Bi-Variationality, Symmetries and Approximate Solutions

封面

如何引用文章

全文:

详细

By a bi-variational system we mean any system of equations generated by two different Hamiltonian actions. A connection between their variational symmetries is established. The effective use of the nonclassical Hamiltonian actions for the construction of approximate solutions with the high accuracy for the given dissipative problem is demonstrated. We also investigate the potentiality of the given operator equation with the second-order time derivative, construct the corresponding functional and find necessary and sufficient conditions for the operator S to be a generator of symmetry of the constructed functional. Theoretical results are illustrated by some examples.

作者简介

V. Filippov

Peoples’ Friendship University of Russia (RUDN University)

编辑信件的主要联系方式.
Email: v.filippov@rudn.ru
Moscow, Russia

V. Savchin

Peoples’ Friendship University of Russia (RUDN University)

Email: savchin-vm@rudn.ru
Moscow, Russia

S. Budochkina

Peoples’ Friendship University of Russia (RUDN University)

Email: budochkina-sa@rudn.ru
Moscow, Russia

参考

  1. Будочкина С. А., Савчин В. М. Вариационные симметрии эйлеровых и неэйлеровых функционалов// Дифф. уравн. - 2011. - 47, № 6. - C. 811-818.
  2. Козлов В. В. Симметрии, топология и резонансы в гамильтоновой механике. - Ижевск: Изд-во Удмуртского гос. ун-та, 1995.
  3. Олвер П. Приложения групп Ли к дифференциальным уравнениям. - М.: Мир, 1989.
  4. Савчин В. М. Математические методы механики бесконечномерных непотенциальных систем. - М.: РУДН, 1991.
  5. Савчин В. М., Будочкина С. А. О существовании вариационного принципа для операторного уравнения со второй производной по «времени»// Мат. заметки. - 2006. - 80, № 1. - C. 87-94.
  6. Савчин В. М., Будочкина С. А. Симметрии и первые интегралы в механике бесконечномерных систем// Докл. РАН. - 2009. - 425, № 2. - C. 169-171.
  7. Филиппов В. М. Вариационные принципы для непотенциальных операторов. - М.: РУДН, 1985.
  8. Филиппов В. М. О вариационном принципе для гипоэллиптических уравнений с постоянными коэффициентами// Дифф. уравн.- 1986.- 22, № 2. - C. 338-343.
  9. Филиппов В. М. О полуограниченных решениях обратных задач вариационного исчисления// Дифф. уравн. - 1987. - 23, № 9. - C. 1599-1607.
  10. Budochkina S. A. Symmetries and first integrals of a second order evolutionary operator equation// Eurasian Math. J. - 2012. - 3, № 1. - C. 18-28.
  11. Budochkina S. A. On connection between variational symmetries and algebraic structures// Ufa Math. J. - 2021. - 13, № 1. - C. 46-55.
  12. Filippov V. M., Savchin V. M., Budochkina S. A. On the existence of variational principles for differentialdifference evolution equations// Proc. Steklov Inst. Math. - 2013. - 283.- C. 20-34.
  13. Filippov V. M., Savchin V. M., Shorokhov S. G. Variational principles for nonpotential operators// J. Math. Sci. (N.Y.). - 1994. - 68, № 3. - C. 275-398.
  14. Marchuk G. I. Construction of adjoint operators in non-linear problems of mathematical physics// Sb. Math. - 1998. - 189, № 10. - C. 1505-1516.
  15. Mikhlin S. G. Numerical performance of variational methods. - Groningen: Wolters-Noordhoff Publ., 1965.
  16. Popov A. M. Potentiality conditions for differential-difference equations// Differ. Equ. - 1998. - 34, № 3. - C. 423-426.
  17. Popov A. M. Inverse problem of the calculus of variations for systems of differential-difference equations of second order// Math. Notes. - 2002. - 72, № 5. - C. 687-691.
  18. Savchin V. M., Budochkina S. A. Invariance of functionals and related Euler-Lagrange equations// Russ. Math. - 2017. - 61, № 2. - C. 49-54.
  19. Tleubergenov M. I., Azhymbaev D. T. On the solvability of stochastic Helmholtz problem// J. Math. Sci. - 2021. - 253. - C. 297-305.
  20. Tleubergenov M. I., Ibraeva G. T. On inverse problem of closure of differential systems with degenerate diffusion// Eurasian Math. J. - 2019. - 10, № 2. - C. 93-102.
  21. Tleubergenov M. I., Ibraeva G. T. On the solvability of the main inverse problem for stochastic differential systems// Ukr. Math. J. - 2019. - 71, № 1. - C. 157-165.
  22. Tonti E. On the variational formulation for linear initial value problems// Ann. Mat. Pura Appl. - 1973. - 95. - C. 331-359.
  23. Tonti E. Variational formulation for every nonlinear problem// Int. J. Eng. Sci. - 1984. - 22, № 11-12. - C. 1343-1371.

补充文件

附件文件
动作
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».