О применении современного доказательства формулы Сфорца к вычислению объемов гиперболических тетраэдров специального вида

Обложка

Цитировать

Полный текст

Аннотация

В настоящей работе мы, используя современное доказательство формулы Сфорца объема произвольного неевклидова тетраэдра, предложенное Н.В. Абросимовым и А.Д. Медных, выведем новые формулы, выражающие объемы гиперболических тетраэдров специального вида (ортосхемы и тетраэдры с группой симметрии S 4) через двугранные углы.

Об авторах

В. А. Краснов

Российский университет дружбы народов

Автор, ответственный за переписку.
Email: krasnov_va@rudn.university
117198, Москва, ул. Миклухо-Маклая, д. 6

Список литературы

  1. Абросимов Н.В., Выонг Хыу Б. Объем гиперболического тетраэдра с группой симметрий S4// Тр. Ин-та мат. и мех. УрО РАН. - 2017. -23, № 4. - С. 7-17.
  2. Винберг Э.Б. Объемы неевклидовых многогранников// Усп. мат. наук. - 1993. -48, № 2. - С. 17-46.
  3. Лобачевский Н.И. Воображаемая геометрия// В сб.: «Полное собр. соч. Т. 3». - M.-Л., 1949.
  4. Abrosimov N.V., Mednykh A.D. Volumes of polytopes in spaces of constant curvature// Rigidity and Symmetry. - 2014. -70. - С. 1-26.
  5. Bolyai J. Appendix. The theory of space// В сб.: «Janos Bolyai». - Budapest, 1987.
  6. Cho Yu., Kim H. On the volume formula for hyperbolic tetrahedra// Discrete Comput. Geom. - 1999. - 22. - С. 347-366.
  7. Derevnin D.A., Mednykh A.D. A formula for the volume of hyperbolic tetrahedron// Russ. Math. Surv. - 2005. -60, № 2. - С. 346-348.
  8. Kellerhals R. On the volume of hyperbolic polyhedra// Math. Ann. - 1989. -285. - С. 541-569.
  9. Kneser H. Der Simplexinhalt in der nichteuklidischen Geometrie// Deutsche Math. - 1936. -1. - С. 337- 340.
  10. Milnor J. Hyperbolic geometry: the first 150 years// Bull. Am. Math. Soc. - 1982. -6, № 1. - С. 307- 332.
  11. Murakami J. The volume formulas for a spherical tetrahedron// Arxiv. - 2011. - 1011.2584v4.
  12. Murakami J., Ushijima A. A volume formula for hyperbolic tetrahedra in terms of edge lengths// J. Geom. - 2005. -83, № 1-2. - С. 153-163.
  13. Murakami J., Yano M. On the volume of a hyperbolic and spherical tetrahedron// Comm. Anal. Geom. - 2005. -13. - С. 379-400.
  14. Schlafli L.¨ Theorie der vielfachen Kontinuitat// В сб.: «Gesammelte mathematische Abhandlungen». -¨ Basel: Birkhauser, 1950.¨
  15. Sforza G. Spazi metrico-proiettivi// Ric. Esten. Different. Ser. - 1906. -8, № 3. - С. 3-66.
  16. Ushijima A. A volume formula for generalized hyperbolic tetrahedra// Non-Euclid. Geom. - 2006. - 581. - С. 249-265.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).