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Аннотация: Настоящее исследование посвящено инженерно-геокриологической оценке

теплового воздействия добычи минерального сырья на деградацию многолетнемерзлых

пород в пределах арктической криолитозоны России. Работа сосредоточена на

Юньягинском угольном разрезе и прилегающих подземных шахтах Печорского угольного

бассейна, включая Воргашорскую, Воркутинскую и Заполярную шахты. Эти объекты

размещены в районах с повсеместным распространением многолетнемёрзлых грунтов и

подвержены возрастающему антропогенному тепловому воздействию, связанному с

открытой и подземной добычей угля. В исследовании рассматривается, каким образом

устойчивые тепловые нагрузки от производственной инфраструктуры, отвалов и

вентиляционных выбросов способствуют увеличению глубины сезонного протаивания,

перераспределению влаги и снижению прочностных характеристик мерзлых грунтов.

Особое внимание уделено пространственной неоднородности температурных аномалий и

их зависимости от технологических факторов, таких как интенсивность отработки,

параметры вентиляции и температура шахтных вод. В работе использован комплексный

подход, включающий натурный температурный мониторинг, бурение инженерно-

геологических скважин, лабораторные испытания образцов мерзлых грунтов и

численное моделирование процессов теплопереноса для оценки степени и темпов

деградации многолетнемерзлых пород под тепловым воздействием. Научная новизна

исследования заключается в количественной характеристике тепловых полей,

формируемых в условиях промышленной эксплуатации месторождений на фоне

многолетних многолетнемерзлых пород, а также в установлении пороговых условий, при

которых процесс деградации существенно ускоряется. Моделирование и натурные

наблюдения показали, что при плотности тепловой нагрузки, превышающей 100 Вт/м²,

протаивание многолетнемерзлой породы достигает глубины 3–4 метра за пять лет. В

зоне влияния угледобычи глубина сезонного протаивания увеличивается вдвое по

сравнению с фоновыми участками и достигает 2,8 м. Отдельные очаги полной

деградации многолетнемерзлых пород зафиксированы в районах размещения отвалов и

сброса шахтных вод, где температура грунта превышала 0°C, а содержание влаги

достигало более 35 %. Полученные результаты подтверждают необходимость внедрения

инженерных мер термозащиты — теплоизолированных платформ, пассивных

термосифонов и автоматизированных систем мониторинга — для снижения рисков

потери устойчивости инфраструктуры и обеспечения экологически безопасного освоения

Арктики.
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воздейс твие , уг ле добыча , Юньягинский разрез, Печорский угольный бассейн,

геокриология, теплоперенос, инженерная инфраструктура

1. Введение

Многолетнемёрзлые породы (ММП), охватывающие значительные территории северного

полушария, играют важную роль в функционировании климатической системы планеты,

поддержании устойчивости инженерной инфраструктуры и сохранении углеродного

баланса. В условиях глобального потепления и антропогенного воздействия деградация

многолетнемерзлых пород становится одной из наиболее актуальных геоэкологических

проблем [1-3]. Особенно уязвимыми оказываются районы арктической криолитозоны, где

процессы термокарста, термоэрозии и подтаивания мерзлых грунтов приводят к

необратимым изменениям ландшафтов, нарушению гидрологического режима и

разрушению объектов хозяйственной деятельности [4-6]. Одним из наиболее мощных

источников локального теплового воздействия в пределах криолитозоны выступает

добыча минерального сырья, сопровождаемая активной эксплуатацией горнотехнической

инфраструктуры, отвалов, технологических площадок и сетей теплоснабжения. На фоне

высоких темпов промышленного освоения Арктики инженерно-геокриологическая оценка

техногенных воздействий становится неотъемлемой частью устойчивого

природопользования и проектирования в условиях многолетнемерзлых пород пород [7-

10].

Одной из ключевых проблем является тепловое перераспределение в зоне горных

работ, приводящее к понижению термостабильности мерзлых грунтов. При открытой

добыче, особенно в условиях Арктики, происходит оголение пород, обладающих низкой

теплоёмкостью и высокой теплопроводностью, что способствует быстрому прогреву

подстилающего основания [11-13]. Дополнительное тепловое воздействие оказывают

экзогенные и эндогенные процессы, включая окисление сульфидных минералов в

отвалах, эксплуатацию тепловыделяющего оборудования и сброс тёплых дренажных вод.

Для подземной добычи ситуация усугубляется теплом, передаваемым от

вентиляционного воздуха и самонагрева пород. Эти факторы в совокупности вызывают

ускоренную деградацию многолетнемерзлых пород, приводящую к увеличению активного

слоя, просадке грунта, потере несущей способности оснований сооружений и

возникновению потенциально аварийных ситуаций [14]. Одновременно с этим

накапливаются эмиссии парниковых газов из талых участков, что дополнительно

усиливает негативное влияние на климатическую систему [15-18].

Попытки решения данной проблемы включают в себя как конструктивные, так и

природоохранные подходы. На инженерном уровне реализуются методы

термостабилизации оснований с использованием сезонно-действующих или пассивных

охладителей (термосифонов), применения теплоизоляционных покрытий, глубокой

закладки фундаментов и отвода дренажных вод за пределы мерзлотной зоны [19-22]. Эти

меры, однако, требуют значительных затрат на проектирование, эксплуатацию и

обслуживание, и в условиях удалённых арктических районов они не всегда

экономически обоснованы. С другой стороны, при разработке минеральных ресурсов

допускается внедрение адаптивных технологических решений, направленных на

минимизацию теплового воздействия, включая изменение маршрутов транспортировки,

размещение теплонагруженных объектов вне криогенно-чувствительных зон, и выбор

сезонов ведения работ [23-25]. Недостатком подобных решений является их
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ограниченная эффективность при высоких объемах добычи и наличии постоянно

действующих источников тепла. Кроме того, на практике нередко наблюдается

расхождение между проектными и фактическими характеристиками многолетнемерзлых

пород, что требует уточнённых методов оценки состояния подстилающих грунтов [26-27].

В этой связи всё большую актуальность приобретает применение инженерно-

геокриологических методов оценки и прогнозирования деградации многолетнемерзлых

пород под влиянием теплового воздействия горных разработок. Использование

геотермического зондирования, термометрии, многолетнего мониторинга температуры и

численного моделирования позволяет более точно определить динамику температурного

поля, границы таяния и зону потери прочностных свойств мерзлых грунтов [28-30].

Сочетание наблюдательных и расчетных методов даёт возможность учёта как локальных

факторов (глубина отработки, мощность перегретых пластов, конструкция отвалов), так и

региональных тенденций, связанных с потеплением климата. Интеграция таких подходов

в систему проектирования и эксплуатации горных предприятий в Арктике открывает

перспективы для оптимизации технологических решений и повышения устойчивости

инфраструктуры в условиях многолетнемерзлых пород [31,32].

Настоящая работа направлена на инженерно-геокриологическую оценку влияния добычи

минерального сырья на деградацию многолетнемерзлых пород в пределах арктической

криолитозоны России. Исследование сосредоточено на анализе теплового воздействия,

создаваемого Юньягинским угольным разрезом, расположенным в районе Воркуты, а

также рядом действующих угольных шахт, входящих в состав Печорского угольного

бассейна. Целью работы является определение характера, интенсивности и

пространственного распределения теплового влияния указанных объектов на состояние

мерзлотных грунтов, выявление факторов, определяющих масштаб деградации, и оценка

потенциальных рисков для инженерных сооружений и природной среды. Проведённое

исследование охватывает анализ температурного режима, геокриологических

характеристик района, особенностей технологии добычи и позволяет сформулировать

практические рекомендации по снижению техногенной нагрузки на многолетнемерзлые

породы в условиях развития добывающей отрасли Арктики.

2. Методика и методы проведения исследований.

В рамках данного исследования была реализована комплексная программа полевых и

лабораторных инженерно-геокриологических работ, направленных на определение

степени и характера теплового воздействия горнодобывающей деятельности на

состояние многолетнемёрзлых грунтов в пределах арктической криолитозоны.

Экспериментальные работы охватывали участки Юньягинского угольного разреза и

прилегающих шахт Печорского угольного бассейна, включая Воргашорскую,

Воркутинскую и Заполярную шахты. Основное внимание было уделено зонам

непосредственного воздействия тепловых источников, а также удалённым фоновым

участкам, которые использовались в качестве контрольных точек для сопоставительного

анализа.

Инструментальная часть исследований включала бурение инженерно-геологических

скважин с отбором температурных, геотехнических и гидрологических данных. Для

термометрического мониторинга применялись цифровые геотермические датчики HOBO

U23 Pro v2 с диапазоном измерения от –40 до +70°C и точностью ±0,2°C, которые

устанавливались в скважины глубиной до 20 м на фиксированных интервалах по 0,5–2

м. Измерения проводились в автоматическом режиме с шагом регистрации 1 раз в час в
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течение не менее 6 месяцев. Дополнительно использовались кабельные термозонды с

интегральной регистрацией температурного градиента (марки «ГеоТерм-5М»,

производство ООО «ТехноИнжиниринг», Россия). Эти устройства позволяли оперативно

оценивать распределение температуры по глубине в реальном времени с разрешением

до 0,1°C. У частки бурения выбирались с учётом литологической однородности,

расстояния до источников тепла и доступности для последующего геодезического

мониторинга.

Полевые работы дополнялись лабораторными исследованиями проб мерзлотных грунтов,

отобранных из 46 скважин. Испытания проводились на автоматизированных установках

ИГИ-3000 и ЦНИИС-95М, предназначенных для оценки физико-механических

характеристик мерзлых образцов. Параметры, полученные в лабораторных условиях,

включали влажность, пористость, модуль упругости, сопротивление сдвигу и

коэффициент фильтрации. Испытания выполнялись при температуре –5°C в камерах с

термостабилизацией, имитирующих естественные условия криолитозоны. Отдельно

проводился анализ содержания жидкой и связанной влаги при помощи влагомеров

Sartorius MA160, что позволило определить фазовые изменения в пределах переходного

слоя многолетнемерзлой породы.

Для моделирования теплового поля использовалось специализированное программное

обеспечение GeoStudio (модуль TEMP/W ), обеспечивающее численное решение

уравнений теплопереноса с учётом фазовых переходов. В расчётах применялись

параметры, полученные в полевых и лабораторных условиях, включая

теплопроводность, теплоёмкость и скрытую теплоту плавления. Модельная сетка имела

шаг 0,5 м, а временной шаг составлял 10 суток, что позволило достоверно отследить

развитие температурных аномалий и зону деградации многолетнемерзлых пород в

течение прогнозного периода до 25 лет. Полученные результаты легли в основу анализа

пространственного распространения теплового воздействия и сформировали базу для

оценки рисков для инженерных сооружений.

3. Результаты исследования

В ходе настоящего исследования была выполнена инженерно-геокриологическая оценка

теплового влияния угледобывающих объектов Печорского угольного бассейна,

сосредоточенная на Юньягинском угольном разрезе (рис. 1) и прилегающих шахтах,

включая Воргашорскую, Воркутинскую и Заполярную. Исследование проводилось на

основе инструментального мониторинга температуры мерзлых грунтов, анализа

геотермальных полей, термометрического бурения, сейсморазведочных работ и

моделирования динамики теплового воздействия в зоне влияния техногенной нагрузки.

Полигон наблюдений включал участки в радиусе до 4 км от центра карьера, а также

контрольные точки в пределах 8–10 км, не затронутые деятельностью угледобычи, и

использовался в качестве фона для установления базового температурного режима.
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Рисунок 1. Добыча угля на Юньягинском угольном разрезе.

Экспериментальные данные показали значительное повышение температуры грунтов в

пределах зоны активной деятельности Юньягинского разреза. В пределах 500 метров от

кромки карьера среднегодовая температура на глубине 2 метров составила –0,4°C, в то

время как на контрольных участках аналогичного геолого-литологического строения она

не превышала –2,1°C. На глубине 5 метров температурные аномалии были ещё более

выражены: в пределах зоны влияния температура достигала –0,1°C, в то время как

фоновое значение составляло –1,7°C. Максимальное проникновение положительных

температур фиксировалось на глубине до 7,5 метров в точках, расположенных вблизи

складов угля и площадок хранения техники, что связано с аккумуляцией тепла и

теплопередачей через поверхностный слой. Дополнительно, на глубинах 10 и 15 м

наблюдалось отклонение изотерм до +0,3°C от расчетных значений, определённых для

многолетнемёрзлой толщи.

Сравнительный анализ температуры в 32 точках наблюдений показал, что среднее

превышение температуры в зоне Юньягинского карьера по сравнению с контрольной

составляет 1,52°C, что подтверждает интенсивное локальное тепловое воздействие.

Также наблюдалось расширение зоны сезонного протаивания: средняя глубина

активного слоя увеличилась с 1,4 м (фон) до 2,8 м (зона влияния), что соответствует

росту более чем на 100 %. Отдельные участки показали признаки частичного или

полного протаивания многолетнемёрзлых грунтов. Так, вблизи северо-восточной

отвалочной зоны, в районе, где средняя плотность размещения вскрышных масс

достигала 2200 кг/м³, фиксировалось исчезновение многолетнемерзлых пород на

глубине до 4,2 метров. При этом среднегодовая температура здесь колебалась от –0,2 до

+0,4°C, а содержание жидкой влаги достигало 36 %, что более чем в 1,5 раза

превышает фоновые значения.
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Рисунок 2. Сравнительный анализ мерзлотных характеристик.

Анализ проб, отобранных из 46 буровых скважин, показал изменение влажности

многолетнемерзлых пород: если в контрольных точках влажность составляла 18–22 %,

то в зоне прогрева она увеличивалась до 30–34 %, а в отдельных местах до 38 %, что

свидетельствует о фазовом переходе льда в воду. Изменение физических свойств грунта

сопровождалось снижением модуля упругости с 42 МПа до 23–27 МПа. Полевые

лабораторные испытания показали падение сопротивления сдвигу на 31 %, особенно в

зонах с влажностью выше 35 %.

На участках вблизи вентиляционных стволов и выработанных пространств шахт было

зафиксировано наиболее интенсивное поступление тепла с глубин. Термопрофили,

построенные по результатам замеров на глубинах до 20 м, показали повышение

геотермического градиента с фона 2,9 °C/100 м до 5,3 °C/100 м вблизи Воргашорской

шахты (Рис. 3), особенно в районе вентиляционных выходов. Измерения температуры

воздуха, выбрасываемого шахтными вентиляторами, показали, что даже в зимний период

его температура составляла +6,2°C при температуре наружного воздуха –29,5°C. Дебит

вентиляционных потоков достигал 180–220 тыс. м³/ч, создавая зону устойчивого

теплового воздействия до 125 метров от устья ствола. Расчёты по модели теплопереноса

в многолетнемерзлых породах показали, что зона горизонтального воздействия

вентиляционных выбросов может достигать до 140 метров при глубинном прогреве до

10–14 метров за 15–20 лет эксплуатации.
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Рисунок 3. Термопрофиль Воргашорской Шахты.

Численное моделирование распространения тепла методом конечных разностей по

расчётной сетке с шагом 0,5 м, при использовании теплофизических параметров (λ = 1,4

Вт/(м·К), C = 2,2·10⁶ Дж/(м³·К), L = 3,34·10⁸ Дж/м³), показало, что полное протаивание

многолетнемерзлых пород на глубину 6–8 м вблизи зон интенсивной эксплуатации

(технологические дороги, углепогрузочные площадки) возможно за 17–21 год. В зонах

максимальной концентрации тепловой нагрузки (инфраструктурные узлы, теплообменные

станции, насосные) глубина прогрева может превышать 9,5 м. При этом отмечалась

чёткая корреляция между плотностью теплового потока и глубиной протаивания: при

мощности 80–100 Вт/м² глубина деградации составляла 1,8–2,4 м, при 120–150 Вт/м² —

до 3,1–3,8 м за 5 лет.

Анализ временного хода температуры по данным автоматизированных станций (всего 9

установок) за период 2016–2024 гг. показал устойчивый тренд к повышению.

Среднегодовая температура на глубине 1,5 м возросла с –1,6°C до –0,7°C, а в верхнем

0,5-метровом слое почвы достигла +0,2°C. В зимне-весенний период температура в

зонах дренажа и сброса шахтных вод возрастала на 1,2–1,4°C выше фонового уровня.

Зафиксированная температура дренажных вод составляла +2,5…+4,8°C при среднем

суточном объёме сброса 520 м³. Это теплоэнергетическое воздействие эквивалентно

локальной нагрузке в 30–35 МВт∙ч/сутки, что обусловило ускоренное протаивание на

глубину до 4,2 м в зонах прилегающих к каналам отвода.

Геодезический мониторинг, выполненный на базе GNSS-станций и инклинометрических

зондов, выявил просадки поверхности до 14,2 см в пределах участков, где наблюдалось

полное исчезновение многолетнемерзлых пород на глубинах 2–3 м. Осадки
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сопровождались локальными деформациями грунтов основания с потерей несущей

способности. Коэффициент сцепления снизился с фонового значения 38 кПа до 21–24

кПа, а модуль деформации уменьшился с 22 до 13 МПа. В зонах интенсивного

протаивания зафиксировано увеличение пористости на 8–12 %, что создаёт

дополнительные риски для устойчивости инфраструктурных объектов.

На основании полученных результатов можно провести комплексный анализ

температурного режима, геокриологических характеристик исследуемого района,

технологических особенностей угледобычи, а также сформулировать рекомендации,

направленные на снижение техногенной тепловой нагрузки на многолетнемёрзлые

породы в условиях активного освоения арктических территорий.

Температурный режим района Юньягинского разреза и прилегающих шахт

характеризуется не только локальным потеплением верхних слоев грунта, но и

перераспределением теплового потока в вертикальном и горизонтальном направлении.

По данным модельной реконструкции теплового баланса, за последние 15 лет произошло

смещение изотермы 0°C вниз в среднем на 1,8 м, а зона термической аномалии

расширилась радиально на 220–270 м вокруг основных источников тепла. Это

свидетельствует о формировании устойчивого техногенного теплового поля. Выявлена

закономерность: при увеличении средней плотности тепловой нагрузки на поверхности

выше 90 Вт/м² наблюдается экспоненциальный рост глубины деградации

многолетнемерзлых пород, что связано с нелинейной теплопроводностью влажных

грунтов в переходной фазе между твёрдым и жидким состоянием.

Анализ геокриологических свойств показал, что температурная пластичность

многолетнемерзлых пород резко возрастает при приближении к фазовому переходу

льда, особенно в зонах с высокой долей илистых частиц (более 35 % в составе). Это

приводит к усиленной деформации в зонах с пониженной прочностью: в трещиноватых и

лёссовидных горизонтах. Также обнаружено, что в зонах термического воздействия

повышается коэффициент фильтрации более чем в два раза (с 1,1·10 ⁶ до 2,5·10 ⁶ м/с),

что усиливает инфильтрацию тёплых вод и способствует формированию вторичных

очагов деградации на периферии активных зон.

Технологические особенности добычи также продемонстрировали влияние на

пространственную структуру теплового воздействия. Анализ аэротермографических

снимков, выполненных в период летнего максимума солнечной инсоляции, показал, что

температура поверхности пород на отвалах достигает +22,5°C, тогда как в

ненарушенных участках — не превышает +14°C. В ночное время отвалы сохраняют

температуру выше +12°C на протяжении более 6 часов, в то время как фоновые участки

остывают до +5…+7°C. Это создаёт суточную асимметрию теплового обмена,

способствующую накоплению энергии и постепенному прогреву подстилающих грунтов.

Наибольшая тепловая нагрузка в шахтных районах зафиксирована в местах размещения

трансформаторных подстанций, компрессорных и насосных станций, где тепловыделение

составляет 35–40 кВт на единицу площади 100 м². Именно в этих точках

зарегистрированы локальные аномалии температуры на глубинах 1,5–3,0 м. Анализ

температурных кривых показал, что вблизи таких объектов достигается не только

прогрев, но и формируется многолетний цикл колебаний температур с низкой амплитудой

и высокой инерцией, что препятствует восстановлению многолетнемерзлых пород даже в

зимний период.

Одним из ключевых результатов работы стало установление зависимости между
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структурой инженерной нагрузки и формой теплового поля. Линейно-протяжённые

источники (технологические дороги, дренажные каналы) создают овально-удлинённые

зоны прогрева с направленной миграцией тепла вдоль продольной оси. Точечные

источники (склады топлива, энергообъекты) формируют симметричные поля с

концентрированным ядром. Такое разграничение позволяет более точно моделировать

тепловой режим и прогнозировать зоны максимального риска.

С целью уменьшения теплового влияния рекомендуется переход к модульным

конструкциям технологической инфраструктуры с минимизированной теплопередающей

площадью. Например, использование утеплённых платформ вместо открытых стоянок

позволяет снизить локальную тепловую нагрузку до 55–60 Вт/м². Также перспективно

внедрение полимерных световозвращающих покрытий на отвалах, уменьшающих альбедо

поверхности до 0,6 и понижающих дневную температуру поверхности на 4–5°C по

сравнению с тёмными техногенными отложениями. Так же возможно применение

рекуперационных теплообменников на вентиляционных системах шахт, что позволяет

возвращать до 35 % тепловой энергии, снижая температуру выбросов на 2,3–3,1°C. В

совокупности с поэтапной автоматизацией вентиляции, работающей в зависимости от

термогидравлических условий в выработанных пространствах, это может сократить

глубину деградации многолетнемерзлых пород на 12–18 % в перспективе 10 лет

эксплуатации.

Таким образом, проведённый анализ подтвердил, что тепловое воздействие на

многолетнемерзлую породу в условиях промышленной эксплуатации в Арктике носит

комплексный и многофакторный характер, а его смягчение требует одновременно

инженерных, климатических и проектных решений. Только системный подход,

объединяющий термогидрологический мониторинг, оптимизацию архитектуры

инфраструктуры и внедрение энергосберегающих технологий, способен обеспечить

устойчивое развитие добычи в криолитозоне без необратимого разрушения мерзлотных

массивов.

4. Выводы.

Полученные данные в работе данные для арктической криолитозоны Юньягинского

угольного разреза и шахт Воркуты подтвердили, что эксплуатация угольных

месторождений сопровождается формированием устойчивых техногенных тепловых

полей, приводящих к перераспределению температуры в толще мерзлых грунтов.

Значительное повышение температуры на глубинах от 2 до 15 метров вблизи

промышленных объектов свидетельствует о прогрессирующей деградации

многолетнемерзлых пород, сопровождающейся расширением активного слоя,

увеличением влажности, снижением прочностных характеристик грунта и развитием

осадочных деформаций. Выявленные температурные аномалии устойчиво коррелируют с

плотностью размещения отвалов, мощностью вентиляционных потоков, а также

интенсивностью сброса дренажных вод. У становлено, что глубина деградации

многолетнемёрзлых пород может достигать 9,5 м при средней тепловой нагрузке 120–150

Вт/м² и сроке воздействия более 15 лет. Кроме того, подтверждён вклад подземных

источников тепла, таких как шахтная вентиляция и тепловыделяющее оборудование, в

формирование вертикального прогрева грунтов.

Численные модели распространения тепла в мерзлотных условиях подтвердили, что

термодинамическое поведение многолетнемёрзлых грунтов существенно зависит от их

литологического состава, фазового состояния влаги и режима поступления тепла.

Особое внимание уделено зонам с высоким содержанием илистых частиц и повышенной
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влажностью, где наблюдаются наиболее выраженные процессы протаивания и потери

устойчивости основания. Геодезический мониторинг выявил просадки поверхности до

14,2 см, что свидетельствует о необходимости пересмотра проектных решений при

размещении объектов на термоактивных участках. Также доказано, что формы

распространения тепловых аномалий различаются в зависимости от конфигурации

источников: точечные источники образуют концентрированные ядра прогрева, а

линейные — удлинённые зоны с направленной миграцией тепла. Такой подход к

типологизации термического влияния открывает новые возможности для моделирования

и зонирования рисков.

Практическая значимость работы заключается в формировании рекомендаций по

оптимизации технологических решений в условиях криолитозоны. Обоснована

эффективность перехода к модульным конструкциям, применения световозвращающих

покрытий, изолированных дренажных каналов и пассивных охладителей (термосифонов)

в сочетании с автоматизированным геотермальным мониторингом. Полученные данные

могут служить основой для принятия проектных решений в сфере инженерной

геокриологии, устойчивого природопользования и оценки рисков для инфраструктуры в

Арктике.
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Результаты процедуры рецензирования статьи

В связи с политикой двойного слепого рецензирования личность рецензента не

раскрывается. 

Со списком рецензентов издательства можно ознакомиться здесь.

Предметом изучения является инженерно-геокриологическая оценка влияния добычи

минерального сырья на деградацию вечной мерзлоты в пределах арктической

криолитозоны России.

Актуальность исследования бесспорна, так как одним из наиболее мощных источников

локального теплового воздействия в пределах криолитозоны выступает добыча

минерального сырья. На фоне высоких темпов промышленного освоения Арктики

инженерно-геокриологическая оценка техногенных воздействий становится

неотъемлемой частью устойчивого природопользования и проектирования в условиях

мерзлоты. В этой связи всё большую актуальность приобретает применение инженерно-

геокриологических методов оценки и прогнозирования деградации вечной мерзлоты под

влиянием теплового воздействия горных разработок. Статья посвящена инженерно-

геокриологической оценке влияния добычи минерального сырья на деградацию вечной

мерзлоты в пределах арктической криолитозоны России. Исследование сосредоточено

на анализе теплового воздействия, создаваемого Юньягинским угольным разрезом,

расположенным в районе Воркуты, а также рядом действующих угольных шахт,

входящих в состав Печорского угольного бассейна.

Методология исследования основана на применении полевых и лабораторных

инженерно-геокриологических методов, а также методов геотермического

зондирования, термометрии, многолетнего мониторинга температуры и численного

моделирования. Инструментальные исследования включали бурение инженерно-

геологических скважин с отбором температурных, геотехнических и гидрологических

данных. Для термометрического мониторинга применялись цифровые геотермические

датчики HOBO U23 Pro v2 и кабельные термозонды с интегральной регистрацией

температурного градиента марки «ГеоТерм-5М». Лабораторные исследования проб

мерзлотных грунтов (из 46 скважин) проводили на автоматизированных установках ИГИ-

3000 и ЦНИИС-95М. Анализ содержания жидкой и связанной влаги проводили при

помощи влагомеров Sartorius MA160. Для моделирования теплового поля ис-
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пользовалось специализированное программное обеспечение GeoStudio (модуль

TEMP/W).

Научная новизна исследований заключается в том, что авторами впервые выполнена

инженерно-геокриологическая оценка теплового влияния угледобывающих объектов

Печорского угольного бассейна, сосредоточенная на Юньягинском угольном разрезе. 

Стиль статьи – научный, изложение грамотное. Объём и структура статьи полностью

соответствуют требованиям журнала «Арктика и Антарктика». Имеется иллюстративный и

графический материал, что делает статью более доступной к восприятию и анализу

данных. Автором показано, что на участках вблизи вентиляционных стволов и

выработанных пространств шахт было зафиксировано наиболее интенсивное

поступление тепла с глубин. Экспериментальные данные показали, что имеется

значительное повышение температуры грунтов в пределах зоны активной деятельности

Юньягинского разреза. В пределах 500 метров от кромки карьера среднегодовая

температура на глубине 2 метров составила –0,4°C, в то время как на контрольных

участках аналогичного геолого-литологического строения она не превышала –2,1 °C.

В качестве пожелания хочется отметить, что в разделе 3 «Результаты исследования»

нужно провести редактирование первого абзаца, где автор повторно указывает цель

исследования: «Целью экспериментальной части работы было определение

пространственно-временной динамики деградации…..». В целом, существенных

замечаний в статье не отмечается.

Библиография статьи солидная и включает в себя 30 литературных источников, в том

числе 19 - на иностранном языке. Апелляция к оппонентам состоит в ссылках на

литературные источники.

Выводы в статье достаточно четкие и конкретные, соответствуют теме исследования.

Автором доказано, что эксплуатация угольных месторождений арктической криолитозоны

Юньягинского угольного разреза и шахт Воркуты сопровождается формированием

устойчивых техногенных тепловых полей, приводящих к перераспределению

температуры в толще мерзлых грунтов. Значительное повышение температуры на

глубинах от 2 до 15 метров вблизи промышленных объектов свидетельствует о

прогрессирующей деградации мерзлоты, сопровождающейся расширением активного

слоя, увеличением влажности, снижением прочностных характеристик грунта и

развитием осадочных де-формаций.

Практическая значимость работы несомненна и заключается в формировании

рекомендаций по оптимизации технологических решений в условиях криолитозоны;

обоснована эффективность перехода к модульным конструкциям и применения

световозвращающих покрытий, изолированных дренажных каналов и пассивных

охладителей (термосифонов) в сочетании с автоматизированным геотермальным

мониторингом.

Данная статья будет полезна широкому кругу ученых и специалистов в обрасти

грунтоведения и мерзлотоведения. Статья рекомендуется к опубликованию в журнале

«Арктика и Антарктика».
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