomorph TC5 – detail of Fig. 3A (A); vertical layered
cryostructure of the sandy part (B); vertically wavy texture of the icy sediments with an ice
vein indicated (B): 1 – pseudomorph boundaries; 2 – boundary of “clean” ice (sample 1) and
glassy ice (sample 3); 3 – bubbly ice (sample 2); 4 – icy sediments boundary; 5 – scree; 6 –

active layer; 7 – sampling sites; 8 – monolith number
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Рис. 6. Текстура и структура в шлифах вертикально-полосчатого (А) и стекловидного (Б)
льдов псевдоморфозы в термоцирке ТЦ5: 1 – контуры кристаллов; 2 – пузырьки воздуха;

3 – включения грунта; 4–6 – группы кристаллов

Fig. 6. Ice structure in thin sections of vertically layered (A) and glassy (B) ice of
pseudomorphs in the TC5 thermocirque: 1 – crystal contours; 2 – air bubbles; 3 – soil

inclusions; 4–6 – crystal groups

Обсуждение результатов исследований подземных льдов

В строении III равнины выделены четыре группы подземных льдов – ПЖ Л,
ледогрунтовая псевдоморфоза, ПЛ, и линзовидные льды над кровлей ММП.

Один из критериев сегрегационного генезиса ПЛ является изменение ионного состава
воды с глубиной. Погребенный ледниковый лед, должен иметь резкие разрывы между

ионным составом ПЛ и вмещающей толщи [38], а также малое содержание ионов [25].
Состав ионов и минерализация ПЛ Центрального Ямала меняется по разрезу с глубиной
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от 10 до 250 мг/л [16, 39, 40]. При этом минерализация текстурообразующих льдов

вмещающих отложений выше, чем у чистого ПЛ [40]. В составе ионов преобладают

хлориды, гидрокарбонаты и натрий, реже – сульфаты и магний [21, 22]. Преобладание
морских ионов в ПЛ связывают с сегрегационным генезисом льда в прибрежно-морских

отложениях [3].

Ледогрунтовая ПЛ в ТЦ1 имеет слабозасоленный состав, соответствующий прибрежно-

морским условиям – близка по составу ионов к ПЛ центрального и западного Ямала [14,

21]. По криолитологическим особенностям разреза ТЦ1 и ионному составу отложений
установлено протаивание верхней части ПЛ с прослоями грунта, просадка и уплотнение
отложений, их опреснение и смена химического состава с прибрежно-морского на
континентальный. При последующем промерзании над сниженной кровлей ПЛ
происходило отжиманием солей в остаточный раствор с образованием засоленных
прослоев грунта в таберальных отложениях и был образован линзовидный лёд.

Структура и текстура линзовидного ледяного тела в разрезе ТЦ1 отличается от ПЖ Л
хаотичным распределением пузырьков газа, отсутствием элементарных жилок (рис. 3В).
Линзовидный лед по составу ионов близок к составу ПЛ и отличается от состава ПЖ Л
(рис. 2). Лед сформирован при вторичном промерзании чаши протаивания в кровле
пластового льда за счет оттаивания ПЛ с ПЖ Л и фильтрации воды через перекрывающие
отложения. Следовательно, лед имеет инфильтрационно-сегрегационный генезис.

ПЛ ТЦ5н на глубине 1 м от кровли отличается преобладанием континентальных ионов –
сульфатов. Вероятно, прибрежно-морские отложения ПЛ были опреснены или при
частичном протаивании на дне термоцирка, или за счет миграции внутригрунтовых
таликовых вод в не полностью оттаявший ПЛ. Изотопные данные подтверждают

возможность процесса обмена влагой между ПЛ и СТС [33].

ПЖ Л в ТЦ1 и ТЦ4 имеют четко выраженную вертикальную полосчатость, элементарные
жилки с осевыми швами, в которых зажаты удлиненные включения грунта, что является
признаком повторно-жильного генезиса льда, а их ожелезненные контакты указывают на
эпигенетический тип по отношению к ПЛ (рис. 4).

ПЖ Л Центрального и Западного Ямала, преимущественно, имеют минерализацию около
30 мг/л и гидрокарбонатно-хлоридный, натриевый состав. В некоторых ПЖ Л отмечена
повышенная минерализация 70–200 мг/л, что может быть связано с миграцией солей из

отложений или попаданием грунта в состав льда [16, 25]. Состав ПЖ Л в ТЦ1 и ТЦ4
пресный и соответствуют континентальному источнику воды; их состав близок к составу
отложений слоя 3 в ТЦ1 и отличается от состава ПЛ.

Строение ледогрунтовой псевдоморфозы в разрезе ТЦ5 (рис. 6), обусловлено наличием
затеков: песчаных с сегрегационными текстурами, сегрегационных и конжеляционных
льдов, с более крупными кристаллами льда, чем в ПЖ Л. Она сформирована после
протаивания ПЖ Л, в результате неоднократного возникновения полостей протаивания,
затекания в них разжиженного грунта или свободной воды сверху, со стенок и
всестороннего промерзании заполнителя, что привело к сочетанию в жиле
сегрегационных, конжеляционных льдов и грунтов с сегрегационными шлирами.

Псевдоморфоза ТЦ5 засолена за счет большого количества включений грунта, однако
соотношения ионов близки к составу ПЖ Л изученных разрезов (рис. 2), поскольку
источником формирования псевдоморфозы были воды вытаивающей жилы.
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На химических состав ПЖ Л влияют атмосферные аэрозоли, поверхностные воды и
химический состав ионов в поровых растворах вмещающих отложений. Для ПЖ Л,
источником которых являются атмосферные осадки, содержащие континентальные

аэрозоли Cean ~ 0,7–0,8 и Euan ~ 0,7–1,1 [25]. В узких ПЖ Л ТЦ1 Ceanи Euan аномалии ~1,

что соответствуют континентальному источнику воды и попаданию в состав жил

поверхностных вод [25].

В ПЖ Л ТЦ4 в центральной части жила имеет Ceanсоответствующую атмосферным осадкам

с континентальными аэрозолями, а на контакте грунтом и ПЛ отличается отрицательной

Ceanи положительной Euan из-за влияния прибрежно-морского генезиса толщи [26].

Линзовидный лед ТЦ1 имеет сильно отрицательную Cean, что отличает его от ПЖ Л. Такие

значения характерны для льдов сегрегационного генезиса в прибрежно-морских

отложениях [26].

Псевдоморфоза ТЦ5 имеет сильно отрицательную Cean и положительную Euan, что

является показателем полного вытаивания льда ПЖ Л и преобразованием талых вод при
контакте со вмещающими отложениями, и последующим промерзанием.

Наибольшими значениями общего количества редкоземельных элементов отличаются
внутригрунтовые залежи ПЛ, а В ПЖ Л значения ниже (табл. 1).

Наибольшие значения соотношений ∑Ce/∑Y  и La/Sm, La/Y b имеют ПЛ, линзовидный лед

и ледогрунтовая псевдоморфоза, которые промерзали в обводненном состоянии [41].
Значения ∑Ce/∑Y  в ПЛ соответствуют прибрежно-морским криогумидным условиям; в
линзовидном льду – криогумидным условиям болот и озер; в псевдоморфозе –
криогумидным условиям и локальным обводнением, в ПЖ Л – криоаридным условиям.

Заключение

В строении III равнины на Центральном Ямале выделены и изучены четыре группы
подземных льдов – ПЖ Л, псевдоморфоза по ПЖ Л, ПЛ, и линзовидные льды.

Комплекс криолитологических и геохимических методов позволил уточнить
синкриогенный и эпикриогенный типы вмещающих толщ, сегрегационный,
конжеляционный и повторно-жильный генезис подземных льдов, их геохимический и
микроэлементный состав, необходимые для установления условий их формирования.

Ионный состав и распределение редкоземельных элементов в расплавах льда показали,
что льды формировались из разных источников вод: атмосферных осадков,
поверхностных континентальных вод, растворов прибрежно-морских осадков,
внутригрунтовых вод из оттаявших отложений.

В верхней части разреза на границе слоя озерных отложений установлено
континентальное засоление, а в нижней части разреза химический состав указывает на
прибрежно-морские условия. По ионному составу подтвержден прибрежно-морской
генезис ПЛ; выделена засоленная псевдоморфоза, отличающаяся по структуре и
текстуре льда и химическому составу от ПЖ Л.

Распределения РЗЭ позволяют четко определять условия льдообразования: по
отрицательной Cean и положительной Euan установлено отличие линзовидного льда в ТЦ1

и псевдоморфозы в ТЦ5 от льдов ПЖ Л; по соотношению ∑Ce/∑Y  установлено
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промерзание в обводненных условиях для пластового, линзовидного льда и
псевдоморфозы. Обоснована применимость геохимических маркеров для уточнения
условий при формирования подземных льдов и генезиса отложений с учетом
криолитологического строения разрезов.
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Результаты процедуры рецензирования статьи

В связи с политикой двойного слепого рецензирования личность рецензента не
раскрывается. 
Со списком рецензентов издательства можно ознакомиться здесь.

Предметом изучения в статье являются геохимические методы идентификации генезиса
подземных льдов Центрального Ямала.
Тема исследования актуальна. Автор отмечает, что для оценки газонасыщенности
подземных льдов важное значение имеют их генезис и распространение на равнинах
Севера Западной Сибири, Севера Канады и Аляски. Однако генезис пластовых льдов
остается дискуссионным, является ли он ледниковым, морским или внутри грунтовым.
Термин «пластовый лед» носит собирательный характер и не отражает их генезис,
поэтому оценка и изучение геохимических методов идентификации генезиса подземных
льдов Центрального Ямала является актуальным. Исследования проведены на научно-
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исследовательском стационаре «Васькины Дачи» ИКЗ ТюмНЦ СО РАН на Центральном
Ямале, он расположен в пределах геоморфологических уровней с высотами 13–40 м –
холмисто-увалистых казанцевской и салехардской III, IV равнин.
Методология исследования основана на применении метода монолитов льда для оценки
криолитологического строения разрезов стенок термоцирков и геохимических методов
идентификации генезиса подземных льдов. Состав пород на гранулометре Mastersizer
3000 с ультразвуковой диспергацией в Институте криосферы Земли ТюмНЦ СО РАН.
Монолиты льда сохранены в мёрзлом состоянии до проведения анализа методами
ионометрического титрования (HCO3-), титриметрии (Cl-), атомной абсорбции (Ca+2,
Mg+2), атомной эмиссии (Na+, К+), турбидиметрии (SO42-) и ионометрии (pH). Для
оценки засоленности льдов использована количественная классификация по ГОСТ Р
59540-2021, интерпретация проведена по ГОСТ 25100-2020.
Научная новизна исследований в статье заключается в том, что авторы впервые
предлагают выделить геохимические маркеры, указывающие на генезис льдов на
основе данных об особенностях залегания льдов в естественных обнажениях,
литологическом составе вмещающих отложений, петрографических особенностях льдов
в шлифах.
Стиль статьи – научный. Стиль статьи, ее структура и объём соответствуют требованиям
журнала «Арктика и Антарктика». Результаты исследований широко представлены в
таблицах и рисунках. Комплекс криолитологических и геохимических методов позволил
авторам уточнить синкриогенный и эпикриогенный типы вмещающих толщ,
сегрегационный, конжеляционный и повторно-жильный генезис подземных льдов, их
геохимический и микроэлементный состав, необходимые для установления условий их
формирования. У становлено, что льды формировались из разных источников вод:
атмосферных осадков, поверхностных континентальных вод, растворов прибрежно-
морских осадков, внутригрунтовых вод из оттаявших отложений.
Библиография статьи слишком обширна и включает в себя 41 литературный источник, в
том числе 10 -на иностранном языке. Считаем, что источники под номерами 39 и 41
следует исключить из библиографии. Поскольку это очень старые издания (более 30-
летней давности), а методы из источника номер 41, на которые ссылаются авторы, в
настоящее время также актуализированы в более новых изданиях.
Выводы в статье достаточно обоснованы. Авторами установлено, что по ионному составу
подтвержден прибрежно-морской генезис подземных льдов; выделена засоленная
псевдоморфоза, отличающаяся по структуре и текстуре льда и химическому составу от
ПЖ Л. Обоснована применимость геохимических маркеров для уточнения условий при
формирования подземных льдов и генезиса отложений с учетом криолитологического
строения разрезов.
Данная статья может быть полезна широкому кругу ученых. Рецензируемая статья
рекомендуется к опубликованию в журнале «Арктика и Антарктика» после устранения
незначительных замечаний.
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