Parameterization of control functions in the problem of modeling HIV infection therapy

封面

如何引用文章

全文:

详细

Mathematical modeling is actively used to study the mechanisms of human immunodeficiency virus of type 1 (HIV-1) infection. Current HIV-1 therapy involves the regular, lifelong use of multiple antiviral drugs. However, this therapy is associated with varying degrees of side effects due to toxicity, drug interactions, resistance development, and high cost. Mathematical models of HIV-1 infection and optimal control methods can be used to develop effective regimens for applying multiple antiretroviral drugs, taking into account the immune status of HIV-1-infected patients. In this study, we identify the pharmacodynamic parameters of drugs based on a previously constructed stochastic model of the processes that determine viral replication in infected cells. We also study the efficiency of standard therapy for various HIV-1 infection regimens using a system dynamics model. The results of the study indicate the need to take into account differences in the body’s response to therapy based on the criterion of efficiency, which actualizes the task of selecting individual therapy regimens using optimal control methods based on physiologically approved models of HIV-1 infection.

作者简介

D. Grebennikov

Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences; Branch of Moscow Center of Fundamental and Applied Mathematics at INM RAS; I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)

编辑信件的主要联系方式.
Email: dmitry.ew@gmail.com
ORCID iD: 0000-0002-7315-193X
SPIN 代码: 2896-3314
Scopus 作者 ID: 56841562500
Researcher ID: I-4310-2018
Moscow, Russia

A. Lyfenko

Lomonosov Moscow State University

Email: lyfenko2006@mail.ru
ORCID iD: 0000-0002-8042-9389
Researcher ID: JMQ-0460-2023
Moscow, Russia

A. Timokhin

I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)

Email: data.sup@yandex.ru
Moscow, Russia

R. Savinkov

Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences; Branch of Moscow Center of Fundamental and Applied Mathematics at INM RAS; I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)

Email: dr.savinkov@yandex.ru
ORCID iD: 0000-0002-7404-8766
SPIN 代码: 4812-4638
Scopus 作者 ID: 57189699479
Researcher ID: N-5539-2018
Moscow, Russia

G. Bocharov

Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences; Branch of Moscow Center of Fundamental and Applied Mathematics at INM RAS; I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)

Email: g.bocharov@inm.ras.ru
ORCID iD: 0000-0002-5049-0656
SPIN 代码: 8503-1588
Scopus 作者 ID: 6701431415
Researcher ID: T-1322-2017
Moscow, Russia

参考

  1. Ким А.В., Иванов А.В. Об управлении математической моделью динамики ВИЧ на основе субоптимальных игровых сценариев прерывистой антиретровирусной терапии// Аграр. вестн. Урала.- 2018.-171, № 4.-С. 17-24.
  2. Adams B. M., Banks H.T., Kwon H.D., Tran H.T. Dynamic multidrug therapies for hiv: optimal and sti control approaches// Math. Biosci. Eng. -2004.- 1, № 2.-С. 223-241.- doi: 10.3934/mbe.2004.1.223.
  3. Ali N., Chohan M.I., Ali S. и др. Analysis of optimal control problem of HIV-1 model of engineered virus// Int. J. Adv. Appl. Sci. -2019.- 6, № 5.- С. 44-49.- doi: 10.21833/ijaas.2019.05.008.
  4. Attarian A., Tran H. An optimal control approach to structured treatment interruptions for HIV patients: a personalized medicine perspective// Appl. Math.- 2017.- 8.- С. 934-955.-DOI: 10.4236/ am.2017.87074.
  5. Bocharov G., Chereshnev V., Gainova I., Bazhan S., Bachmetyev B., Argilaguet J., Martinez J., Meyerhans A. Human immunodeficiency virus infection: from biological observations to mechanistic mathematical modelling// Math. Model. Nat. Phenom. -2012.- 7, № 5.-С. 78-104.-DOI: 10.1051/ mmnp/20127507.
  6. Bocharov G., Kim A.V., Krasovskii A., Chereshnev V.A., Glushenkova V., Ivanov A. An extremal shift method for control of HIV infection dynamics// Russ. J. Numer. Anal. Math. Model.- 2015.- 30, № 1.- С. 11-25.-doi: 10.1515/rnam-2015-0002.
  7. Hadjiandreou M., Conejeros R., Wilson I. HIV treatment planning on a case-by-case basis// Int. J. Bioeng. Life Sci. -2009.- 3, № 8.-С. 387-396.- doi: 10.5281/zenodo.1071055.
  8. Jain A., Canepa G.E., Liou M.L., Fledderman E.L., Chapoval A.I., Xiao L., Mukherjee I., Balogun B.M., Huaman-Vergara H., Galvin J.A., Kumar P.N., Bordon J., Conant M.A., Boyle J.S. Multiple treatment interruptions and protecting HIV-specific CD4 T cells enable durable CD8 T cell response and viral control// Front. Med. (Lausanne).- 2024.- 11.- 1342476.- doi: 10.3389/fmed.2024.1342476.
  9. Jilek B.L., Zarr M., Sampah M.E., Rabi S.A., Bullen C.K., Lai J., Shen L., Siliciano R.F. A quantitative basis for antiretroviral therapy for HIV-1 infection// Nat. Med. - 2012.- 18.- С. 446-451.- doi: 10.1038/nm.2649.
  10. Nuwagaba J., Li J.A., Ngo B., Sutton R.E. 30 years of HIV therapy: current and future antiviral drug targets// Virology.- 2025.- 603.- 110362.- doi: 10.1016/j.virol.2024.110362.
  11. Rasi G., Emili E., Conway J.M., Cotugno N., Palma P. Mathematical modeling and mechanisms of HIV latency for personalized anti latency therapies// NPJ Syst Biol Appl. - 2025.- 11, № 1. -64.-doi: 10.1038/s41540-025-00538-6.
  12. Rosenberg E.S., Davidian M., Banks H.T. Using mathematical modeling and control to develop structured treatment interruption strategies for HIV infection// Drug Alcohol Depend. - 2007.- 88, Suppl. 2.- С. S41-51.-doi: 10.1016/j.drugalcdep.2006.12.024.
  13. Sazonov I., Grebennikov D., Meyerhans A., Bocharov G. Markov chain-based stochastic modelling of HIV-1 life cycle in a CD4 T Cell// Mathematics.- 2021.- 9.-2025.- doi: 10.3390/math9172025.
  14. Shcherbatova O., Grebennikov D., Sazonov I., Meyerhans A., Bocharov G. Modeling of the HIV-1 life cycle in productively infected cells to predict novel therapeutic targets// Pathogens.- 2020.- 9.- 255.-doi: 10.3390/pathogens9040255.
  15. Tretyakova R.M., Meyerhans A., Bocharov G.A. A drug pharmacodynamics and pharmacokinetics based approach towards stabilization of HIV infection dynamics// Russ. J. Numer. Anal. Math. Model.- 2015.- 30, № 5.- С. 299-310.-doi: 10.1515/rnam-2015-0027.
  16. Vemparala B., Chowdhury S., Guedj J., Dixit N.M. Modelling HIV-1 control and remission// NPJ Syst. Biol Appl. - 2024.- 10, № 1.- 84.- doi: 10.1038/s41540-024-00407-8.
  17. Di Veroli G.Y., Fornari C., Goldlust I., Mills G., Koh S.B., Bramhall J.L., Richards F.M., Jodrell D.I. An automated fitting procedure and software for dose-response curves with multiphasic features// Sci. Rep. -2015.- 5. -14701.- doi: 10.1038/srep14701.
  18. Zhang H., Zhou Y., Alcock C., Kiefer T., Monie D., Siliciano J., Li Q., Pham P., Cofrancesco J., Persaud D. и др. Novel single-cell-level phenotypic assay for residual drug susceptibility and reduced replication capacity of drug-resistant human immunodeficiency virus type 1// J. Virology.- 2004.- 78.- С. 1718-1729.-doi: 10.1128/jvi.78.4.1718-1729.2004.
  19. Zheltkova V., Argilaguet J., Peligero C., Bocharov G., Meyerhans A. Prediction of PDL1 inhibition effects for HIV-infected individuals// PLoS Comput. Biol.- 2019.- 15, №11.- e1007401.-DOI: 10.1371/ journal.pcbi.1007401.

补充文件

附件文件
动作
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).