Интегро-дифференциальные уравнения в банаховых пространствах и аналитические разрешающие семейства операторов

Обложка

Цитировать

Полный текст

Аннотация

Исследуется класс уравнений в банаховых пространствах с интегро-дифференциальным оператором типа Римана—Лиувилля с операторнозначным ядром свертки. Исследованы свойства \(k\)-разрешающих операторов таких уравнений, определен класс \(\mathcal
A_{m,K,\chi}\)
линейных замкнутых операторов, принадлежность которому необходима и в случае коммутирования оператора с ядром свертки достаточна для существования аналитических в секторе \(k\)-разрешающих семейств операторов исследуемого уравнения. При некоторых дополнительных условиях на ядро свертки доказаны теоремы об однозначной разрешимости неоднородного линейного уравнения рассматриваемого класса в случае непрерывной в норме графика оператора из уравнения или гельдеровой неоднородности. Доказана теорема о достаточных условиях на аддитивное возмущение оператора класса \(\mathcal A_{m,K,\chi}\) для того, чтобы возмущенный оператор также принадлежал такому классу. Абстрактные результаты использованы при исследовании начально-краевых задач для системы уравнений в частных производных с несколькими дробными производными Римана—Лиувилля по времени разных порядков и для уравнения с дробной производной Прабхакара по времени.

Об авторах

В. Е. Федоров

Челябинский государственный университет

Автор, ответственный за переписку.
Email: kar@csu.ru
Челябинск, Россия

А. Д. Годова

Челябинский государственный университет

Email: sashka_1997_godova55@mail.ru
Челябинск, Россия

Список литературы

  1. Авилович А. С., Гордиевских Д. М., Федоров В. Е. Вопросы однозначной разрешиомсти и приближенной управляемости для линейных уравнений дробного порядка с гельдеровой правой частью// Челяб. физ.-мат. ж. -2020. - 5, № 1. -С. 5-21.
  2. Иосида К. Функциональный анализ. -М.: Мир, 1967.
  3. Като Т. Теория возмущений линейных операторов. -М.: Мир, 1972.
  4. Клемент Ф., Хейманс Х., Ангенент С., ван Дуйн К., де Пахтер Б. Однопараметрические полугруппы. -М.: Мир, 1992.
  5. Соломяк М. З. Применение теории полугрупп к исследованию дифференциальных уравнений в пространствах Банаха// Докл. АН СССР. -1958. - 122, № 6. -С. 766-769.
  6. Трибель Х. Теория интерполяции. Функциональные пространства. Дифференциальные операторы. - М.: Мир, 1980.
  7. Федоров В. Е., Авилович А. С. Задача типа Коши для вырожденного уравнения с производной Римана-Лиувилля в секториальном случае// Сиб. мат. ж. -2019. - 60, № 2. -С. 461-477.
  8. Федоров В. Е., Филин Н. В. Линейные уравнения с дискретно распределенной дробной производной в банаховых пространствах// Тр. Ин-та мат. и мех. УрО РАН. -2021. - 27, № 2. -С. 264-280.
  9. Хенри Д. Геометрическая теория полулинейных параболических уравнений. -М.: Мир, 1985.
  10. Arendt W., Batty C. J. K., Hieber M., Neubrander F. Vector-valued laplace transforms and Cauchy problems. -Basel: Springer, 2011.
  11. Atangana A., Baleanu D. New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model// Thermal Sci. -2016. - 20. -С. 763-769.
  12. Bajlekova E. G. Fractional evolution equations in Banach spaces// Канд. дисс. -Eindhoven: Eindhoven Univ. of Technology, 2001.
  13. Boyko K. V., Fedorov V. E. The Cauchy problem for a class of multi-term equations with Gerasimov- Caputo derivatives// Lobachevskii J. Math. -2022. - 43, № 6. -С. 1293-1302.
  14. Caputo M., Fabrizio M. A new definition of fractional derivative without singular kernel// Prog. Fract. Differ. Appl. -2015. - 1, № 2. -С. 1-13.
  15. Fedorov V. E. Generators of analytic resolving families for distributed order equations and perturbations// Mathematics. -2020. - 8, № 8. -С. 1306.
  16. Fedorov V. E., Du W.-S., Kostic M., Abdrakhmanova A. A. Analytic resolving families for equations with distributed Riemann-Liouville derivatives// Mathematics. -2022. - 10, № 5. -С. 681.
  17. Fedorov V. E., Godova A. D., Kien B. T. Integro-differential equations with bounded operators in Banach spaces// Bull. Karaganda Univ. Math. Ser. -2022. -№ 2. -С. 93-107.
  18. Fedorov V. E., Filin N. V. On strongly continuous resolving families of operators for fractional distributed order equations// Fractal and Fractional. -2021. - 5, № 1. -С. 20.
  19. Fedorov V. E., Plekhanova M. V., Izhberdeeva E. M. Analytic resolving families for equations with the Dzhrbashyan-Nersesyan fractional derivative// Fractal and Fractional. - 2022. - 6, № 10. -С. 541.
  20. Fedorov V. E., Turov M. M. Sectorial tuples of operators and quasilinear fractional equations with multiterm linear part// Lobachevskii J. Math. -2022. - 43, № 6. -С. 1502-1512.
  21. Kilbas A. A., Srivastava H. M., Trujillo J. J. Theory and applications of fractional differential equations. - Amsterdam-Boston-Heidelberg: Elsevier, 2006.
  22. Pazy A. Semigroups and linear operators and applications to partial differential equations. -New York: Springer, 1983.
  23. Prabhakar T. R. A singular integral equation with a generalized Mittag-Leffler function in the kernel// Yokohama Math. J. -1971. - 19. -С. 7-15.
  24. Pru¨ss J. Evolutionary integral equations and applications. -Basel: Springer, 1993.
  25. Samko S. G., Kilbas A. A., Marichev O. I. Fractional integrals and derivatives. Theory and applications. - Philadelphia: Gordon and Breach, 1993.
  26. Sitnik S. M., Fedorov V. E., Filin N. V., Polunin V. A. On the solvability of equations with a distributed fractional derivative given by the Stieltjes integral// Mathematics. -2022. - 10, № 16. -С. 2979.
  27. Tarasov V. E. Fractional dynamics: applications of fractional calculus to dynamics of particles, fields and media. -New York: Springer, 2011.
  28. Uchaikin V. V. Fractional derivatives for physicists and engineers. Vol. I, II. -Berlin, Heidelberg: Springer, 2013.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».