Некоторые обратные задачи Фурье-оптики
- Авторы: Петров В.Э.1
-
Учреждения:
- ООО «ТВЭЛЛ»
- Выпуск: Том 69, № 2 (2023): Труды Крымской осенней математической школы-симпозиума
- Страницы: 332-341
- Раздел: Статьи
- URL: https://journals.rcsi.science/2413-3639/article/view/327774
- DOI: https://doi.org/10.22363/2413-3639-2023-69-2-332-341
- EDN: https://elibrary.ru/UFJOVO
- ID: 327774
Цитировать
Полный текст
Аннотация
Рассматривается общая постановка задачи восстановления сигнала по неполной априорной информации о нем и измерениям интенсивности его Фурье-образа. Изучены некоторые частные случаи, когда априорной информацией является знание четной или нечетной части сигнала, а также вещественной или мнимой части сигнала. Построены точные решения в квадратурах. Также предложен алгоритм решения задачи, когда известны лишь интенсивности сигнала и изображения.
Ключевые слова
Об авторах
В. Э. Петров
ООО «ТВЭЛЛ»
Автор, ответственный за переписку.
Email: vladimir.petrov@twell.ru
Санкт-Петербург, Россия
Список литературы
- Брейсуэлл Р. Преобразование Хартли. Теория и приложения.-М.: Мир, 1990.
- Гахов Ф.Д. Краевые задачи.-М.: Наука, 1974.
- Гахов Ф.Д., Черский Ю.И. Уравнения типа свертки.-М.: Наука, 1978.
- Гудмен Дж. Введение в Фурье-оптику.- М.: Мир, 1970.
- Ильина И.В., Черезова Т.Ю., Кудряшов А.В. Алгоритм Гершберга-Сакстона: экспериментальная реализация и модификация для задачи формирования многомодового лазерного излучения// Квант. электрон.-2009.- 39, № 6.-С. 521-527.
- Петров В.Э. Обобщеннные тригонометрические преобразования// Зап. науч. сем. ПОМИ.- 2015.- 438.- С. 203-224.
- Петров В.Э. Преобразованиетипа Фурье на полуоси с произвольной фазой// Мат. заметки.- 2020.- 107, № 2.-С. 256-275.
Дополнительные файлы
